Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nat Immunol ; 24(9): 1415-1422, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488429

RESUMO

Lymphocyte activation gene 3 (LAG-3) is an inhibitory receptor that is highly expressed by exhausted T cells. LAG-3 is a promising immunotherapeutic target, with more than 20 LAG-3-targeting therapeutics in clinical trials and a fixed-dose combination of anti-LAG-3 and anti-PD-1 now approved to treat unresectable or metastatic melanoma. Although LAG-3 is widely recognized as a potent inhibitory receptor, important questions regarding its biology and mechanism of action remain. In this Perspective, we focus on gaps in the understanding of LAG-3 biology and discuss the five biggest topics of current debate and focus regarding LAG-3, including its ligands, signaling and mechanism of action, its cell-specific functions, its importance in different disease settings, and the development of novel therapeutics.


Assuntos
Proteína do Gene 3 de Ativação de Linfócitos , Melanoma , Humanos , Antígenos CD/genética , Linfócitos T , Melanoma/tratamento farmacológico
2.
Nat Immunol ; 24(5): 841-854, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36928412

RESUMO

Regulatory T (Treg) cells are an immunosuppressive population that are required to maintain peripheral tolerance and prevent tissue damage from immunopathology, via anti-inflammatory cytokines, inhibitor receptors and metabolic disruption. Here we show that Treg cells acquire an effector-like state, yet remain stable and functional, when exposed to interferon gamma (IFNγ) during infection with lymphocytic choriomeningitis and influenza A virus. Treg cell-restricted deletion of the IFNγ receptor (encoded by Ifngr1), but not the interleukin 12 (IL12) receptor (encoded by Il12rb2), prevented TH1-like polarization (decreased expression of T-bet, CXC motif chemokine receptor 3 and IFNγ) and promoted TH2-like polarization (increased expression of GATA-3, CCR4 and IL4). TH1-like Treg cells limited CD8+ T cell effector function, proliferation and memory formation during acute and chronic infection. These findings provide fundamental insights into how Treg cells sense inflammatory cues from the environment (such as IFNγ) during viral infection to provide guidance to the effector immune response. This regulatory circuit prevents prolonged immunoinflammatory responses and shapes the quality and quantity of the memory T cell response.


Assuntos
Interferon gama , Linfócitos T Reguladores , Interferon gama/metabolismo , Citocinas/metabolismo , Linfócitos T CD8-Positivos , Antivirais/metabolismo , Células Th1
3.
Nat Immunol ; 23(5): 757-767, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35437325

RESUMO

LAG3 is an inhibitory receptor that is highly expressed on exhausted T cells. Although LAG3-targeting immunotherapeutics are currently in clinical trials, how LAG3 inhibits T cell function remains unclear. Here, we show that LAG3 moved to the immunological synapse and associated with the T cell receptor (TCR)-CD3 complex in CD4+ and CD8+ T cells, in the absence of binding to major histocompatibility complex class II-its canonical ligand. Mechanistically, a phylogenetically conserved, acidic, tandem glutamic acid-proline repeat in the LAG3 cytoplasmic tail lowered the pH at the immune synapse and caused dissociation of the tyrosine kinase Lck from the CD4 or CD8 co-receptor, which resulted in a loss of co-receptor-TCR signaling and limited T cell activation. These observations indicated that LAG3 functioned as a signal disruptor in a major histocompatibility complex class II-independent manner, and provide insight into the mechanism of action of LAG3-targeting immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Antígenos CD/imunologia , Complexo CD3/imunologia , Antígenos CD8/metabolismo , Antígenos de Histocompatibilidade Classe II , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteína do Gene 3 de Ativação de Linfócitos
4.
Nat Immunol ; 23(6): 868-877, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618829

RESUMO

Impaired chronic viral and tumor clearance has been attributed to CD8+ T cell exhaustion, a differentiation state in which T cells have reduced and altered effector function that can be partially reversed upon blockade of inhibitory receptors. The role of the exhaustion program and transcriptional networks that control CD8+ T cell function and fate in autoimmunity is not clear. Here we show that intra-islet CD8+ T cells phenotypically, transcriptionally, epigenetically and metabolically possess features of canonically exhausted T cells, yet maintain important differences. This 'restrained' phenotype can be perturbed and disease accelerated by CD8+ T cell-restricted deletion of the inhibitory receptor lymphocyte activating gene 3 (LAG3). Mechanistically, LAG3-deficient CD8+ T cells have enhanced effector-like functions, trafficking to the islets, and have a diminished exhausted phenotype, highlighting a physiological role for an exhaustion program in limiting autoimmunity and implicating LAG3 as a target for autoimmune therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Autoimunidade , Humanos , Neoplasias/patologia , Fenótipo
5.
Nat Immunol ; 21(9): 1010-1021, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661362

RESUMO

Robust CD8+ T cell memory is essential for long-term protective immunity but is often compromised in cancer, where T cell exhaustion leads to loss of memory precursors. Immunotherapy via checkpoint blockade may not effectively reverse this defect, potentially underlying disease relapse. Here we report that mice with a CD8+ T cell-restricted neuropilin-1 (NRP1) deletion exhibited substantially enhanced protection from tumor rechallenge and sensitivity to anti-PD1 immunotherapy, despite unchanged primary tumor growth. Mechanistically, NRP1 cell-intrinsically limited the self-renewal of the CD44+PD1+TCF1+TIM3- progenitor exhausted T cells, which was associated with their reduced ability to induce c-Jun/AP-1 expression on T cell receptor restimulation, a mechanism that may contribute to terminal T cell exhaustion at the cost of memory differentiation in wild-type tumor-bearing hosts. These data indicate that blockade of NRP1, a unique 'immune memory checkpoint', may promote the development of long-lived tumor-specific Tmem that are essential for durable antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas de Checkpoint Imunológico/metabolismo , Melanoma Experimental/imunologia , Neuropilina-1/metabolismo , Células Precursoras de Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Proteínas de Checkpoint Imunológico/genética , Tolerância Imunológica , Imunidade , Memória Imunológica , Camundongos , Camundongos Knockout , Neuropilina-1/genética , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais
6.
Cell ; 169(6): 1130-1141.e11, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552348

RESUMO

Regulatory T cells (Tregs) are a barrier to anti-tumor immunity. Neuropilin-1 (Nrp1) is required to maintain intratumoral Treg stability and function but is dispensable for peripheral immune tolerance. Treg-restricted Nrp1 deletion results in profound tumor resistance due to Treg functional fragility. Thus, identifying the basis for Nrp1 dependency and the key drivers of Treg fragility could help to improve immunotherapy for human cancer. We show that a high percentage of intratumoral NRP1+ Tregs correlates with poor prognosis in melanoma and head and neck squamous cell carcinoma. Using a mouse model of melanoma where Nrp1-deficient (Nrp1-/-) and wild-type (Nrp1+/+) Tregs can be assessed in a competitive environment, we find that a high proportion of intratumoral Nrp1-/- Tregs produce interferon-γ (IFNγ), which drives the fragility of surrounding wild-type Tregs, boosts anti-tumor immunity, and facilitates tumor clearance. We also show that IFNγ-induced Treg fragility is required for response to anti-PD1, suggesting that cancer therapies promoting Treg fragility may be efficacious.


Assuntos
Carcinoma de Células Escamosas/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Interferon gama/imunologia , Melanoma/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Fatores de Transcrição Forkhead , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Microambiente Tumoral , Receptor de Interferon gama
7.
Nat Immunol ; 20(6): 724-735, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936494

RESUMO

Regulatory T cells (Treg cells) maintain host self-tolerance but are a major barrier to effective cancer immunotherapy. Treg cells subvert beneficial anti-tumor immunity by modulating inhibitory receptor expression on tumor-infiltrating lymphocytes (TILs); however, the underlying mediators and mechanisms have remained elusive. Here, we found that the cytokines IL-10 and IL-35 (Ebi3-IL-12α heterodimer) were divergently expressed by Treg cell subpopulations in the tumor microenvironment (TME) and cooperatively promoted intratumoral T cell exhaustion by modulating several inhibitory receptor expression and exhaustion-associated transcriptomic signature of CD8+ TILs. While expression of BLIMP1 (encoded by Prdm1) was a common target, IL-10 and IL-35 differentially affected effector T cell versus memory T cell fates, respectively, highlighting their differential, partially overlapping but non-redundant regulation of anti-tumor immunity. Our results reveal previously unappreciated cooperative roles for Treg cell-derived IL-10 and IL-35 in promoting BLIMP1-dependent exhaustion of CD8+ TILs that limits effective anti-tumor immunity.


Assuntos
Imunidade Celular , Interleucina-10/metabolismo , Interleucinas/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transferência Adotiva , Animais , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Melanoma Experimental , Camundongos , Neoplasias/patologia , Transdução de Sinais , Transcriptoma
8.
Immunity ; 54(10): 2209-2217.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551314

RESUMO

CD4+ T cells share common developmental pathways with CD8+ T cells, and upon maturation, CD4+ T conventional T (Tconv) cells lack phenotypic markers that distinguish these cells from FoxP3+ T regulatory cells. We developed a tamoxifen-inducible ThPOKCreERT2.hCD2 line with Frt sites inserted on either side of the CreERT2-hCD2 cassette, and a Foxp3Ametrine-FlpO strain, expressing Ametrine and FlpO in Foxp3+ cells. Breeding these mice resulted in a CD4conviCreERT2-hCD2 line that allows for the specific manipulation of a gene in CD4+ Tconv cells. As FlpO removes the CreERT2-hCD2 cassette, CD4+ Treg cells are spared from Cre activity, which we refer to as allele conditioning. Comparison with an E8IiCreERT2.GFP mouse that enables inducible targeting of CD8+ T cells, and deletion of two inhibitory receptors, PD-1 and LAG-3, in a melanoma model, support the fidelity of these lines. These engineered mouse strains present a resource for the temporal manipulation of genes in CD4+ T cells and CD4+ Tconv cells.


Assuntos
Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Edição de Genes/métodos , Integrases/genética , Alelos , Animais , Linfócitos T CD8-Positivos/citologia , Linhagem Celular , Camundongos
9.
Immunity ; 54(1): 84-98.e5, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33212014

RESUMO

Following antigen-driven expansion in lymph node, transforming growth factor-ß (TGFß) is required for differentiation of skin-recruited CD8+ T cell effectors into epidermal resident memory T (Trm) cells and their epidermal persistence. We found that the source of TGFß -supporting Trm cells was autocrine. In addition, antigen-specific Trm cells that encountered cognate antigen in the skin, and bystander Trm cells that did not, both displayed long-term persistence in the epidermis under steady-state conditions. However, when the active-TGFß was limited or when new T cell clones were recruited into the epidermis, antigen-specific Trm cells were more efficiently retained than bystander Trm cells. Genetically enforced TGFßR signaling allowed bystander Trm cells to persist in the epidermis as efficiently as antigen-specific Trm cells in both contexts. Thus, competition between T cells for active TGFß represents an unappreciated selective pressure that promotes the accumulation and persistence of antigen-specific Trm cells in the epidermal niche.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epiderme/imunologia , Queratinócitos/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Ligação Competitiva , Efeito Espectador , Microambiente Celular , Células Clonais , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transdução de Sinais , Especificidade do Receptor de Antígeno de Linfócitos T
10.
Immunity ; 51(2): 381-397.e6, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31350177

RESUMO

Regulatory T (Treg) cells are crucial for immune homeostasis, but they also contribute to tumor immune evasion by promoting a suppressive tumor microenvironment (TME). Mice with Treg cell-restricted Neuropilin-1 deficiency show tumor resistance while maintaining peripheral immune homeostasis, thereby providing a controlled system to interrogate the impact of intratumoral Treg cells on the TME. Using this and other genetic models, we showed that Treg cells shaped the transcriptional landscape across multiple tumor-infiltrating immune cell types. Treg cells suppressed CD8+ T cell secretion of interferon-γ (IFNγ), which would otherwise block the activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated fatty acid synthesis in immunosuppressive (M2-like) tumor-associated macrophages (TAMs). Thus, Treg cells indirectly but selectively sustained M2-like TAM metabolic fitness, mitochondrial integrity, and survival. SREBP1 inhibition augmented the efficacy of immune checkpoint blockade, suggesting that targeting Treg cells or their modulation of lipid metabolism in M2-like TAMs could improve cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Macrófagos/metabolismo , Melanoma/imunologia , Neoplasias Experimentais/imunologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Carcinogênese , Diferenciação Celular , Ácidos Graxos/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Evasão da Resposta Imune , Interferon gama/metabolismo , Macrófagos/imunologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropilina-1/genética , Células Th2/imunologia , Microambiente Tumoral
11.
J Immunol ; 213(1): 7-13, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775415

RESUMO

Lymphocyte activation gene 3 (LAG3) is an inhibitory receptor that plays a critical role in controlling T cell tolerance and autoimmunity and is a major immunotherapeutic target. LAG3 is expressed on the cell surface as a homodimer but the functional relevance of this is unknown. In this study, we show that the association between the TCR/CD3 complex and a murine LAG3 mutant that cannot dimerize is perturbed in CD8+ T cells. We also show that LAG3 dimerization is required for optimal inhibitory function in a B16-gp100 tumor model. Finally, we demonstrate that a therapeutic LAG3 Ab, C9B7W, which does not block LAG3 interaction with its cognate ligand MHC class II, disrupts LAG3 dimerization and its association with the TCR/CD3 complex. These studies highlight the functional importance of LAG3 dimerization and offer additional approaches to therapeutically target LAG3.


Assuntos
Antígenos CD , Linfócitos T CD8-Positivos , Proteína do Gene 3 de Ativação de Linfócitos , Multimerização Proteica , Animais , Camundongos , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos CD/genética , Linfócitos T CD8-Positivos/imunologia , Melanoma Experimental/imunologia , Camundongos Endogâmicos C57BL , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Complexo CD3/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Ativação Linfocitária/imunologia , Ligação Proteica
12.
Immunity ; 44(2): 316-29, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26872697

RESUMO

Regulatory T (Treg) cells pose a major barrier to effective anti-tumor immunity. Although Treg cell depletion enhances tumor rejection, the ensuing autoimmune sequelae limits its utility in the clinic and highlights the need for limiting Treg cell activity within the tumor microenvironment. Interleukin-35 (IL-35) is a Treg cell-secreted cytokine that inhibits T cell proliferation and function. Using an IL-35 reporter mouse, we observed substantial enrichment of IL-35(+) Treg cells in tumors. Neutralization with an IL-35-specific antibody or Treg cell-restricted deletion of IL-35 production limited tumor growth in multiple murine models of human cancer. Limiting intratumoral IL-35 enhanced T cell proliferation, effector function, antigen-specific responses, and long-term T cell memory. Treg cell-derived IL-35 promoted the expression of multiple inhibitory receptors (PD1, TIM3, LAG3), thereby facilitating intratumoral T cell exhaustion. These findings reveal previously unappreciated roles for IL-35 in limiting anti-tumor immunity and contributing to T cell dysfunction in the tumor microenvironment.


Assuntos
Anticorpos Bloqueadores/administração & dosagem , Interleucinas/metabolismo , Melanoma Experimental/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Memória Imunológica , Interleucinas/genética , Interleucinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Microambiente Tumoral , Proteína do Gene 3 de Ativação de Linfócitos
13.
J Immunol ; 209(8): 1586-1594, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36104110

RESUMO

Lymphocyte activation gene 3 protein (LAG3; CD223) is an inhibitory receptor that is highly upregulated on exhausted T cells in tumors and chronic viral infection. Consequently, LAG3 is now a major immunotherapeutic target for the treatment of cancer, and many mAbs against human (h) LAG3 (hLAG3) have been generated to block its inhibitory activity. However, little or no information is available on the epitopes they recognize. We selected a panel of seven therapeutic mAbs from the patent literature for detailed characterization. These mAbs were expressed as Fab or single-chain variable fragments and shown to bind hLAG3 with nanomolar affinities, as measured by biolayer interferometry. Using competitive binding assays, we found that the seven mAbs recognize four distinct epitopes on hLAG3. To localize the epitopes, we carried out epitope mapping using chimeras between hLAG3 and mouse LAG3. All seven mAbs are directed against the first Ig-like domain (D1) of hLAG3, despite their different origins. Three mAbs almost exclusively target a unique 30-residue loop of D1 that forms at least part of the putative binding site for MHC class II, whereas four mainly recognize D1 determinants outside this loop. However, because all the mAbs block binding of hLAG3 to MHC class II, each of the epitopes they recognize must at least partially overlap the MHC class II binding site.


Assuntos
Antígenos CD/imunologia , Anticorpos de Cadeia Única , Animais , Anticorpos Monoclonais , Mapeamento de Epitopos , Epitopos , Humanos , Camundongos , Anticorpos de Cadeia Única/metabolismo , Linfócitos T , Proteína do Gene 3 de Ativação de Linfócitos
14.
Semin Immunol ; 42: 101305, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31604537

RESUMO

Immune checkpoint therapy has revolutionized cancer treatment by blocking inhibitory pathways in T cells that limits the an effective anti-tumor immune response. Therapeutics targeting CTLA-4 and PD1/PDL1 have progressed to first line therapy in multiple tumor types with some patients exhibiting tumor regression or remission. However, the majority of patients do not benefit from checkpoint therapy emphasizing the need for alternative therapeutic options. Lymphocyte Activation Gene 3 (LAG3) or CD223 is expressed on multiple cell types including CD4+ and CD8+ T cells, and Tregs, and is required for optimal T cell regulation and homeostasis. Persistent antigen-stimulation in cancer or chronic infection leads to chronic LAG3 expression, promoting T cell exhaustion. Targeting LAG3 along with PD1 facilitates T cell reinvigoration. A substantial amount of pre-clinical data and mechanistic analysis has led to LAG3 being the third checkpoint to be targeted in the clinic with nearly a dozen therapeutics under investigation. In this review, we will discuss the structure, function and role of LAG3 in murine and human models of disease, including autoimmune and inflammatory diseases, chronic viral and parasitic infections, and cancer, emphasizing new advances in the development of LAG3-targeting immunotherapies for cancer that are currently in clinical trials.


Assuntos
Antígenos CD/imunologia , Receptores Imunológicos/imunologia , Animais , Antígenos CD/química , Humanos , Imunoterapia , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Receptores Imunológicos/química , Microambiente Tumoral/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
15.
Nat Immunol ; 11(12): 1093-101, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20953201

RESUMO

Regulatory T cells (T(reg) cells) have a critical role in the maintenance of immunological self-tolerance. Here we show that treatment of naive human or mouse T cells with IL-35 induced a regulatory population, which we call 'iT(R)35 cells', that mediated suppression via IL-35 but not via the inhibitory cytokines IL-10 or transforming growth factor-ß (TGF-ß). We found that iT(R)35 cells did not express or require the transcription factor Foxp3, and were strongly suppressive and stable in vivo. T(reg) cells induced the generation of iT(R)35 cells in an IL-35- and IL-10-dependent manner in vitro and induced their generation in vivo under inflammatory conditions in intestines infected with Trichuris muris and within the tumor microenvironment (B16 melanoma and MC38 colorectal adenocarcinoma), where they contributed to the regulatory milieu. Thus, iT(R)35 cells constitute a key mediator of infectious tolerance and contribute to T(reg) cell-mediated tumor progression. Furthermore, iT(R)35 cells generated ex vivo might have therapeutic utility.


Assuntos
Tolerância Imunológica/imunologia , Interleucinas/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Immunoblotting , Imunoprecipitação , Interleucinas/metabolismo , Camundongos , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/citologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo
16.
Brain Behav Immun ; 106: 233-246, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089217

RESUMO

PDL1 is a protein that induces immunosuppression by binding to PD1 expressed on immune cells. In line with historical studies, we found that membrane-bound PD1 expression was largely restricted to immune cells; PD1 was not detectable at either the mRNA or protein level in peripheral neurons using single neuron qPCR, immunolabeling and flow cytometry. However, we observed widespread expression of PDL1 in both sensory and sympathetic neurons that could have important implications for patients receiving immunotherapies targeting this pathway that include unexpected autonomic and sensory related effects. While signaling pathways downstream of PD1 are well established, little to no information is available regarding the intracellular signaling downstream of membrane-bound PDL1 (also known as reverse signaling). Here, we administered soluble PD1 to engage neuronally expressed PDL1 and found that PD1 significantly reduced nocifensive behaviors evoked by algogenic capsaicin. We used calcium imaging to examine the underlying neural mechanism of this reduction and found that exogenous PD1 diminished TRPV1-dependent calcium transients in dissociated sensory neurons. Furthermore, we observed a reduction in membrane expression of TRPV1 following administration of PD1. Exogenous PD1 had no effect on pain-related behaviors in sensory neuron specific PDL1 knockout mice. These data indicate that neuronal PDL1 activation is sufficient to modulate sensitivity to noxious stimuli and as such, may be an important homeostatic mechanism for regulating acute nociception.


Assuntos
Antígeno B7-H1 , Nociceptividade , Animais , Antígeno B7-H1/metabolismo , Cálcio , Capsaicina , Camundongos , RNA Mensageiro
17.
Clin Infect Dis ; 73(3): e815-e821, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33507235

RESUMO

A chimeric antigen receptor-modified T-cell therapy recipient developed severe coronavirus disease 2019, intractable RNAemia, and viral replication lasting >2 months. Premortem endotracheal aspirate contained >2 × 1010 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA copies/mL and infectious virus. Deep sequencing revealed multiple sequence variants consistent with intrahost virus evolution. SARS-CoV-2 humoral and cell-mediated immunity were minimal. Prolonged transmission from immunosuppressed patients is possible.


Assuntos
COVID-19 , Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , SARS-CoV-2 , Replicação Viral
18.
Nat Immunol ; 10(1): 29-37, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19043418

RESUMO

T cell exhaustion often occurs during chronic infection and prevents optimal viral control. The molecular pathways involved in T cell exhaustion remain poorly understood. Here we show that exhausted CD8+ T cells are subject to complex layers of negative regulation resulting from the coexpression of multiple inhibitory receptors. Exhausted CD8+ T cells expressed up to seven inhibitory receptors. Coexpression of multiple distinct inhibitory receptors was associated with greater T cell exhaustion and more severe infection. Regulation of T cell exhaustion by various inhibitory pathways was nonredundant, as blockade of the T cell inhibitory receptors PD-1 and LAG-3 simultaneously and synergistically improved T cell responses and diminished viral load in vivo. Thus, CD8+ T cell responses during chronic viral infections are regulated by complex patterns of coexpressed inhibitory receptors.


Assuntos
Antígenos CD/metabolismo , Antígenos de Superfície/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária , Coriomeningite Linfocítica/imunologia , Receptores Imunológicos/metabolismo , Animais , Linfócitos T CD8-Positivos/virologia , Doença Crônica , Modelos Animais de Doenças , Regulação para Baixo , Memória Imunológica , Coriomeningite Linfocítica/metabolismo , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1 , Proteína do Gene 3 de Ativação de Linfócitos
19.
Nat Immunol ; 9(6): 658-66, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18469818

RESUMO

The T cell antigen receptor (TCR)-CD3 complex is unique in having ten cytoplasmic immunoreceptor tyrosine-based activation motifs (ITAMs). The physiological importance of this high TCR ITAM number is unclear. Here we generated 25 groups of mice expressing various combinations of wild-type and mutant ITAMs in TCR-CD3 complexes. Mice with fewer than seven wild-type CD3 ITAMs developed a lethal, multiorgan autoimmune disease caused by a breakdown in central rather than peripheral tolerance. Although there was a linear correlation between the number of wild-type CD3 ITAMs and T cell proliferation, cytokine production was unaffected by ITAM number. Thus, high ITAM number provides scalable signaling that can modulate proliferation yet ensure effective negative selection and prevention of autoimmunity.


Assuntos
Autoimunidade/fisiologia , Complexo CD3/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Animais , Complexo CD3/genética , Complexo CD3/imunologia , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo
20.
Adv Exp Med Biol ; 1273: 105-134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119878

RESUMO

Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.


Assuntos
Neoplasias/imunologia , Linfócitos T Reguladores/citologia , Microambiente Tumoral/imunologia , Fatores de Transcrição Forkhead , Humanos , Subunidade alfa de Receptor de Interleucina-2 , Neoplasias/terapia , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA