RESUMO
Niemann-Pick disease type C (NPC) is a rare, fatal, neurodegenerative lysosomal disease caused by mutations of either NPC1 or NPC2. NPC2 is a soluble lysosomal protein that functions in coordination with NPC1 to efflux cholesterol from the lysosomal compartment. Mutations of either gene result in the accumulation of unesterified cholesterol and other lipids in the late endosome/lysosome, and reduction of cellular cholesterol bioavailability. Zygotic null npc2m/m zebrafish showed significant unesterified cholesterol accumulation at larval stages, a reduction in body size, and motor and balance defects in adulthood. However, the phenotype at embryonic stages was milder than expected, suggesting a possible role of maternal Npc2 in embryonic development. Maternal-zygotic npc2m/m zebrafish exhibited significant developmental defects, including defective otic vesicle development/absent otoliths, abnormal head/brain development, curved/twisted body axes and no circulating blood cells, and died by 72â hpf. RNA-seq analysis conducted on 30â hpf npc2+/m and MZnpc2m/m embryos revealed a significant reduction in the expression of notch3 and other downstream genes in the Notch signaling pathway, suggesting that impaired Notch3 signaling underlies aspects of the developmental defects observed in MZnpc2m/m zebrafish.
Assuntos
Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Transporte Biológico , Colesterol/metabolismo , Desenvolvimento Embrionário , Endossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva/anatomia & histologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genéticaRESUMO
Smith-Lemli-Opitz syndrome (SLOS) is a rare, multiple malformation/intellectual disability disorder caused by pathogenic variants of DHCR7. DHCR7 catalyzes the reduction of 7-dehydrocholesterol (7DHC) to cholesterol in the final step of cholesterol biosynthesis. This results in accumulation of 7DHC and a cholesterol deficiency. Although the biochemical defect is well delineated and multiple mechanisms underlying developmental defects have been explored, the post developmental neuropathological consequences of altered central nervous system sterol composition have not been studied. Preclinical studies suggest that astroglial activation may occur in SLOS. To determine if astroglial activation is present in individuals with SLOS, we quantified cerebrospinal fluid (CSF) glial fibrillary acidic protein using a Quanterix Simoa® GFAP Discovery Kit for SR-X™. Relative to an age-appropriate comparison group, we found that CSF GFAP levels were elevated 3.9-fold in SLOS (3980 ± 3732 versus 1010 ± 577 pg/ml, p = 0.0184). Simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, has previously been shown to increase expression of hypomorphic DHCR7 alleles and in a placebo-controlled trial improved serum sterol levels and decreased irritability. Using archived CSF samples from that prior study, we observed a significant decrease (p = 0.0119) in CSF GFAP levels in response to treatment with simvastatin. Although further work needs to be done to understand the potential contribution of neuroinflammation to SLOS neuropathology and cognitive dysfunction, these data confirm astroglial activation in SLOS and suggest that CSF GFAP may be a useful biomarker to monitor therapeutic responses.
Assuntos
Proteína Glial Fibrilar Ácida , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Síndrome de Smith-Lemli-Opitz , Síndrome de Smith-Lemli-Opitz/líquido cefalorraquidiano , Síndrome de Smith-Lemli-Opitz/genética , Humanos , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Proteína Glial Fibrilar Ácida/genética , Masculino , Feminino , Criança , Pré-Escolar , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Adolescente , Lactente , Colesterol/líquido cefalorraquidiano , Astrócitos/metabolismo , Astrócitos/patologia , Desidrocolesteróis/líquido cefalorraquidiano , Adulto , Sinvastatina/farmacologia , Adulto JovemRESUMO
Niemann-Pick disease type C1 (NPC1) is a lysosomal disorder due to impaired intracellular cholesterol transport out of the endolysosomal compartment.. Marked heterogeneity has been observed in individuals with the same NPC1 genotype, thus suggesting a significant effect of modifier genes. Prior work demonstrated that decreased SOAT1 activity decreased disease severity in an NPC1 mouse model. Thus, we hypothesized that a polymorphism associated with decreased SOAT1 expression might influence the NPC1 phenotype. Phenotyping and genomic sequencing of 117 individuals with NPC1 was performed as part of a Natural History trial. Phenotyping included determination of disease severity and disease burden. Significant clinical heterogeneity is present in individuals homozygous for the NPC1I1061T variant and in siblings. Analysis of the SOAT1 polymorphism, rs1044925 (A>C), showed a significant association of the C-allele with earlier age of neurological onset. The C-allele may be associated with a higher Annualized Severity Index Score as well as increased frequency of liver disease and seizures. A polymorphism associated with decreased expression of SOAT1 appears to be a genetic modifier of the NPC1 phenotype. This finding is consistent with prior data showing decreased phenotypic severity in Npc1-/-:Soat1-/- mice and supports efforts to investigate the potential of SOAT1 inhibitors as a potential therapy for NPC1.
Assuntos
Doença de Niemann-Pick Tipo C , Esterol O-Aciltransferase , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Humanos , Masculino , Feminino , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Proteína C1 de Niemann-Pick , Criança , Polimorfismo de Nucleotídeo Único , Animais , Camundongos , Fenótipo , Adolescente , Pré-Escolar , Genes Modificadores , Adulto , Alelos , Índice de Gravidade de Doença , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adulto JovemRESUMO
Niemann-Pick, type C1 (NPC1) is a fatal, neurodegenerative disease, which belongs to the family of lysosomal diseases. In NPC1, endo/lysosomal accumulation of unesterified cholesterol and sphingolipids arise from improper intracellular trafficking resulting in multi-organ dysfunction. With the proximity between the brain and cerebrospinal fluid (CSF), performing differential proteomics provides a means to shed light to changes occurring in the brain. In this study, CSF samples obtained from NPC1 individuals and unaffected controls were used for protein biomarker identification. A subset of these individuals with NPC1 are being treated with miglustat, a glycosphingolipid synthesis inhibitor. Of the 300 identified proteins, 71 proteins were altered in individuals with NPC1 compared to controls including cathepsin D, and members of the complement family. Included are a report of 10 potential markers for monitoring therapeutic treatment. We observed that pro-neuropeptide Y (NPY) was significantly increased in NPC1 individuals relative to healthy controls; however, individuals treated with miglustat displayed levels comparable to healthy controls. In further investigation, NPY levels in a NPC1 mouse model corroborated our findings. We posit that NPY could be a potential therapeutic target for NPC1 due to its multiple roles in the central nervous system such as attenuating neuroinflammation and reducing excitotoxicity.
Assuntos
Doenças Neurodegenerativas , Doença de Niemann-Pick Tipo C , Camundongos , Animais , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo , Proteômica/métodos , ProteínasRESUMO
Syndromic CLN3-Batten is a fatal, pediatric, neurodegenerative disease caused by variants in CLN3, which encodes the endolysosomal transmembrane CLN3 protein. No approved treatment for CLN3 is currently available. The protracted and asynchronous disease presentation complicates the evaluation of potential therapies using clinical disease progression parameters. Biomarkers as surrogates to measure the progression and effect of potential therapeutics are needed. We performed proteomic discovery studies using cerebrospinal fluid (CSF) samples from 28 CLN3-affected and 32 age-similar non-CLN3 individuals. Proximal extension assay (PEA) of 1467 proteins and untargeted data-dependent mass spectrometry [MS; MassIVE FTP server (ftp://MSV000090147@massive.ucsd.edu)] were used to generate orthogonal lists of protein marker candidates. At an adjusted p-value of <0.1 and threshold CLN3/non-CLN3 fold-change ratio of 1.5, PEA identified 54 and MS identified 233 candidate biomarkers. Some of these (NEFL, CHIT1) have been previously linked with other neurologic conditions. Others (CLPS, FAM217B, QRICH2, KRT16, ZNF333) appear to be novel. Both methods identified 25 candidate biomarkers, including CHIT1, NELL1, and ISLR2 which had absolute fold-change ratios >2. NELL1 and ISLR2 regulate axonal development in neurons and are intriguing new candidates for further investigation in CLN3. In addition to identifying candidate proteins for CLN3 research, this study provides a comparison of two large-scale proteomic discovery methods in CSF.
Assuntos
Doenças Neurodegenerativas , Lipofuscinoses Ceroides Neuronais , Humanos , Criança , Chaperonas Moleculares/metabolismo , Proteínas do Líquido Cefalorraquidiano , Glicoproteínas de Membrana/metabolismo , Proteômica , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismoRESUMO
BACKGROUND: Niemann-Pick disease, type C (NPC) is a childhood-onset, lethal, neurodegenerative disorder caused by autosomal recessive mutations in the genes NPC1 or NPC2 and characterized by impaired cholesterol homeostasis, a lipid essential for cellular function. Cellular cholesterol levels are tightly regulated, and mutations in either NPC1 or NPC2 lead to deficient transport and accumulation of unesterified cholesterol in the late endosome/lysosome compartment, and progressive neurodegeneration in affected individuals. Previous cell-based studies to understand the NPC cellular pathophysiology and screen for therapeutic agents have mainly used patient fibroblasts. However, these do not allow modeling the neurodegenerative aspect of NPC disease, highlighting the need for an in vitro system that permits understanding the cellular mechanisms underlying neuronal loss and identifying appropriate therapies. This study reports the development of a novel human iPSC-derived, inducible neuronal model of Niemann-Pick disease, type C1 (NPC1). RESULTS: We generated a null i3Neuron (inducible × integrated × isogenic) (NPC1-/- i3Neuron) iPSC-derived neuron model of NPC1. The NPC1-/- and the corresponding isogenic NPC1+/+ i3Neuron cell lines were used to efficiently generate homogenous, synchronized neurons that can be used in high-throughput screens. NPC1-/- i3Neurons recapitulate cardinal cellular NPC1 pathological features including perinuclear endolysosomal storage of unesterified cholesterol, accumulation of GM2 and GM3 gangliosides, mitochondrial dysfunction, and impaired axonal lysosomal transport. Cholesterol storage, mitochondrial dysfunction, and axonal trafficking defects can be ameliorated by treatment with 2-hydroxypropyl-ß-cyclodextrin, a drug that has shown efficacy in NPC1 preclinical models and in a phase 1/2a trial. CONCLUSION: Our data demonstrate the utility of this new cell line in high-throughput drug/chemical screens to identify potential therapeutic agents. The NPC1-/- i3Neuron line will also be a valuable tool for the NPC1 research community to explore the pathological mechanisms contributing to neuronal degeneration.
Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Niemann-Pick Tipo C , Colesterol , Humanos , Neurônios , Doença de Niemann-Pick Tipo C/genética , Preparações FarmacêuticasRESUMO
Complex asparagine-linked glycosylation plays key roles in cellular functions, including cellular signaling, protein stability, and immune response. Previously, we characterized the appearance of a complex asparagine-linked glycosylated form of lysosome-associated membrane protein 1 (LAMP1) in the cerebellum of Npc1-/- mice. This LAMP1 form was found on activated microglia, and its appearance correlated both spatially and temporally with cerebellar Purkinje neuron loss. To test the importance of complex asparagine-linked glycosylation in NPC1 pathology, we generated NPC1 knock-out mice deficient in MGAT5, a key Golgi-resident glycosyl transferase involved in complex asparagine-linked glycosylation. Our results show that Mgat5-/-:Npc1-/- mice were smaller than Mgat5+/+:Npc1-/- mice, and exhibited earlier NPC1 disease onset and reduced lifespan. Western blot and lectin binding analyses of cerebellar extracts confirmed the reduction in complex asparagine-linked glycosylation, and the absence of the hyper-glycosylated LAMP1 previously observed. Western blot analysis of cerebellar extracts demonstrated reduced calbindin staining in Mgat5-/-:Npc1-/- mice compared to Mgat5+/+:Npc1-/- mutant mice, and immunofluorescent staining of cerebellar sections indicated decreased levels of Purkinje neurons and increased astrogliosis in Mgat5-/-:Npc1-/- mice. Our results suggest that reduced asparagine-linked glycosylation increases NPC1 disease severity in mice, and leads to the hypothesis that mutations in genes involved in asparagine-linked glycosylation may contribute to disease severity progression in individuals with NPC1. To examine this with respect to MGAT5, we analyzed 111 NPC1 patients for two MGAT5 SNPs associated with multiple sclerosis; however, we did not identify an association with NPC1 phenotypic severity.
Assuntos
N-Acetilglucosaminiltransferases , Doença de Niemann-Pick Tipo C , Animais , Asparagina/metabolismo , Asparagina/farmacologia , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , N-Acetilglucosaminiltransferases/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologiaRESUMO
PURPOSE: Creatine transporter deficiency (CTD) is a rare X-linked disorder of creatine transport caused by pathogenic variants in SLC6A8 (Xq28). CTD features include developmental delay, seizures, and autism spectrum disorder. This study was designed to investigate CTD cardiac phenotype and sudden death risk. METHODS: We performed a cross-sectional analysis of CTD males between 2017 and 2020. Subjects underwent evaluation with electrocardiogram (ECG), echocardiography, and ambulatory ECG with comparable analysis in creatine transporter deficient mice (Slc6a8-/y) using ECG, echocardiography, exercise testing, and indirect calorimetry. RESULTS: Eighteen subjects with CTD (18 males, age 7.4 [3.8] years) were evaluated: seven subjects (39%) had QTc ≥ 470 milliseconds: 510.3 ± 29.0 vs. 448.3 ± 15.9, P < 0.0001. The QTc ≥ 470 milliseconds cohort had increased left ventricular internal dimension (diastole) ([LVIDd] Z-score: 0.22 ± 0.74, n = 7 vs. -0.93 ± 1.0, n = 11, P = 0.0059), and diminished left ventricular posterior wall dimension (diastole) ([LVPWDd, in mm]: 5.0 ± 0.6, n = 7 vs. 5.7 ± 0.8, n = 11, P = 0.0183), when compared to subjects with normal or borderline QTc prolongation. Similar ECG and echocardiographic abnormalities were seen in Slc6a8-/y mice. Additionally, Slc6a8-/y mice had diminished survival (65%). CONCLUSION: Prolonged QTc and abnormal echocardiographic parameters consistent with developing cardiomyopathy are seen in some male subjects with CTD. Slc6a8-/y mice recapitulated these cardiac abnormalities. Male CTD subjects may be at increased risk for cardiac dysfunction and sudden death.
Assuntos
Transtorno do Espectro Autista , Creatina , Animais , Encefalopatias Metabólicas Congênitas , Creatina/deficiência , Estudos Transversais , Morte Súbita , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X , Camundongos , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiênciaRESUMO
Niemann-Pick disease, type C1 is a progressive, lethal, neurodegenerative disorder due to endolysosomal storage of unesterified cholesterol. Cerebellar ataxia, as a result of progressive loss of cerebellar Purkinje neurons, is a major symptom of Nieman-Pick disease, type C1. Comparing single cell RNAseq data from control (Npc1+/+) and mutant (Npc1-/-) mice, we observed significantly decreased expression of Slc1a3 in Npc1-/- astrocytes. Slc1a3 encodes a glutamate transporter (GLAST, EAAT1) which functions to decrease glutamate concentrations in the post synaptic space after neuronal firing. Glutamate is an excitatory neurotransmitter and elevated extracellular levels of glutamate can be neurotoxic. Impaired EAAT1 function underlies type-6 episodic ataxia, a rare disorder with progressive cerebellar dysfunction, thus suggesting that impaired glutamate uptake in Niemann-Pick disease, type C1 could contribute to disease progression. We now show that decreased expression of Slc1a3 in Npc1-/- mice has functional consequences that include decreased surface protein expression and decreased glutamate uptake by Npc1-/- astrocytes. To test whether glutamate neurotoxicity plays a role in Niemann-Pick disease, type C1 progression, we treated NPC1 deficient mice with ceftriaxone and riluzole. Ceftriaxone is a ß-lactam antibiotic that is known to upregulate the expression of Slc1a2, an alternative glial glutamate transporter. Although ceftriaxone increased Slc1a2 expression, we did not observe a treatment effect in NPC1 mutant mice. Riluzole is a glutamate receptor antagonist that inhibits postsynaptic glutamate receptor signaling and reduces the release of glutamate. We found that treatment with riluzole increased median survival in Npc1-/- by 12%. Given that riluzole is an approved drug for the treatment of amyotrophic lateral sclerosis, repurposing of this drug may provide a novel therapeutic approach to decrease disease progression in Niemann-Pick disease type, C1 patients.
Assuntos
Ceftriaxona/uso terapêutico , Ácido Glutâmico/toxicidade , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Riluzol/uso terapêutico , Animais , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Transportador 1 de Aminoácido Excitatório/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína C1 de Niemann-Pick/fisiologiaRESUMO
Niemann-Pick disease, type C1 (NPC1) is a neurodegenerative disorder with limited treatment options. NPC1 is associated with neuroinflammation; however, attempts to therapeutically target neuroinflammation in NPC1 have had mixed success. We show here that NPC1 neuroinflammation is characterized by an atypical microglia activation phenotype. Specifically, Npc1-/- microglia demonstrated altered morphology, reduced levels of lineage markers and a shift toward glycolytic metabolism. Treatment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD), a drug currently being studied in a phase 2b/3 clinical trial, reversed all microglia-associated defects in Npc1-/- animals. In addition, impairing microglia mediated neuroinflammation by genetic deletion of IRF8 led to decreased symptoms and increased lifespan. We identified CD22 as a marker of dysregulated microglia in Npc1 mutant mice and subsequently demonstrated that elevated cerebrospinal fluid levels of CD22 in NPC1 patients responds to HPßCD administration. Collectively, these data provide the first in-depth analysis of microglia function in NPC1 and suggest possible new therapeutic approaches.
Assuntos
Inflamação/tratamento farmacológico , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , 2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Adolescente , Adulto , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Inflamação/genética , Inflamação/patologia , Fatores Reguladores de Interferon , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Doença de Niemann-Pick Tipo C/líquido cefalorraquidiano , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/líquido cefalorraquidianoRESUMO
Niemann-Pick type C1 (NPC1) is a rare neurodegenerative disease. In NPC1 mouse cerebella, the antibacterial enzyme, lysozyme (Lyz2), is significantly increased in multiple cell types. Due to its possible role in toxic fibril deposition, we confirmed Lyz2 overexpression in culture in different control and NPC1 cell types including human NPC1 fibroblasts. Lyz2 expression is induced by Toll-like receptors potentially in response to lipid storage but does not play a functional role in NPC disease pathology.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Muramidase/genética , Doença de Niemann-Pick Tipo C/genética , Receptores Toll-Like/genética , Animais , Astrócitos/metabolismo , Fibroblastos , Expressão Gênica/genética , Humanos , Camundongos , Camundongos Knockout , Microglia/metabolismo , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/patologiaRESUMO
Cholesterol-lowering statin drugs are used by approximately 25% of US adults 45 years of age and older and frequency of use is even higher among the elderly. Cholesterol provides the substrate for steroid hormone synthesis and its intracellular concentrations are tightly regulated. Our aim was to evaluate whether statin use acutely changes the circulating levels of cortisol, other glucocorticoid precursor molecules and their metabolites. Fourteen subjects not taking statins were administered a single oral dose (2 mg) of pitavastatin. Blood samples collected at baseline and 24 h post-treatment were analyzed for plasma cholesterol and steroid hormone profile. A parallel study in mice entailed the administration of atorvastatin (10 mg/kg) via orogastric delivery for three consecutive days. Cholesterol and corticosterone levels were quantified at baseline and at 1-day and 1-week post-treatment. Several precursor molecules in the steroidogenic pathway (corticosterone, cortisone, and 11-deoxycortisol) were significantly decreased 24 h after administration of a single dose of pitavastatin in human study subjects. Their circulating cholesterol concentrations were unchanged. In mice, there were no significant differences in serum cholesterol or corticosterone at 1-day or 1-week post-treatment compared to both pre-treatment baseline levels and control group levels. We conclude that acute dysregulation of the production of certain glucocorticoid precursor molecules was observed after a single treatment with a lipophilic statin drug. This may be of clinical relevance for individuals with underlying or subclinical adrenal insufficiency.
Assuntos
Colesterol/sangue , Glucocorticoides/sangue , Hormônios Esteroides Gonadais/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Adolescente , Adulto , Animais , Colesterol/deficiência , Feminino , Glucocorticoides/deficiência , Hormônios Esteroides Gonadais/deficiência , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto JovemRESUMO
Niemann-Pick disease, type C1, is a cholesterol storage disease where unesterified cholesterol accumulates intracellularly. In the cerebellum this causes neurodegeneration of the Purkinje neurons that die in an anterior-to-posterior and time-dependent manner. This results in cerebellar ataxia as one of the major outcomes of the disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a significant role in the regulation of serum cholesterol levels by modulating LDL receptor levels on peripheral tissues. In the central nervous system, PCSK9 may have a similar effect on the closely related VLDL and ApoE2 receptors to regulate brain cholesterol. In addition, regulation of VLDLR and ApoER2 by PCSK9 may contribute to neuronal apoptotic pathways through Reelin, the primary ligand of VLDLR and ApoER2. Defects in reelin signaling results in cerebellar dysfunction leading to ataxia as seen in the Reeler mouse. Our recent findings that Pcsk9 is expressed ~8-fold higher in the anterior lobules of the cerebellum compared to the posterior lobule X, which is resistant to neurodegeneration, prompted us to ask whether PCSK9 could play a role in NPC1 disease progression. We addressed this question genetically, by characterizing NPC1 disease in the presence or absence of PCSK9. Analysis of double mutant Pcsk9-/-/Npc1-/- mice by disease severity scoring, motor assessments, lifespan, and cerebellar Purkinje cell staining, showed no obvious difference in NPC1 disease progression with that of Npc1-/- mice. This suggests that PCSK9 does not play an apparent role in NPC1 disease progression.
Assuntos
Colesterol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Animais , Apolipoproteína E2 , Cerebelo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Doenças Neurodegenerativas , Proteína C1 de Niemann-Pick , Células de Purkinje/metabolismo , Receptores de LDL/metabolismo , Proteína ReelinaRESUMO
Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by endolysosomal storage of unesterified cholesterol and decreased cellular cholesterol bioavailability. A cardinal symptom of NPC1 is cerebellar ataxia due to Purkinje neuron loss. To gain an understanding of the cerebellar neuropathology we obtained single cell transcriptome data from control (Npc1+/+) and both three-week-old presymptomatic and seven-week-old symptomatic mutant (Npc1-/-) mice. In seven-week-old Npc1-/- mice, differential expression data was obtained for neuronal, glial, vascular, and myeloid cells. As anticipated, we observed microglial activation and increased expression of innate immunity genes. We also observed increased expression of innate immunity genes by other cerebellar cell types, including Purkinje neurons. Whereas neuroinflammation mediated by microglia may have both neuroprotective and neurotoxic components, the contribution of increased expression of these genes by non-immune cells to NPC1 pathology is not known. It is possible that dysregulated expression of innate immunity genes by non-immune cells is neurotoxic. We did not anticipate a general lack of transcriptomic changes in cells other than microglia from presymptomatic three-week-old Npc1-/- mice. This observation suggests that microglia activation precedes neuronal dysfunction. The data presented in this paper will be useful for generating testable hypotheses related to disease progression and Purkinje neurons loss as well as providing insight into potential novel therapeutic interventions.
Assuntos
Cerebelo , Perfilação da Expressão Gênica , Microglia , Doença de Niemann-Pick Tipo C , Células de Purkinje , Análise de Célula Única , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologiaRESUMO
BACKGROUND: Lysosomal storage diseases (LSD) are a large family of inherited disorders characterized by abnormal endolysosomal accumulation of cellular material due to catabolic enzyme and transporter deficiencies. Depending on the affected metabolic pathway, LSD manifest with somatic or central nervous system (CNS) signs and symptoms. Neuroinflammation is a hallmark feature of LSD with CNS involvement such as mucolipidosis type IV, but not of others like Fabry disease. METHODS: We investigated the properties of microglia from LSD with and without major CNS involvement in 2-month-old mucolipidosis type IV (Mcoln1-/-) and Fabry disease (Glay/-) mice, respectively, by using a combination of flow cytometric, RNA sequencing, biochemical, in vitro and immunofluorescence analyses. RESULTS: We characterized microglia activation and transcriptome from mucolipidosis type IV and Fabry disease mice to determine if impaired lysosomal function is sufficient to prime these brain-resident immune cells. Consistent with the neurological pathology observed in mucolipidosis type IV, Mcoln1-/- microglia demonstrated an activation profile with a mixed neuroprotective/neurotoxic expression pattern similar to the one we previously observed in Niemann-Pick disease, type C1, another LSD with significant CNS involvement. In contrast, the Fabry disease microglia transcriptome revealed minimal alterations, consistent with the relative lack of CNS symptoms in this disease. The changes observed in Mcoln1-/- microglia showed significant overlap with alterations previously reported for other common neuroinflammatory disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Indeed, our comparison of microglia transcriptomes from Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick disease, type C1 and mucolipidosis type IV mouse models showed an enrichment in "disease-associated microglia" pattern among these diseases. CONCLUSIONS: The similarities in microglial transcriptomes and features of neuroinflammation and microglial activation in rare monogenic disorders where the primary metabolic disturbance is known may provide novel insights into the immunopathogenesis of other more common neuroinflammatory disorders. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01067742, registered on February 12, 2010.
Assuntos
Microglia/metabolismo , Mucolipidoses/genética , Mucolipidoses/patologia , Transcriptoma , Animais , Doença de Fabry/genética , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Humanos , Camundongos , Camundongos Transgênicos , Microglia/patologia , Mucolipidoses/metabolismoRESUMO
: Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by progressive cerebellar ataxia. In NPC1, a defect in cholesterol transport leads to endolysosomal storage of cholesterol and decreased cholesterol bioavailability. Purkinje neurons are sensitive to the loss of NPC1 function. However, degeneration of Purkinje neurons is not uniform. They are typically lost in an anterior-to-posterior gradient with neurons in lobule X being resistant to neurodegeneration. To gain mechanistic insight into factors that protect or potentiate Purkinje neuron loss, we compared RNA expression in cerebellar lobules III, VI, and X from control and mutant mice. An unexpected finding was that the gene expression differences between lobules III/VI and X were more pronounced than those observed between mutant and control mice. Functional analysis of genes with anterior to posterior gene expression differences revealed an enrichment of genes related to neuronal cell survival within the posterior cerebellum. This finding is consistent with the observation, in multiple diseases, that posterior Purkinje neurons are, in general, resistant to neurodegeneration. To our knowledge, this is the first study to evaluate anterior to posterior transcriptome-wide changes in gene expression in the cerebellum. Our data can be used to not only explore potential pathological mechanisms in NPC1, but also to further understand cerebellar biology.
Assuntos
Cerebelo , Regulação da Expressão Gênica , Doença de Niemann-Pick Tipo C/metabolismo , Células de Purkinje , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologiaRESUMO
Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused by mutations in NPC1 or NPC2 with decreased functions leading to lysosomal accumulation of cholesterol and sphingolipids. FTY720/fingolimod, used for treatment of multiple sclerosis, is phosphorylated by nuclear sphingosine kinase 2, and its active phosphorylated form (FTY720-P) is an inhibitor of class I histone deacetylases. In this study, administration of clinically relevant doses of FTY720 to mice increased expression of NPC1 and -2 in brain and liver and decreased cholesterol in an SphK2-dependent manner. FTY720 greatly increased expression of NPC1 and -2 in human NPC1 mutant fibroblasts that correlated with formation of FTY720-P and significantly reduced the accumulation of cholesterol and glycosphingolipids. In agreement with this finding, FTY720 pretreatment of human NPC1 mutant fibroblasts restored transport of the cholera toxin B subunit, which binds ganglioside GM1, to the Golgi apparatus. Together, these findings suggest that FTY720 administration can ameliorate cholesterol and sphingolipid storage and trafficking defects in NPC1 mutant fibroblasts. Because neurodegeneration is the main clinical feature of NPC disease, and FTY720 accumulates in the CNS and has several advantages over available histone deacetylase inhibitors now in clinical trials, our work provides a potential opportunity for treatment of this incurable disease.-Newton, J., Hait, N. C., Maceyka, M., Colaco, A., Maczis, M., Wassif, C. A., Cougnoux, A., Porter, F. D., Milstien, S., Platt, N., Platt, F. M., Spiegel, S. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts.
Assuntos
Colesterol/metabolismo , Cloridrato de Fingolimode/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Doença de Niemann-Pick Tipo C/metabolismo , Proteínas/metabolismo , Esfingolipídeos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células 3T3 , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Transporte Proteico , Proteínas/genética , Proteínas de Transporte Vesicular/genéticaRESUMO
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.
Assuntos
Exocitose , Lisossomos/metabolismo , Mucolipidoses/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Vesículas Secretórias/metabolismo , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Camundongos , Potenciais Pós-Sinápticos em Miniatura , Mucolipidoses/genética , Neurônios/metabolismo , Neurônios/fisiologia , Doença de Niemann-Pick Tipo C/genética , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismoRESUMO
BACKGROUND: Niemann-Pick disease, type C (NPC) is a rare lysosomal storage disorder characterized by progressive neurodegeneration, splenomegaly, hepatomegaly, and early death. NPC is caused by mutations in either the NPC1 or NPC2 gene. Impaired NPC function leads to defective intracellular transport of unesterified cholesterol and its accumulation in late endosomes and lysosomes. A high frequency of Crohn disease has been reported in NPC1 patients, suggesting that gastrointestinal tract pathology may become a more prominent clinical issue if effective therapies are developed to slow the neurodegeneration. The Npc1 nih mouse model on a BALB/c background replicates the hepatic and neurological disease observed in NPC1 patients. Thus, we sought to characterize the gastrointestinal tract pathology in this model to determine whether it can serve as a model of Crohn disease in NPC1. METHODS: We analyzed the gastrointestinal tract and isolated macrophages of BALB/cJ cNctr-Npc1m1N/J (Npc1-/-) mouse model to determine whether there was any Crohn-like pathology or inflammatory cell activation. We also evaluated temporal changes in the microbiota by 16S rRNA sequencing of fecal samples to determine whether there were changes consistent with Crohn disease. RESULTS: Relative to controls, Npc1 mutant mice demonstrate increased inflammation and crypt abscesses in the gastrointestinal tract; however, the observed pathological changes are significantly less than those observed in other Crohn disease mouse models. Analysis of Npc1 mutant macrophages demonstrated an increased response to lipopolysaccharides and delayed bactericidal activity; both of which are pathological features of Crohn disease. Analysis of the bacterial microbiota does not mimic what is reported in Crohn disease in either human or mouse models. We did observe significant increases in cyanobacteria and epsilon-proteobacteria. The increase in epsilon-proteobacteria may be related to altered cholesterol homeostasis since cholesterol is known to promote growth of this bacterial subgroup. CONCLUSIONS: Macrophage dysfunction in the BALB/c Npc1-/- mouse is similar to that observed in other Crohn disease models. However, neither the degree of pathology nor the microbiota changes are typical of Crohn disease. Thus, this mouse model is not a good model system for Crohn disease pathology reported in NPC1 patients.
Assuntos
Doença de Crohn/etiologia , Doença de Crohn/patologia , Trato Gastrointestinal/patologia , Doença de Niemann-Pick Tipo C/patologia , Animais , Modelos Animais de Doenças , Trato Gastrointestinal/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Doença de Niemann-Pick Tipo C/microbiologiaRESUMO
BACKGROUND: Smith-Lemli-Opitz syndrome (SLOS) is a multiple malformation/cognitive impairment syndrome characterized by the accumulation of 7-dehydrocholesterol, a precursor sterol of cholesterol. Simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor that crosses the blood-brain barrier, has been proposed for the treatment of SLOS based on in vitro and in vivo studies suggesting that simvastatin increases the expression of hypomorphic DHCR7 alleles. METHODS: Safety and efficacy of simvastatin therapy in 23 patients with mild to typical SLOS were evaluated in a randomized, double-blind, placebo-controlled trial. The crossover trial consisted of two 12-month treatment phases separated by a 2-month washout period. RESULTS: No safety issues were identified in this study. Plasma dehydrocholesterol concentrations decreased significantly: 8.9 ± 8.4% on placebo to 6.1 ± 5.5% on simvastatin (P < 0.005); we observed a trend toward decreased cerebrospinal fluid dehydrocholesterol concentrations. A significant improvement (P = 0.017, paired t-test) was observed on the irritability subscale of the Aberrant Behavior Checklist-C when subjects were taking simvastatin. CONCLUSION: This article reports what is, to our knowledge, the first randomized, placebo-controlled trial designed to test the safety and efficacy of simvastatin therapy in SLOS. Simvastatin seems to be relatively safe in patients with SLOS, improves the serum dehydrocholesterol-to-total sterol ratio, and significantly improves irritability symptoms in patients with mild to classic SLOS.Genet Med 19 3, 297-305.