Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.484
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Nat Immunol ; 21(12): 1574-1584, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077975

RESUMO

A classical view of blood cell development is that multipotent hematopoietic stem and progenitor cells (HSPCs) become lineage-restricted at defined stages. Lin-c-Kit+Sca-1+Flt3+ cells, termed lymphoid-primed multipotent progenitors (LMPPs), have lost megakaryocyte and erythroid potential but are heterogeneous in their fate. Here, through single-cell RNA sequencing, we identify the expression of Dach1 and associated genes in this fraction as being coexpressed with myeloid/stem genes but inversely correlated with lymphoid genes. Through generation of Dach1-GFP reporter mice, we identify a transcriptionally and functionally unique Dach1-GFP- subpopulation within LMPPs with lymphoid potential with low to negligible classic myeloid potential. We term these 'lymphoid-primed progenitors' (LPPs). These findings define an early definitive branch point of lymphoid development in hematopoiesis and a means for prospective isolation of LPPs.


Assuntos
Biomarcadores , Proteínas do Olho/metabolismo , Genômica , Células Progenitoras Linfoides/metabolismo , Análise de Célula Única , Animais , Células Cultivadas , Biologia Computacional/métodos , Proteínas do Olho/genética , Perfilação da Expressão Gênica , Genômica/métodos , Hematopoese/genética , Sequenciamento de Nucleotídeos em Larga Escala , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteômica , Análise de Célula Única/métodos
3.
Mol Cell ; 82(5): 1003-1020.e15, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182476

RESUMO

Chromatin misfolding has been implicated in cancer pathogenesis; yet, its role in therapy resistance remains unclear. Here, we systematically integrated sequencing and imaging data to examine the spatial and linear chromatin structures in targeted therapy-sensitive and -resistant human T cell acute lymphoblastic leukemia (T-ALL). We found widespread alterations in successive layers of chromatin organization including spatial compartments, contact domain boundaries, and enhancer positioning upon the emergence of targeted therapy resistance. The reorganization of genome folding structures closely coincides with the restructuring of chromatin activity and redistribution of architectural proteins. Mechanistically, the derepression and repositioning of the B-lineage-determining transcription factor EBF1 from the heterochromatic nuclear envelope to the euchromatic interior instructs widespread genome refolding and promotes therapy resistance in leukemic T cells. Together, our findings suggest that lineage-determining transcription factors can instruct changes in genome topology as a driving force for epigenetic adaptations in targeted therapy resistance.


Assuntos
Cromatina , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Cromatina/genética , Reposicionamento de Medicamentos , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfócitos T/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Cell ; 157(5): 1175-88, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24813849

RESUMO

Upon ligand binding, RIPK1 is recruited to tumor necrosis factor receptor superfamily (TNFRSF) and Toll-like receptor (TLR) complexes promoting prosurvival and inflammatory signaling. RIPK1 also directly regulates caspase-8-mediated apoptosis or, if caspase-8 activity is blocked, RIPK3-MLKL-dependent necroptosis. We show that C57BL/6 Ripk1(-/-) mice die at birth of systemic inflammation that was not transferable by the hematopoietic compartment. However, Ripk1(-/-) progenitors failed to engraft lethally irradiated hosts properly. Blocking TNF reversed this defect in emergency hematopoiesis but, surprisingly, Tnfr1 deficiency did not prevent inflammation in Ripk1(-/-) neonates. Deletion of Ripk3 or Mlkl, but not Casp8, prevented extracellular release of the necroptotic DAMP, IL-33, and reduced Myd88-dependent inflammation. Reduced inflammation in the Ripk1(-/-)Ripk3(-/-), Ripk1(-/-)Mlkl(-/-), and Ripk1(-/-)Myd88(-/-) mice prevented neonatal lethality, but only Ripk1(-/-)Ripk3(-/-)Casp8(-/-) mice survived past weaning. These results reveal a key function for RIPK1 in inhibiting necroptosis and, thereby, a role in limiting, not only promoting, inflammation.


Assuntos
Genes Letais , Hematopoese , Inflamação/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Animais Recém-Nascidos , Caspase 8/metabolismo , Morte Celular , Fígado/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo
5.
Nat Immunol ; 17(7): 816-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27213690

RESUMO

The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.


Assuntos
Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Proliferação de Células/genética , Citotoxicidade Imunológica/genética , Vigilância Imunológica , Interferon gama/metabolismo , Interleucina-15/metabolismo , Janus Quinase 1/metabolismo , Ativação Linfocitária/genética , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Neoplasias/imunologia , Transdução de Sinais/genética , Proteínas Supressoras da Sinalização de Citocina/genética
6.
Nat Immunol ; 16(3): 286-95, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25642823

RESUMO

Interleukin 17 (IL-17)-producing helper T cells (TH17 cells) and CD4(+) inducible regulatory T cells (iTreg cells) emerge from an overlapping developmental program. In the intestines, the vitamin A metabolite retinoic acid (RA) is produced at steady state and acts as an important cofactor to induce iTreg cell development while potently inhibiting TH17 cell development. Here we found that IL-1 was needed to fully override RA-mediated expression of the transcription factor Foxp3 and induce protective TH17 cell responses. By repressing expression of the negative regulator SOCS3 dependent on the transcription factor NF-κB, IL-1 increased the amplitude and duration of phosphorylation of the transcription factor STAT3 induced by TH17-polarizing cytokines, which led to an altered balance in the binding of STAT3 and STAT5 to shared consensus sequences in developing T cells. Thus, IL-1 signaling modulated STAT activation downstream of cytokine receptors differently to control the TH17 cell-iTreg cell developmental fate.


Assuntos
Interleucina-1/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Tretinoína/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo
7.
Immunity ; 48(2): 243-257.e10, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466756

RESUMO

T cell development is orchestrated by transcription factors that regulate the expression of genes initially buried within inaccessible chromatin, but the transcription factors that establish the regulatory landscape of the T cell lineage remain unknown. Profiling chromatin accessibility at eight stages of T cell development revealed the selective enrichment of TCF-1 at genomic regions that became accessible at the earliest stages of development. TCF-1 was further required for the accessibility of these regulatory elements and at the single-cell level, it dictated a coordinate opening of chromatin in T cells. TCF-1 expression in fibroblasts generated de novo chromatin accessibility even at chromatin regions with repressive marks, inducing the expression of T cell-restricted genes. These results indicate that a mechanism by which TCF-1 controls T cell fate is through its widespread ability to target silent chromatin and establish the epigenetic identity of T cells.


Assuntos
Linhagem da Célula , Epigenômica , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Fator 1 de Transcrição de Linfócitos T/fisiologia , Linfócitos T/fisiologia , Animais , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina , Fibroblastos/metabolismo , Camundongos , Células NIH 3T3 , Transcrição Gênica
8.
Mol Cell ; 73(6): 1174-1190.e12, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30745086

RESUMO

Chromatin loops enable transcription-factor-bound distal enhancers to interact with their target promoters to regulate transcriptional programs. Although developmental transcription factors such as active forms of Notch can directly stimulate transcription by activating enhancers, the effect of their oncogenic subversion on the 3D organization of cancer genomes is largely undetermined. By mapping chromatin looping genome-wide in Notch-dependent triple-negative breast cancer and B cell lymphoma, we show that beyond the well-characterized role of Notch as an activator of distal enhancers, Notch regulates its direct target genes by instructing enhancer repositioning. Moreover, a large fraction of Notch-instructed regulatory loops form highly interacting enhancer and promoter spatial clusters termed "3D cliques." Loss- and gain-of-function experiments show that Notch preferentially targets hyperconnected 3D cliques that regulate the expression of crucial proto-oncogenes. Our observations suggest that oncogenic hijacking of developmental transcription factors can dysregulate transcription through widespread effects on the spatial organization of cancer genomes.


Assuntos
Transformação Celular Neoplásica/genética , Cromatina/genética , Linfoma de Células B/genética , Oncogenes , Receptores Notch/genética , Neoplasias de Mama Triplo Negativas/genética , Sítios de Ligação , Linhagem da Célula/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Ciclina D1/genética , Ciclina D1/metabolismo , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Mutação , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
9.
Proc Natl Acad Sci U S A ; 121(14): e2400066121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536754

RESUMO

The inherently low signal-to-noise ratio of NMR and MRI is now being addressed by hyperpolarization methods. For example, iridium-based catalysts that reversibly bind both parahydrogen and ligands in solution can hyperpolarize protons (SABRE) or heteronuclei (X-SABRE) on a wide variety of ligands, using a complex interplay of spin dynamics and chemical exchange processes, with common signal enhancements between 103 and 104. This does not approach obvious theoretical limits, and further enhancement would be valuable in many applications (such as imaging mM concentration species in vivo). Most SABRE/X-SABRE implementations require far lower fields (µT-mT) than standard magnetic resonance (>1T), and this gives an additional degree of freedom: the ability to fully modulate fields in three dimensions. However, this has been underexplored because the standard simplifying theoretical assumptions in magnetic resonance need to be revisited. Here, we take a different approach, an evolutionary strategy algorithm for numerical optimization, multi-axis computer-aided heteronuclear transfer enhancement for SABRE (MACHETE-SABRE). We find nonintuitive but highly efficient multiaxial pulse sequences which experimentally can produce a sevenfold improvement in polarization over continuous excitation. This approach optimizes polarization differently than traditional methods, thus gaining extra efficiency.

10.
Nat Immunol ; 14(12): 1277-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185616

RESUMO

Notch signaling induces gene expression of the T cell lineage and discourages alternative fate outcomes. Hematopoietic deficiency in the Notch target Hes1 results in severe T cell lineage defects; however, the underlying mechanism is unknown. We found here that Hes1 constrained myeloid gene-expression programs in T cell progenitor cells, as deletion of the myeloid regulator C/EBP-α restored the development of T cells from Hes1-deficient progenitor cells. Repression of Cebpa by Hes1 required its DNA-binding and Groucho-recruitment domains. Hes1-deficient multipotent progenitor cells showed a developmental bias toward myeloid cells and dendritic cells after Notch signaling, whereas Hes1-deficient lymphoid progenitor cells required additional cytokine signaling for diversion into the myeloid lineage. Our findings establish the importance of constraining developmental programs of the myeloid lineage early in T cell development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Proteína alfa Estimuladora de Ligação a CCAAT/imunologia , Proteínas de Homeodomínio/imunologia , Receptor Notch1/imunologia , Linfócitos T/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Linhagem Celular , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Citometria de Fluxo , Expressão Gênica/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Linfopoese/genética , Linfopoese/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Células Mieloides/imunologia , Células Mieloides/metabolismo , Ligação Proteica/imunologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição HES-1
11.
Blood ; 141(26): 3199-3214, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-36928379

RESUMO

Polycythemia vera (PV) is a myeloproliferative neoplasm driven by activating mutations in JAK2 that result in unrestrained erythrocyte production, increasing patients' hematocrit and hemoglobin concentrations, placing them at risk of life-threatening thrombotic events. Our genome-wide association study of 440 PV cases and 403 351 controls using UK Biobank data showed that single nucleotide polymorphisms in HFE known to cause hemochromatosis are highly associated with PV diagnosis, linking iron regulation to PV. Analysis of the FinnGen dataset independently confirmed overrepresentation of homozygous HFE variants in patients with PV. HFE influences the expression of hepcidin, the master regulator of systemic iron homeostasis. Through genetic dissection of mouse models of PV, we show that the PV erythroid phenotype is directly linked to hepcidin expression: endogenous hepcidin upregulation alleviates erythroid disease whereas hepcidin ablation worsens it. Furthermore, we demonstrate that in PV, hepcidin is not regulated by expanded erythropoiesis but is likely governed by inflammatory cytokines signaling via GP130-coupled receptors. These findings have important implications for understanding the pathophysiology of PV and offer new therapeutic strategies for this disease.


Assuntos
Policitemia Vera , Animais , Camundongos , Policitemia Vera/genética , Policitemia Vera/complicações , Hepcidinas/genética , Estudo de Associação Genômica Ampla , Ferro/metabolismo , Fenótipo , Homeostase
12.
Immunity ; 45(3): 513-526, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27523270

RESUMO

The kinases RIPK1 and RIPK3 and the pseudo-kinase MLKL have been identified as key regulators of the necroptotic cell death pathway, although a role for MLKL within the whole animal has not yet been established. Here, we have shown that MLKL deficiency rescued the embryonic lethality caused by loss of Caspase-8 or FADD. Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice were viable and fertile but rapidly developed severe lymphadenopathy, systemic autoimmune disease, and thrombocytopenia. These morbidities occurred more rapidly and with increased severity in Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice compared to Casp8(-/-)Ripk3(-/-) or Fadd(-/-)Ripk3(-/-) mice, respectively. These results demonstrate that MLKL is an essential effector of aberrant necroptosis in embryos caused by loss of Caspase-8 or FADD. Furthermore, they suggest that RIPK3 and/or MLKL may exert functions independently of necroptosis. It appears that non-necroptotic functions of RIPK3 contribute to the lymphadenopathy, autoimmunity, and excess cytokine production that occur when FADD or Caspase-8-mediated apoptosis is abrogated.


Assuntos
Apoptose/fisiologia , Doenças Autoimunes/metabolismo , Morte Celular/fisiologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Caspase 8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo
13.
Immunity ; 44(1): 103-115, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26795246

RESUMO

The inhibitor of DNA binding 2 (Id2) is essential for natural killer (NK) cell development with its canonical role being to antagonize E-protein function and alternate lineage fate. Here we have identified a key role for Id2 in regulating interleukin-15 (IL-15) receptor signaling and homeostasis of NK cells by repressing multiple E-protein target genes including Socs3. Id2 deletion in mature NK cells was incompatible with their homeostasis due to impaired IL-15 receptor signaling and metabolic function and this could be rescued by strong IL-15 receptor stimulation or genetic ablation of Socs3. During NK cell maturation, we observed an inverse correlation between E-protein target genes and Id2. These results shift the current paradigm on the role of ID2, indicating that it is required not only to antagonize E-proteins during NK cell commitment, but constantly required to titrate E-protein activity to regulate NK cell fitness and responsiveness to IL-15.


Assuntos
Diferenciação Celular/imunologia , Proteína 2 Inibidora de Diferenciação/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Animais , Linhagem da Célula/imunologia , Células Cultivadas , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Mutantes , Receptores de Interleucina-15/imunologia , Receptores de Interleucina-15/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
15.
Blood ; 139(6): 845-858, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34724565

RESUMO

The histone acetyltransferase HBO1 (MYST2, KAT7) is indispensable for postgastrulation development, histone H3 lysine 14 acetylation (H3K14Ac), and the expression of embryonic patterning genes. In this study, we report the role of HBO1 in regulating hematopoietic stem cell function in adult hematopoiesis. We used 2 complementary cre-recombinase transgenes to conditionally delete Hbo1 (Mx1-Cre and Rosa26-CreERT2). Hbo1-null mice became moribund due to hematopoietic failure with pancytopenia in the blood and bone marrow 2 to 6 weeks after Hbo1 deletion. Hbo1-deleted bone marrow cells failed to repopulate hemoablated recipients in competitive transplantation experiments. Hbo1 deletion caused a rapid loss of hematopoietic progenitors. The numbers of lineage-restricted progenitors for the erythroid, myeloid, B-, and T-cell lineages were reduced. Loss of HBO1 resulted in an abnormally high rate of recruitment of quiescent hematopoietic stem cells (HSCs) into the cell cycle. Cycling HSCs produced progenitors at the expense of self-renewal, which led to the exhaustion of the HSC pool. Mechanistically, genes important for HSC functions were downregulated in HSC-enriched cell populations after Hbo1 deletion, including genes essential for HSC quiescence and self-renewal, such as Mpl, Tek(Tie-2), Gfi1b, Egr1, Tal1(Scl), Gata2, Erg, Pbx1, Meis1, and Hox9, as well as genes important for multipotent progenitor cells and lineage-specific progenitor cells, such as Gata1. HBO1 was required for H3K14Ac through the genome and particularly at gene loci required for HSC quiescence and self-renewal. Our data indicate that HBO1 promotes the expression of a transcription factor network essential for HSC maintenance and self-renewal in adult hematopoiesis.


Assuntos
Autorrenovação Celular , Células-Tronco Hematopoéticas , Histona Acetiltransferases , Animais , Células Cultivadas , Senescência Celular , Deleção de Genes , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Camundongos Endogâmicos C57BL
16.
PLoS Comput Biol ; 19(9): e1011448, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672554

RESUMO

African horse sickness is an equine orbivirus transmitted by Culicoides Latreille biting midges. In the last 80 years, it has caused several devastating outbreaks in the equine population in Europe, the Far and Middle East, North Africa, South-East Asia, and sub-Saharan Africa. The disease is endemic in South Africa; however, a unique control area has been set up in the Western Cape where increased surveillance and control measures have been put in place. A deterministic metapopulation model was developed to explore if an outbreak might occur, and how it might develop, if a latently infected horse was to be imported into the control area, by varying the geographical location and months of import. To do this, a previously published ordinary differential equation model was developed with a metapopulation approach and included a vaccinated horse population. Outbreak length, time to peak infection, number of infected horses at the peak, number of horses overall affected (recovered or dead), re-emergence, and Rv (the basic reproduction number in the presence of vaccination) were recorded and displayed using GIS mapping. The model predictions were compared to previous outbreak data to ensure validity. The warmer months (November to March) had longer outbreaks than the colder months (May to September), took more time to reach the peak, and had a greater total outbreak size with more horses infected at the peak. Rv appeared to be a poor predictor of outbreak dynamics for this simulation. A sensitivity analysis indicated that control measures such as vaccination and vector control are potentially effective to manage the spread of an outbreak, and shortening the vaccination window to July to September may reduce the risk of vaccine-associated outbreaks.


Assuntos
Doença Equina Africana , Animais , Cavalos , África do Sul/epidemiologia , Doença Equina Africana/epidemiologia , Doença Equina Africana/prevenção & controle , Surtos de Doenças/veterinária , Número Básico de Reprodução , Simulação por Computador
17.
J Int Neuropsychol Soc ; : 1-8, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752403

RESUMO

OBJECTIVE: Previous studies have found deficits in imaginative elaboration and social inference to be associated with agenesis of the corpus callosum (ACC; Renteria-Vasquez et al., 2022; Turk et al., 2009). In the current study, Thematic Apperception Test (TAT) responses from a neurotypical control group and a group of individuals with ACC were used to further study the capacity for imaginative elaboration and story coherence. METHOD: Topic modeling was employed utilizing Latent Diritchlet Allocation to characterize the narrative responses to the pictures used in the TAT. A measure of the difference between models (perplexity) was used to compare the topics of the responses of individual participants to the common core model derived from the responses of the control group. Story coherence was tested using sentence-to-sentence Latent Semantic Analysis. RESULTS: Group differences in perplexity were statistically significant overall, and for each card individually (p < .001). There were no differences between the groups in story coherence. CONCLUSIONS: TAT narratives from persons with ACC were normally coherent, but more conventional (i.e., more similar to the core text) compared to those of neurotypical controls. Individuals with ACC can make conventional social inferences about socially ambiguous stimuli, but are restricted in their imaginative elaborations, resulting in less topical variability (lower perplexity values) compared to neurotypical controls.

18.
Mycoses ; 67(1): e13683, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214375

RESUMO

A growing body of literature has marked the emergence and spread of antifungal resistance among species of Trichophyton, the most prevalent cause of toenail and fingernail onychomycosis in the United States and Europe. We review published data on rates of oral antifungal resistance among Trichophyton species; causes of antifungal resistance and methods to counteract it; and in vitro data on the role of topical antifungals in the treatment of onychomycosis. Antifungal resistance among species of Trichophyton against terbinafine and itraconazole-the two most common oral treatments for onychomycosis and other superficial fungal infections caused by dermatophytes-has been detected around the globe. Fungal adaptations, patient characteristics (e.g., immunocompromised status; drug-drug interactions), and empirical diagnostic and treatment patterns may contribute to reduced antifungal efficacy and the development of antifungal resistance. Antifungal stewardship efforts aim to ensure proper antifungal use to limit antifungal resistance and improve clinical outcomes. In the treatment of onychomycosis, critical aspects of antifungal stewardship include proper identification of the fungal infection prior to initiation of treatment and improvements in physician and patient education. Topical ciclopirox, efinaconazole and tavaborole, delivered either alone or in combination with oral antifungals, have demonstrated efficacy in vitro against susceptible and/or resistant isolates of Trichophyton species, with low potential for development of antifungal resistance. Additional real-world long-term data are needed to monitor global rates of antifungal resistance and assess the efficacy of oral and topical antifungals, alone or in combination, in counteracting antifungal resistance in the treatment of onychomycosis.


Assuntos
Antifúngicos , Onicomicose , Humanos , Antifúngicos/uso terapêutico , Onicomicose/microbiologia , Terbinafina/uso terapêutico , Itraconazol/uso terapêutico , Trichophyton , Administração Tópica
19.
J Drugs Dermatol ; 23(2): 110-112, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306131

RESUMO

Good adherence to treatment is necessary for the successful treatment of onychomycosis and requires that an appropriate amount of medication be prescribed. Most prescriptions for efinaconazole 10% solution, a topical azole antifungal, are for 4 mL per month but there are no data on patient factors or disease characteristics that impact how much medication is needed. Data from two phase 3 studies of efinaconazole 10% solution for the treatment of toenail onychomycosis were pooled and analyzed to determine monthly medication usage based on the number of affected toenails, percent involvement of the target toenail, body mass index (BMI), and sex. Participants with two or more affected nails required, on average, >4 mL of efinaconazole per month, with increasing amounts needed based on the number of nails with onychomycosis (mean: 4.39 mL for 2 nails; 6.36 mL for 6 nails). In contrast, usage was not greatly impacted by target toenail involvement, BMI, or sex. Together, these data indicate that the number of affected nails should be the major consideration when determining the monthly efinaconazole quantity to prescribe. J Drugs Dermatol. 2024;23(2):110-112.    doi:10.36849/JDD.7676.


Assuntos
Dermatoses do Pé , Onicomicose , Humanos , Onicomicose/diagnóstico , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Unhas , Administração Tópica , Triazóis/uso terapêutico , Antifúngicos , Dermatoses do Pé/diagnóstico , Dermatoses do Pé/tratamento farmacológico , Dermatoses do Pé/microbiologia
20.
Genes Dev ; 30(1): 78-91, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26728554

RESUMO

Unlike clustered HOX genes, the role of nonclustered homeobox gene family members in hematopoiesis and leukemogenesis has not been extensively studied. Here we found that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. Loss of Hhex leads to expression of the Cdkn2a-encoded tumor suppressors p16(INK4a) and p19(ARF), which are required for growth arrest and myeloid differentiation following Hhex deletion. Mechanistically, we show that Hhex binds to the Cdkn2a locus and directly interacts with the Polycomb-repressive complex 2 (PRC2) to enable H3K27me3-mediated epigenetic repression. Thus, Hhex is a potential therapeutic target that is specifically required for AML stem cells to repress tumor suppressor pathways and enable continued self-renewal.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Epigênese Genética , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/fisiopatologia , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA