Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 182(5): 1311-1327.e14, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32888495

RESUMO

Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.


Assuntos
Bacteriemia/sangue , Bacteriemia/mortalidade , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/patogenicidade , Animais , Bacteriemia/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Metabolômica/métodos , Camundongos , Pessoa de Meia-Idade , Prognóstico , Proteômica/métodos , Fatores de Risco , Infecções Estafilocócicas/metabolismo
2.
Cell ; 172(3): 590-604.e13, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29373831

RESUMO

Stress granules (SGs) are transient ribonucleoprotein (RNP) aggregates that form during cellular stress and are increasingly implicated in human neurodegeneration. To study the proteome and compositional diversity of SGs in different cell types and in the context of neurodegeneration-linked mutations, we used ascorbate peroxidase (APEX) proximity labeling, mass spectrometry, and immunofluorescence to identify ∼150 previously unknown human SG components. A highly integrated, pre-existing SG protein interaction network in unstressed cells facilitates rapid coalescence into larger SGs. Approximately 20% of SG diversity is stress or cell-type dependent, with neuronal SGs displaying a particularly complex repertoire of proteins enriched in chaperones and autophagy factors. Strengthening the link between SGs and neurodegeneration, we demonstrate aberrant dynamics, composition, and subcellular distribution of SGs in cells from amyotrophic lateral sclerosis (ALS) patients. Using three Drosophila ALS/FTD models, we identify SG-associated modifiers of neurotoxicity in vivo. Altogether, our results highlight SG proteins as central to understanding and ultimately targeting neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Grânulos Citoplasmáticos/metabolismo , Mapas de Interação de Proteínas , Ribonucleoproteínas/metabolismo , Estresse Fisiológico , Animais , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Neurônios/metabolismo , Transporte Proteico
3.
Nat Chem Biol ; 20(7): 823-834, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38167919

RESUMO

Photoaffinity probes are routinely utilized to identify proteins that interact with small molecules. However, despite this common usage, resolving the specific sites of these interactions remains a challenge. Here we developed a chemoproteomic workflow to determine precise protein binding sites of photoaffinity probes in cells. Deconvolution of features unique to probe-modified peptides, such as their tendency to produce chimeric spectra, facilitated the development of predictive models to confidently determine labeled sites. This yielded an expansive map of small-molecule binding sites on endogenous proteins and enabled the integration with multiplexed quantitation, increasing the throughput and dimensionality of experiments. Finally, using structural information, we characterized diverse binding sites across the proteome, providing direct evidence of their tractability to small molecules. Together, our findings reveal new knowledge for the analysis of photoaffinity probes and provide a robust method for high-resolution mapping of reversible small-molecule interactions en masse in native systems.


Assuntos
Marcadores de Fotoafinidade , Bibliotecas de Moléculas Pequenas , Sítios de Ligação , Humanos , Marcadores de Fotoafinidade/química , Bibliotecas de Moléculas Pequenas/química , Ligação Proteica , Proteômica/métodos , Proteoma/metabolismo , Proteínas/química , Proteínas/metabolismo , Peptídeos/química , Peptídeos/metabolismo
4.
Nat Chem Biol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191941

RESUMO

SLC15A4 is an endolysosome-resident transporter linked with autoinflammation and autoimmunity. Specifically, SLC15A4 is critical for Toll-like receptors (TLRs) 7-9 as well as nucleotide-binding oligomerization domain-containing protein (NOD) signaling in several immune cell subsets. Notably, SLC15A4 is essential for the development of systemic lupus erythematosus in murine models and is associated with autoimmune conditions in humans. Despite its therapeutic potential, the availability of quality chemical probes targeting SLC15A4 functions is limited. In this study, we used an integrated chemical proteomics approach to develop a suite of chemical tools, including first-in-class functional inhibitors, for SLC15A4. We demonstrate that these inhibitors suppress SLC15A4-mediated endolysosomal TLR and NOD functions in a variety of human and mouse immune cells; we provide evidence of their ability to suppress inflammation in vivo and in clinical settings; and we provide insights into their mechanism of action. Our findings establish SLC15A4 as a druggable target for the treatment of autoimmune and autoinflammatory conditions.

5.
Mol Cell Proteomics ; 21(3): 100194, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35017099

RESUMO

As systems biology approaches to virology have become more tractable, highly studied viruses such as HIV can now be analyzed in new unbiased ways, including spatial proteomics. We employed here a differential centrifugation protocol to fractionate Jurkat T cells for proteomic analysis by mass spectrometry; these cells contain inducible HIV-1 genomes, enabling us to look for changes in the spatial proteome induced by viral gene expression. Using these proteomics data, we evaluated the merits of several reported machine learning pipelines for classification of the spatial proteome and identification of protein translocations. From these analyses, we found that classifier performance in this system was organelle dependent, with Bayesian t-augmented Gaussian mixture modeling outperforming support vector machine learning for mitochondrial and endoplasmic reticulum proteins but underperforming on cytosolic, nuclear, and plasma membrane proteins by QSep analysis. We also observed a generally higher performance for protein translocation identification using a Bayesian model, Bayesian analysis of differential localization experiments, on row-normalized data. Comparative Bayesian analysis of differential localization experiment analysis of cells induced to express the WT viral genome versus cells induced to express a genome unable to express the accessory protein Nef identified known Nef-dependent interactors such as T-cell receptor signaling components and coatomer complex. Finally, we found that support vector machine classification showed higher consistency and was less sensitive to HIV-dependent noise. These findings illustrate important considerations for studies of the spatial proteome following viral infection or viral gene expression and provide a reference for future studies of HIV-gene-dropout viruses.


Assuntos
Infecções por HIV , HIV-1 , Teorema de Bayes , Infecções por HIV/metabolismo , HIV-1/genética , Humanos , Proteoma/metabolismo , Proteômica
6.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811140

RESUMO

Early spliceosome assembly requires phosphorylation of U1-70K, a constituent of the U1 small nuclear ribonucleoprotein (snRNP), but it is unclear which sites are phosphorylated, and by what enzyme, and how such modification regulates function. By profiling the proteome, we found that the Cdc2-like kinase 1 (CLK1) phosphorylates Ser-226 in the C terminus of U1-70K. This releases U1-70K from subnuclear granules facilitating interaction with U1 snRNP and the serine-arginine (SR) protein SRSF1, critical steps in establishing the 5' splice site. CLK1 breaks contacts between the C terminus and the RNA recognition motif (RRM) in U1-70K releasing the RRM to bind SRSF1. This reorganization also permits stable interactions between U1-70K and several proteins associated with U1 snRNP. Nuclear induction of the SR protein kinase 1 (SRPK1) facilitates CLK1 dissociation from U1-70K, recycling the kinase for catalysis. These studies demonstrate that CLK1 plays a vital, signal-dependent role in early spliceosomal protein assembly by contouring U1-70K for protein-protein multitasking.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Ribonucleoproteína Nuclear Pequena U1/química , Serina/química
7.
J Biol Chem ; 298(4): 101801, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257745

RESUMO

Endothelial dysfunction is a hallmark of inflammation and is mediated by inflammatory factors that signal through G protein-coupled receptors including protease-activated receptor-1 (PAR1). PAR1, a receptor for thrombin, signals via the small GTPase RhoA and myosin light chain intermediates to facilitate endothelial barrier permeability. PAR1 also induces endothelial barrier disruption through a p38 mitogen-activated protein kinase-dependent pathway, which does not integrate into the RhoA/MLC pathway; however, the PAR1-p38 signaling pathways that promote endothelial dysfunction remain poorly defined. To identify effectors of this pathway, we performed a global phosphoproteome analysis of thrombin signaling regulated by p38 in human cultured endothelial cells using multiplexed quantitative mass spectrometry. We identified 5491 unique phosphopeptides and 2317 phosphoproteins, four distinct dynamic phosphoproteome profiles of thrombin-p38 signaling, and an enrichment of biological functions associated with endothelial dysfunction, including modulators of endothelial barrier disruption and a subset of kinases predicted to regulate p38-dependent thrombin signaling. Using available antibodies to detect identified phosphosites of key p38-regulated proteins, we discovered that inhibition of p38 activity and siRNA-targeted depletion of the p38α isoform increased basal phosphorylation of extracellular signal-regulated protein kinase 1/2, resulting in amplified thrombin-stimulated extracellular signal-regulated protein kinase 1/2 phosphorylation that was dependent on PAR1. We also discovered a role for p38 in the phosphorylation of α-catenin, a component of adherens junctions, suggesting that this phosphorylation may function as an important regulatory process. Taken together, these studies define a rich array of thrombin- and p38-regulated candidate proteins that may serve important roles in endothelial dysfunction.


Assuntos
Células Endoteliais , Trombina , Proteínas Quinases p38 Ativadas por Mitógeno , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Fosforilação , Proteômica , Receptor PAR-1/metabolismo , Trombina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Genome Res ; 30(2): 276-286, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31992612

RESUMO

Connections between the microbiome and health are rapidly emerging in a wide range of diseases. However, a detailed mechanistic understanding of how different microbial communities are influencing their hosts is often lacking. One method researchers have used to understand these effects are germ-free (GF) mouse models. Differences found within the organ systems of these model organisms may highlight generalizable mechanisms that microbiome dysbioses have throughout the host. Here, we applied multiplexed, quantitative proteomics on the brains, spleens, hearts, small intestines, and colons of conventionally raised and GF mice, identifying associations to colonization state in over 7000 proteins. Highly ranked associations were constructed into protein-protein interaction networks and visualized onto an interactive 3D mouse model for user-guided exploration. These results act as a resource for microbiome researchers hoping to identify host effects of microbiome colonization on a given organ of interest. Our results include validation of previously reported effects in xenobiotic metabolism, the innate immune system, and glutamate-associated proteins while simultaneously providing organism-wide context. We highlight organism-wide differences in mitochondrial proteins including consistent increases in NNT, a mitochondrial protein with essential roles in influencing levels of NADH and NADPH, in all analyzed organs of conventional mice. Our networks also reveal new associations for further exploration, including protease responses in the spleen, high-density lipoproteins in the heart, and glutamatergic signaling in the brain. In total, our study provides a resource for microbiome researchers through detailed tables and visualization of the protein-level effects of microbial colonization on several organ systems.


Assuntos
Disbiose/genética , Microbioma Gastrointestinal/genética , Interações Hospedeiro-Patógeno/genética , Proteômica , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Colo/metabolismo , Colo/microbiologia , Disbiose/microbiologia , Coração/microbiologia , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Fígado/metabolismo , Fígado/microbiologia , Camundongos , Baço/metabolismo , Baço/microbiologia
9.
PLoS Pathog ; 17(11): e1009409, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843601

RESUMO

The HIV-1 accessory protein Vpu modulates membrane protein trafficking and degradation to provide evasion of immune surveillance. Targets of Vpu include CD4, HLAs, and BST-2. Several cellular pathways co-opted by Vpu have been identified, but the picture of Vpu's itinerary and activities within membrane systems remains incomplete. Here, we used fusion proteins of Vpu and the enzyme ascorbate peroxidase (APEX2) to compare the ultrastructural locations and the proximal proteomes of wild type Vpu and Vpu-mutants. The proximity-omes of the proteins correlated with their ultrastructural locations and placed wild type Vpu near both retromer and ESCRT-0 complexes. Hierarchical clustering of protein abundances across the mutants was essential to interpreting the data and identified Vpu degradation-targets including CD4, HLA-C, and SEC12 as well as Vpu-cofactors including HGS, STAM, clathrin, and PTPN23, an ALIX-like protein. The Vpu-directed degradation of BST-2 was supported by STAM and PTPN23 and to a much lesser extent by the retromer subunits Vps35 and SNX3. PTPN23 also supported the Vpu-directed decrease in CD4 at the cell surface. These data suggest that Vpu directs targets from sorting endosomes to degradation at multi-vesicular bodies via ESCRT-0 and PTPN23.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Infecções por HIV/virologia , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteoma/metabolismo , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Viroporinas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/fisiologia , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Microscopia Eletrônica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteoma/análise , Nexinas de Classificação/química , Nexinas de Classificação/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Viroporinas/genética
10.
Proc Natl Acad Sci U S A ; 117(9): 5039-5048, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071217

RESUMO

Thrombin, a procoagulant protease, cleaves and activates protease-activated receptor-1 (PAR1) to promote inflammatory responses and endothelial dysfunction. In contrast, activated protein C (APC), an anticoagulant protease, activates PAR1 through a distinct cleavage site and promotes anti-inflammatory responses, prosurvival, and endothelial barrier stabilization. The distinct tethered ligands formed through cleavage of PAR1 by thrombin versus APC result in unique active receptor conformations that bias PAR1 signaling. Despite progress in understanding PAR1 biased signaling, the proteins and pathways utilized by thrombin versus APC signaling to induce opposing cellular functions are largely unknown. Here, we report the global phosphoproteome induced by thrombin and APC signaling in endothelial cells with the quantification of 11,266 unique phosphopeptides using multiplexed quantitative mass spectrometry. Our results reveal unique dynamic phosphoproteome profiles of thrombin and APC signaling, an enrichment of associated biological functions, including key modulators of endothelial barrier function, regulators of gene transcription, and specific kinases predicted to mediate PAR1 biased signaling. Using small interfering RNA to deplete a subset of phosphorylated proteins not previously linked to thrombin or APC signaling, a function for afadin and adducin-1 actin binding proteins in thrombin-induced endothelial barrier disruption is unveiled. Afadin depletion resulted in enhanced thrombin-promoted barrier permeability, whereas adducin-1 depletion completely ablated thrombin-induced barrier disruption without compromising p38 signaling. However, loss of adducin-1 blocked APC-induced Akt signaling. These studies define distinct thrombin and APC dynamic signaling profiles and a rich array of proteins and biological pathways that engender PAR1 biased signaling in endothelial cells.


Assuntos
Proteômica , Receptor PAR-1/metabolismo , Transdução de Sinais , Trombina/metabolismo , Proteínas de Ligação a Calmodulina , Proteínas de Transporte , Células Endoteliais/metabolismo , Humanos , Proteínas dos Microfilamentos , Fosforilação , Inibidor da Proteína C/metabolismo
11.
J Am Chem Soc ; 143(40): 16700-16708, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34592107

RESUMO

Protein acetylation is a central event in orchestrating diverse cellular processes. However, current strategies to investigate protein acetylation in cells are often nonspecific or lack temporal and magnitude control. Here, we developed an acetylation tagging system, AceTAG, to induce acetylation of targeted proteins. The AceTAG system utilizes bifunctional molecules to direct the lysine acetyltransferase p300/CBP to proteins fused with the small protein tag FKBP12F36V, resulting in their induced acetylation. Using AceTAG, we induced targeted acetylation of a diverse array of proteins in cells, specifically histone H3.3, the NF-κB subunit p65/RelA, and the tumor suppressor p53. We demonstrate that targeted acetylation with the AceTAG system is rapid, selective, reversible and can be controlled in a dose-dependent fashion. AceTAG represents a useful strategy to modulate protein acetylation and should enable the exploration of targeted acetylation in basic biological and therapeutic contexts.


Assuntos
Fator de Transcrição RelA
12.
Bioinformatics ; 36(4): 1022-1029, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31532487

RESUMO

MOTIVATION: A core task of genomics is to identify the boundaries of protein coding genes, which may cover over 90% of a prokaryote's genome. Several programs are available for gene finding, yet it is currently unclear how well these programs perform and whether any offers superior accuracy. This is in part because there is no universal benchmark for gene finding and, therefore, most developers select their own benchmarking strategy. RESULTS: Here, we introduce AssessORF, a new approach for benchmarking prokaryotic gene predictions based on evidence from proteomics data and the evolutionary conservation of start and stop codons. We applied AssessORF to compare gene predictions offered by GenBank, GeneMarkS-2, Glimmer and Prodigal on genomes spanning the prokaryotic tree of life. Gene predictions were 88-95% in agreement with the available evidence, with Glimmer performing the worst but no clear winner. All programs were biased towards selecting start codons that were upstream of the actual start. Given these findings, there remains considerable room for improvement, especially in the detection of correct start sites. AVAILABILITY AND IMPLEMENTATION: AssessORF is available as an R package via the Bioconductor package repository. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Células Procarióticas , Proteômica , Códon de Iniciação , Genoma Bacteriano , Genômica , Software
14.
Mol Cell Proteomics ; 18(5): 968-981, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30705125

RESUMO

Proteolysis is an integral component of life and has been implicated in many disease processes. To improve our understanding of peptidase function, it is imperative to develop tools to uncover substrate specificity and cleavage efficiency. Here, we combine the quantitative power of tandem mass tags (TMTs) with an established peptide cleavage assay to yield quantitative Multiplex Substrate Profiling by Mass Spectrometry (qMSP-MS). This assay was validated with papain, a well-characterized cysteine peptidase, to generate cleavage efficiency values for hydrolysis of 275 unique peptide bonds in parallel. To demonstrate the breath of this assay, we show that qMSP-MS can uncover the substrate specificity of minimally characterized intramembrane rhomboid peptidases, as well as define hundreds of proteolytic activities in complex biological samples, including secretions from lung cancer cell lines. Importantly, our qMSP-MS library uses synthetic peptides whose termini are unmodified, allowing us to characterize not only endo- but also exo-peptidase activity. Each cleaved peptide sequence can be ranked by turnover rate, and the amino acid sequence of the best substrates can be used for designing fluorescent reporter substrates. Discovery of peptide substrates that are selectively cleaved by peptidases which are active at the site of disease highlights the potential for qMSP-MS to guide the development of peptidase-activating drugs for cancer and infectious disease.


Assuntos
Espectrometria de Massas/métodos , Peptídeo Hidrolases/metabolismo , Aspergillus/metabolismo , Linhagem Celular Tumoral , Fluorescência , Humanos , Neoplasias Pulmonares/metabolismo , Papaína/metabolismo , Proteólise , Reprodutibilidade dos Testes , Especificidade por Substrato
15.
Clin Proteomics ; 16: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749666

RESUMO

Mycobacterium avium subsp. hominissuis (MAH) belongs to the clinically important non-tuberculous mycobacterial group that infects immunocompromised patients and individuals with underling lung conditions. The need for prolonged therapy is a major challenge of MAH treatment, influencing the development of persistent and drug-resistant infections. The reason why bactericidal drugs take several months to eliminate MAH is unknown. To investigate MAH proteome remodeling under aerobic, anaerobic and biofilm conditions (as it is encountered in patient lungs) and identify metabolic changes potentially associated with bacterial persistent state, we performed the relative protein quantitative analysis using Tandem Mass Tag Mass Spectrometry sequencing. MAH was exposed to amikacin (4 µg/ml) and clarithromycin (16 µg/ml) under aerobic, anaerobic or biofilm condition for 24 h and the response was compared with bacterial proteomics of the corresponding conditions. Overall, 4000 proteins were identified out of 5313 MAH proteome of across all experimental groups. Numerous sets of de novo synthesized proteins belonging to metabolic pathways not evidenced in aerobic condition were found commonly enriched in both anaerobic and biofilm conditions, including pantothenate and CoA biosynthesis, glycerolipid metabolism, nitrogen metabolism and chloroalkene degradation, known to be associated with bacterial tolerance in M. tuberculosis. The common pathways observed in anaerobic and biofilm conditions following drug treatments were peptidoglycan biosynthesis, glycerophospholipid metabolism and protein export. The LprB lipoprotein, highly synthesized in MAH biofilms during drug treatments and shown to be essential for M. tuberculosis virulence and survival in vivo, was selected and overexpressed in MAH. Results demonstrate that LprB is secreted in MAH biofilms and the overexpression clone is more tolerant to antimicrobials than the wild-type strain. Our study identified promising metabolic pathways that can be targeted to prevent the bacterial tolerance mechanism and, subsequently, reduce the length of MAH therapy.

16.
Mol Cell Proteomics ; 16(8): 1447-1461, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28606917

RESUMO

The mechanisms by which human immunodeficiency virus (HIV) circumvents and coopts cellular machinery to replicate and persist in cells are not fully understood. HIV accessory proteins play key roles in the HIV life cycle by altering host pathways that are often dependent on post-translational modifications (PTMs). Thus, the identification of HIV accessory protein host targets and their PTM status is critical to fully understand how HIV invades, avoids detection and replicates to spread infection. To date, a comprehensive characterization of HIV accessory protein host targets and modulation of their PTM status does not exist. The significant gap in knowledge regarding the identity and PTMs of HIV host targets is due, in part, to technological limitations. Here, we applied current mass spectrometry techniques to define mechanisms of viral protein action by identifying host proteins whose abundance is affected by the accessory protein Vpr and the corresponding modulation of down-stream signaling pathways, specifically those regulated by phosphorylation. By utilizing a novel, inducible HIV-1 CD4+ T-cell model system expressing either the wild type or a vpr-negative viral genome, we overcame challenges associated with synchronization and infection-levels present in other models. We report identification and abundance dynamics of over 7000 proteins and 28,000 phospho-peptides. Consistent with Vpr's ability to impair cell-cycle progression, we observed Vpr-mediated modulation of spindle and centromere proteins, as well as Aurora kinase A and cyclin-dependent kinase 4 (CDK4). Unexpectedly, we observed evidence of Vpr-mediated modulation of the activity of serine/arginine-rich protein-specific kinases (SRPKs), suggesting a possible role for Vpr in the regulation of RNA splicing. This study presents a new experimental system and provides a data-resource that lays the foundation for validating host proteins and phosphorylation-pathways affected by HIV-1 and its accessory protein Vpr.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Proteômica/métodos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Aurora Quinase A/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular/genética , Quinase 4 Dependente de Ciclina/metabolismo , Expressão Gênica , Ontologia Genética , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Células Jurkat , Fosforilação , Processamento de Proteína Pós-Traducional , Splicing de RNA/fisiologia , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
17.
Methods Enzymol ; 681: 287-323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36764762

RESUMO

Protein acetylation is a vital biological process that regulates myriad cellular events. Despite its profound effects on protein function, there are limited research tools to dynamically and selectively regulate protein acetylation. To address this, we developed an acetylation tagging system, called AceTAG, to target proteins for chemically induced acetylation directly in live cells. AceTAG uses heterobifunctional molecules composed of a ligand for the lysine acetyltransferase p300/CBP and a FKBP12F36V ligand. Target proteins are genetically tagged with FKBP12F36V and brought in proximity with p300/CBP by AceTAG molecules to subsequently undergo protein-specific acetylation. Targeted acetylation of proteins in cells using AceTAG is selective, rapid, and can be modulated in a dose-dependent fashion, enabling controlled investigations of acetylated protein targets directly in cells. In this protocol, we focus on (1) generation of AceTAG constructs and cell lines, (2) in vitro characterization of AceTAG mediated ternary complex formation and cellular target engagement studies; and (3) in situ characterization of AceTAG induced acetylation of targeted proteins by immunoblotting and quantitative proteomics. The robust procedures described herein should enable the use of AceTAG to explore the roles of acetylation for a variety of protein targets.


Assuntos
Proteína 1A de Ligação a Tacrolimo , Acetilação , Ligantes , Linhagem Celular
18.
RSC Chem Biol ; 3(12): 1369-1374, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36544572

RESUMO

Human milk oligosaccharides (HMOs) are a family of unconjugated soluble glycans found in human breast milk that exhibit a myriad of biological activity. While recent studies have uncovered numerous biological functions for HMOs (antimicrobial, anti-inflammatory & probiotic properties), the receptors and protein binding partners involved in these processes are not well characterized. This can be attributed largely in part to the low affinity and transient nature of soluble glycan-protein interactions, precluding the use of traditional characterization techniques to survey binding partners in live cells. Here, we present the use of synthetic photoactivatable HMO probes to capture, enrich and identify HMO protein targets in live cells using mass spectrometry-based chemoproteomics. Following initial validation studies using purified lectins, we profiled the targets of HMO probes in live mouse macrophages. Using this strategy, we mapped hundreds of HMO binding partners across multiple cellular compartments, including many known glycan-binding proteins as well as numerous proteins previously not known to bind glycans. We expect our findings to inform future investigations of the diverse roles of how HMOs may regulate protein function.

19.
Nat Commun ; 13(1): 7200, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418293

RESUMO

Exquisitely tuned activity of protein kinase C (PKC) isozymes is essential to maintaining cellular homeostasis. Whereas loss-of-function mutations are generally associated with cancer, gain-of-function variants in one isozyme, PKCα, are associated with Alzheimer's disease (AD). Here we show that the enhanced activity of one variant, PKCα M489V, is sufficient to rewire the brain phosphoproteome, drive synaptic degeneration, and impair cognition in a mouse model. This variant causes a modest 30% increase in catalytic activity without altering on/off activation dynamics or stability, underscoring that enhanced catalytic activity is sufficient to drive the biochemical, cellular, and ultimately cognitive effects observed. Analysis of hippocampal neurons from PKCα M489V mice reveals enhanced amyloid-ß-induced synaptic depression and reduced spine density compared to wild-type mice. Behavioral studies reveal that this mutation alone is sufficient to impair cognition, and, when coupled to a mouse model of AD, further accelerates cognitive decline. The druggability of protein kinases positions PKCα as a promising therapeutic target in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo , Isoenzimas
20.
Sci Signal ; 14(698): eabc1044, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34516752

RESUMO

Vascular inflammation causes endothelial barrier disruption and tissue edema. Several inflammatory mediators act through G protein­coupled receptors (GPCRs), including protease-activated receptor-1 (PAR1), to elicit inflammatory responses. The activation of PAR1 by its ligand thrombin stimulates proinflammatory, p38 mitogen-activated protein kinase (MAPK) signaling that promotes endothelial barrier disruption. Through mass spectrometry phosphoproteomics, we identified heat shock protein 27 (HSP27), which exists as a large oligomer that binds to actin, as a promising candidate for the p38-mediated regulation of barrier integrity. Depletion of HSP27 by siRNA enhanced endothelial cell barrier permeability and slowed recovery after thrombin stimulation. We further showed that two effector kinases of p38 MAPK, MAPKAPK2 (MK2) and MAPKAPK3 (MK3), differentially phosphorylated HSP27 at Ser15, Ser78, and Ser82. Whereas inhibition of thrombin-stimulated p38 activation blocked HSP27 phosphorylation at all three sites, inhibition of MK2 reduced the phosphorylation of only Ser15 and Ser78. Inhibition of both MK2 and MK3 was necessary to attenuate Ser82 phosphorylation. Thrombin-stimulated p38-MK2-MK3 signaling induced HSP27 oligomer disassembly. However, a phosphorylation-deficient mutant of HSP27 exhibited defective oligomer disassembly and altered the dynamics of barrier recovery after thrombin stimulation. Moreover, blocking HSP27 oligomer reassembly with the small-molecule inhibitor J2 enhanced endothelial barrier permeability in vitro and vascular leakage in vivo in response to PAR1 activation. These studies reveal the distinct regulation of HSP27 phosphorylation and function induced by the GPCR-stimulated p38-MK2-MK3 signaling axis that controls the dynamics of endothelial barrier recovery in vitro and vascular leakage in vivo.


Assuntos
Proteínas de Choque Térmico HSP27
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA