Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1661-D1667, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37650644

RESUMO

The genus Camellia consists of about 200 species, which include many economically important species widely used for making tea, ornamental flowers and edible oil. Here, we present an updated tea plant information archive for Camellia genomics (TPIA2; http://tpia.teaplants.cn) by integrating more novel large-scale genomic, transcriptomic, metabolic and genetic variation datasets as well as a variety of useful tools. Specifically, TPIA2 hosts all currently available and well assembled 10 Camellia genomes and their comprehensive annotations from three major sections of Camellia. A collection of 15 million SNPs and 950 950 small indels from large-scale genome resequencing of 350 diverse tea accessions were newly incorporated, followed by the implementation of a novel 'Variation' module to facilitate data retrieval and analysis of the functionally annotated variome. Moreover, 116 Camellia transcriptomes were newly assembled and added, leading to a significant extension of expression profiles of Camellia genes to 13 developmental stages and eight abiotic/biotic treatments. An updated 'Expression' function has also been implemented to provide a comprehensive gene expression atlas for Camellia. Two novel analytic tools (e.g. Gene ID Convert and Population Genetic Analysis) were specifically designed to facilitate the data exchange and population genomics in Camellia. Collectively, TPIA2 provides diverse updated valuable genomic resources and powerful functions, and will continue to be an important gateway for functional genomics and population genetic studies in Camellia.


Assuntos
Camellia , Bases de Dados Genéticas , Camellia/genética , Camellia sinensis/genética , Camellia sinensis/metabolismo , Genoma de Planta , Genômica , Chá/metabolismo
2.
Plant Physiol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875158

RESUMO

Cold stress declines the quality and yield of tea, yet the molecular basis underlying cold tolerance of tea plants (Camellia sinensis) remains largely unknown. Here, we identified a circadian rhythm component LUX ARRHYTHMO (LUX) that potentially regulates cold tolerance of tea plants through a genome-wide association study and transcriptomic analysis. The expression of CsLUX phased with sunrise and sunset and was strongly induced by cold stress. Genetic assays indicated that CsLUX is a positive regulator of freezing tolerance in tea plants. CsLUX was directly activated by CsCBF1 and repressed the expression level of CsLOX2, which regulates the cold tolerance of tea plants through dynamically modulating jasmonic acid content. Furthermore, we showed that the CsLUX-CsJAZ1 complex attenuated the physical interaction of CsJAZ1 with CsICE1, liberating CsICE1 with transcriptional activities to withstand cold stress. Notably, a single-nucleotide variation of C-to-A in the coding region of CsLUX was functionally validated as the potential elite haplotype for cold response, which provided valuable molecular markers for future cold resistance breeding in tea plants.

3.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34651655

RESUMO

The bioactive peptide has wide functions, such as lowering blood glucose levels and reducing inflammation. Meanwhile, computational methods such as machine learning are becoming more and more important for peptide functions prediction. Most of the previous studies concentrate on the single-functional bioactive peptides prediction. However, the number of multi-functional peptides is on the increase; therefore, novel computational methods are needed. In this study, we develop a method MLBP (Multi-Label deep learning approach for determining the multi-functionalities of Bioactive Peptides), which can predict multiple functions including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory and anti-microbial simultaneously. MLBP model takes the peptide sequence vector as input to replace the biological and physiochemical features used in other peptides predictors. Using the embedding layer, the dense continuous feature vector is learnt from the sequence vector. Then, we extract convolution features from the feature vector through the convolutional neural network layer and combine with the bidirectional gated recurrent unit layer to improve the prediction performance. The 5-fold cross-validation experiments are conducted on the training dataset, and the results show that Accuracy and Absolute true are 0.695 and 0.685, respectively. On the test dataset, Accuracy and Absolute true of MLBP are 0.709 and 0.697, with 5.0 and 4.7% higher than those of the suboptimum method, respectively. The results indicate MLBP has superior prediction performance on the multi-functional peptides identification. MLBP is available at https://github.com/xialab-ahu/MLBP and http://bioinfo.ahu.edu.cn/MLBP/.


Assuntos
Aprendizado Profundo , Aprendizado de Máquina , Redes Neurais de Computação , Peptídeos
4.
J Integr Plant Biol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990113

RESUMO

Domestication has shaped the population structure and agronomic traits of tea plants, yet the complexity of tea population structure and genetic variation that determines these traits remains unclear. We here investigated the resequencing data of 363 diverse tea accessions collected extensively from almost all tea distributions and found that the population structure of tea plants was divided into eight subgroups, which were basically consistent with their geographical distributions. The genetic diversity of tea plants in China decreased from southwest to east as latitude increased. Results also indicated that Camellia sinensis var. assamica (CSA) illustrated divergent selection signatures with Camellia sinensis var. sinensis (CSS). The domesticated genes of CSA were mainly involved in leaf development, flavonoid and alkaloid biosynthesis, while the domesticated genes in CSS mainly participated in amino acid metabolism, aroma compounds biosynthesis, and cold stress. Comparative population genomics further identified ~730 Mb novel sequences, generating 6,058 full-length protein-encoding genes, significantly expanding the gene pool of tea plants. We also discovered 217,376 large-scale structural variations and 56,583 presence and absence variations (PAVs) across diverse tea accessions, some of which were associated with tea quality and stress resistance. Functional experiments demonstrated that two PAV genes (CSS0049975 and CSS0006599) were likely to drive trait diversification in cold tolerance between CSA and CSS tea plants. The overall findings not only revealed the genetic diversity and domestication of tea plants, but also underscored the vital role of structural variations in the diversification of tea plant traits.

5.
Plant J ; 110(4): 1144-1165, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35277905

RESUMO

Tea (Camellia sinensis) is concocted from tea plant shoot tips that produce catechins, caffeine, theanine, and terpenoids, which collectively determine the rich flavors and health benefits of the infusion. However, little is known about the integrated regulation of shoot tip development and characteristic secondary metabolite biosynthesis in tea plants. Here, we demonstrate that MYB transcription factors (TFs) play key and yet diverse roles in regulating leaf and stem development, secondary metabolite biosynthesis, and environmental stress responses in tea plants. By integrating transcriptomic and metabolic profiling data in different tissues at a series of developmental stages or under various stress conditions, alongside biochemical and genetic analyses, we predicted the MYB TFs involved in regulating shoot development (CsMYB2, 98, 107, and 221), epidermal cell initiation (CsMYB184, 41, 139, and 219), stomatal initiation (CsMYB113 and 153), and the biosynthesis of flavonoids (including catechins, anthocyanins, and flavonols; CsMYB8 and 99), caffeine (CsMYB85 and 86), theanine (CsMYB9 and 49), carotenoids (CsMYB110), mono-/sesquiterpenoid volatiles (CsMYB68, 147, 148, and 193), lignin (CsMYB164 and 192), and indolic compounds (CsMYB139, 162, and 198), as well as the MYB TFs that are likely involved in hormone signaling-mediated environmental stress and defense responses. We characterized the functions of some key MYBs in regulating flavonoid and carotenoid biosynthesis for tea quality and flavor. This study provides a cross-family analysis of MYBs in tea alongside new insights into the coordinated regulation of tea plant shoot development and secondary metabolism, paving the way towards understanding of tea quality trait formation and genetic improvement of quality tea plants.


Assuntos
Camellia sinensis , Catequina , Antocianinas/metabolismo , Cafeína/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Catequina/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário/genética , Chá/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Plant J ; 111(2): 406-421, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35510493

RESUMO

Camellia plants include more than 200 species of great diversity and immense economic, ornamental, and cultural values. We sequenced the transcriptomes of 116 Camellia plants from almost all sections of the genus Camellia. We constructed a pan-transcriptome of Camellia plants with 89 394 gene families and then resolved the phylogeny of genus Camellia based on 405 high-quality low-copy core genes. Most of the inferred relationships are well supported by multiple nuclear gene trees and morphological traits. We provide strong evidence that Camellia plants shared a recent whole genome duplication event, followed by large expansions of transcription factor families associated with stress resistance and secondary metabolism. Secondary metabolites, particularly those associated with tea quality such as catechins and caffeine, were preferentially heavily accumulated in the Camellia plants from section Thea. We thoroughly examined the expression patterns of hundreds of genes associated with tea quality, and found that some of them exhibited significantly high expression and correlations with secondary metabolite accumulations in Thea species. We also released a web-accessible database for efficient retrieval of Camellia transcriptomes. The reported transcriptome sequences and obtained novel findings will facilitate the efficient conservation and utilization of Camellia germplasm towards a breeding program for cultivated tea, camellia, and oil-tea plants.


Assuntos
Camellia , Camellia/genética , Camellia/metabolismo , Filogenia , Melhoramento Vegetal , Chá/metabolismo , Transcriptoma/genética
7.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36674993

RESUMO

Chilling stress threatens the yield and distribution pattern of global crops, including the tea plant (Camellia sinensis), one of the most important cash crops around the world. Circular RNA (circRNA) plays roles in regulating plant growth and biotic/abiotic stress responses. Understanding the evolutionary characteristics of circRNA and its feedbacks to chilling stress in the tea plant will help to elucidate the vital roles of circRNAs. In the current report, we systematically identified 2702 high-confidence circRNAs under chilling stress in the tea plant, and interestingly found that the generation of tea plant circRNAs was associated with the length of their flanking introns. Repetitive sequences annotation and DNA methylation analysis revealed that the longer flanking introns of circRNAs present more repetitive sequences and higher methylation levels, which suggested that repeat-elements-mediated DNA methylation might promote the circRNAs biogenesis in the tea plant. We further detected 250 differentially expressed circRNAs under chilling stress, which were functionally enriched in GO terms related to cold/stress responses. Constructing a circRNA-miRNA-mRNA interaction network discovered 139 differentially expressed circRNAs harboring potential miRNA binding sites, which further identified 14 circRNAs that might contribute to tea plant chilling responses. We further characterized a key circRNA, CSS-circFAB1, which was significantly induced under chilling stress. FISH and silencing experiments revealed that CSS-circFAB1 was potentially involved in chilling tolerance of the tea plant. Our study emphasizes the importance of circRNA and its preliminary role against low-temperature stress, providing new insights for tea plant cold tolerance breeding.


Assuntos
Camellia sinensis , MicroRNAs , RNA Circular/genética , RNA Circular/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , MicroRNAs/genética , Chá
8.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833988

RESUMO

This study discusses the genetic mutations that have a significant association with economically important traits that would benefit tea breeders. The purpose of this study was to analyze the leaf quality and SNPs in quality-related genes in the tea plant collection of 20 mutant genotypes growing without nitrogen fertilizers. Leaf N-content, catechins, L-theanine, and caffeine contents were analyzed in dry leaves via HPLC. Additionally, the photochemical yield, electron transport efficiency, and non-photochemical quenching were analyzed using PAM-fluorimetry. The next generation pooled amplicon-sequencing approach was used for SNPs-calling in 30 key genes related to N metabolism and leaf quality. The leaf N content varied significantly among genotypes (p ≤ 0.05) from 2.3 to 3.7% of dry mass. The caffeine content varied from 0.7 to 11.7 mg g-1, and the L-theanine content varied from 0.2 to 5.8 mg g-1 dry leaf mass. Significant positive correlations were detected between the nitrogen content and biochemical parameters such as theanine, caffeine, and most of the catechins. However, significant negative correlations were observed between the photosynthetic parameters (Y, ETR, Fv/Fm) and several biochemical compounds, including rutin, Quercetin-3-O-glucoside, Kaempferol-3-O-rutinoside, Kaempferol-3-O-glucoside, Theaflavin-3'-gallate, gallic acid. From our SNP-analysis, three SNPs in WRKY57 were detected in all genotypes with a low N content. Moreover, 29 SNPs with a high or moderate effect were specific for #316 (high N-content, high quality) or #507 (low N-content, low quality). The use of a linear regression model revealed 16 significant associations; theaflavin, L-theanine, and ECG were associated with several SNPs of the following genes: ANSa, DFRa, GDH2, 4CL, AlaAT1, MYB4, LHT1, F3'5'Hb, UFGTa. Among them, seven SNPs of moderate effect led to changes in the amino acid contents in the final proteins of the following genes: ANSa, GDH2, 4Cl, F3'5'Hb, UFGTa. These results will be useful for further evaluations of the important SNPs and will help to provide a better understanding of the mechanisms of nitrogen uptake efficiency in tree crops.


Assuntos
Camellia sinensis , Catequina , Cafeína/metabolismo , Polimorfismo de Nucleotídeo Único , Camellia sinensis/metabolismo , Catequina/metabolismo , Folhas de Planta/metabolismo , Chá/química , Nitrogênio/metabolismo
9.
Plant J ; 106(5): 1312-1327, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33730390

RESUMO

The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.


Assuntos
Camellia sinensis/genética , Metilação de DNA , Elementos de DNA Transponíveis/genética , Evolução Molecular , Genes Duplicados/genética , Genoma de Planta/genética , Camellia sinensis/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Tamanho do Genoma , Estresse Fisiológico
10.
New Phytol ; 234(3): 902-917, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35167117

RESUMO

Tea trichomes synthesize numerous specialized metabolites to protect plants from environmental stresses and contribute to tea flavours, but little is known about the regulation of trichome development. Here, we showed that CsMYB1 is involved in the regulation of trichome formation and galloylated cis-catechins biosynthesis in tea plants. The variations in CsMYB1 expression levels are closely correlated with trichome indexes and galloylated cis-catechins contents in tea plant populations. Genome resequencing showed that CsMYB1 may be selected in modern tea cultivars, since a 192-bp insertion in CsMYB1 promoter was found exclusively in modern tea cultivars but not in the glabrous wild tea Camellia taliensis. Several enhancers in the 192-bp insertion increased CsMYB1 transcription in modern tea cultivars that coincided with their higher galloylated cis-catechins contents and trichome indexes. Biochemical analyses and transgenic data showed that CsMYB1 interacted with CsGL3 and CsWD40 and formed a MYB-bHLH-WD40 (MBW) transcriptional complex to activate the trichome regulator genes CsGL2 and CsCPC, and the galloylated cis-catechins biosynthesis genes anthocyanidin reductase and serine carboxypeptidase-like 1A. CsMYB1 integratively regulated trichome formation and galloylated cis-catechins biosynthesis. Results suggest that CsMYB1, trichome and galloylated cis-catechins are coincidently selected during tea domestication by harsh environments for improved adaption and by breeders for better tea flavours.


Assuntos
Catequina , Tricomas , Catequina/metabolismo , Domesticação , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá , Tricomas/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(18): E4151-E4158, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678829

RESUMO

Tea, one of the world's most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ∼0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ∼30 to 40 and ∼90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties.


Assuntos
Camellia sinensis/genética , Evolução Molecular , Duplicação Gênica , Genoma de Planta , Chá , Camellia sinensis/metabolismo
12.
BMC Genomics ; 21(1): 556, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32791963

RESUMO

BACKGROUND: Tea plant is one of the most important non-alcoholic beverage crops worldwide. While potassium (K+) is an essential macronutrient and greatly affects the growth and development of plants, the molecular mechanism underlying K+ uptake and transport in tea plant root, especially under limited-K+ conditions, is still poorly understood. In plants, HAK/KUP/KT family members play a crucial role in K+ acquisition and translocation, growth and development, and response to stresses. Nevertheless, the biological functions of these genes in tea plant are still in mystery, especially their roles in K+ uptake and stress responses. RESULTS: In this study, a total of 21 non-redundant HAK/KUP/KT genes (designated as CsHAKs) were identified in tea plant. Phylogenetic and structural analysis classified the CsHAKs into four clusters (I, II, III, IV), containing 4, 8, 4 and 5 genes, respectively. Three major categories of cis-acting elements were found in the promoter regions of CsHAKs. Tissue-specific expression analysis indicated extremely low expression levels in various tissues of cluster I CsHAKs with the exception of a high root expression of CsHAK4 and CsHAK5, a constitutive expression of clusters II and III CsHAKs, and a moderate cluster IV CsHAKs expression. Remarkably, the transcript levels of CsHAKs in roots were significantly induced or suppressed after exposure to K+ deficiency, salt and drought stresses, and phytohormones treatments. Also notably, CsHAK7 was highly expressed in all tissues and was further induced under various stress conditions. Therefore, functional characterization of CsHAK7 was performed, and the results demostrated that CsHAK7 locates on plasma membrane and plays a key role in K+ transport in yeast. Taken together, the results provide promising candidate CsHAKs for further functional studies and contribute to the molecular breeding for new tea plants varieties with highly efficient utilization of K+. CONCLUSION: This study demonstrated the first genome-wide analysis of CsHAK family genes of tea plant and provides a foundation for understanding the classification and functions of the CsHAKs in tea plants.


Assuntos
Camellia sinensis , Proteínas de Transporte de Cátions , Deficiência de Potássio , Camellia sinensis/metabolismo , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Chá
13.
BMC Bioinformatics ; 20(1): 553, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694521

RESUMO

BACKGROUND: Tea is the oldest and among the world's most popular non-alcoholic beverages, which has important economic, health and cultural values. Tea is commonly produced from the leaves of tea plants (Camellia sinensis), which belong to the genus Camellia of family Theaceae. In the last decade, many studies have generated the transcriptomes of tea plants at different developmental stages or under abiotic and/or biotic stresses to investigate the genetic basis of secondary metabolites that determine tea quality. However, these results exhibited large differences, particularly in the total number of reconstructed transcripts and the quality of the assembled transcriptomes. These differences largely result from limited knowledge regarding the optimized sequencing depth and assembler for transcriptome assembly of structurally complex plant species genomes. RESULTS: We employed different amounts of RNA-sequencing data, ranging from 4 to 84 Gb, to assemble the tea plant transcriptome using five well-known and representative transcript assemblers. Although the total number of assembled transcripts increased with increasing sequencing data, the proportion of unassembled transcripts became saturated as revealed by plant BUSCO datasets. Among the five representative assemblers, the Bridger package shows the best performance in both assembly completeness and accuracy as evaluated by the BUSCO datasets and genome alignment. In addition, we showed that Bridger and BinPacker harbored the shortest runtimes followed by SOAPdenovo and Trans-ABySS. CONCLUSIONS: The present study compares the performance of five representative transcript assemblers and investigates the key factors that affect the assembly quality of the transcriptome of the tea plants. This study will be of significance in helping the tea research community obtain better sequencing and assembly of tea plant transcriptomes under conditions of interest and may thus help to answer major biological questions currently facing the tea industry.


Assuntos
Camellia sinensis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Folhas de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Plant Biotechnol J ; 17(10): 1938-1953, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30913342

RESUMO

Tea is the world's widely consumed nonalcohol beverage with essential economic and health benefits. Confronted with the increasing large-scale omics-data set particularly the genome sequence released in tea plant, the construction of a comprehensive knowledgebase is urgently needed to facilitate the utilization of these data sets towards molecular breeding. We hereby present the first integrative and specially designed web-accessible database, Tea Plant Information Archive (TPIA; http://tpia.teaplant.org). The current release of TPIA employs the comprehensively annotated tea plant genome as framework and incorporates with abundant well-organized transcriptomes, gene expressions (across species, tissues and stresses), orthologs and characteristic metabolites determining tea quality. It also hosts massive transcription factors, polymorphic simple sequence repeats, single nucleotide polymorphisms, correlations, manually curated functional genes and globally collected germplasm information. A variety of versatile analytic tools (e.g. JBrowse, blast, enrichment analysis, etc.) are established helping users to perform further comparative, evolutionary and functional analysis. We show a case application of TPIA that provides novel and interesting insights into the phytochemical content variation of section Thea of genus Camellia under a well-resolved phylogenetic framework. The constructed knowledgebase of tea plant will serve as a central gateway for global tea community to better understand the tea plant biology that largely benefits the whole tea industry.


Assuntos
Camellia sinensis/genética , Biologia Computacional , Genoma de Planta , Genômica , Filogenia , Chá
15.
BMC Genomics ; 19(1): 616, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111282

RESUMO

BACKGROUND: The leaves of tea plants (Camellia sinensis) are used to produce tea, which is one of the most popular beverages consumed worldwide. The nutritional value and health benefits of tea are mainly related to three abundant characteristic metabolites; catechins, theanine and caffeine. Weighted gene co-expression network analysis (WGCNA) is a powerful system for investigating correlations between genes, identifying modules among highly correlated genes, and relating modules to phenotypic traits based on gene expression profiling. Currently, relatively little is known about the regulatory mechanisms and correlations between these three secondary metabolic pathways at the omics level in tea. RESULTS: In this study, levels of the three secondary metabolites in ten different tissues of tea plants were determined, 87,319 high-quality unigenes were assembled, and 55,607 differentially expressed genes (DEGs) were identified by pairwise comparison. The resultant co-expression network included 35 co-expression modules, of which 20 modules were significantly associated with the biosynthesis of catechins, theanine and caffeine. Furthermore, we identified several hub genes related to these three metabolic pathways, and analysed their regulatory relationships using RNA-Seq data. The results showed that these hub genes are regulated by genes involved in all three metabolic pathways, and they regulate the biosynthesis of all three metabolites. It is notable that light was identified as an important regulator for the biosynthesis of catechins. CONCLUSION: Our integrated omics-level WGCNA analysis provides novel insights into the potential regulatory mechanisms of catechins, theanine and caffeine metabolism, and the identified hub genes provide an important reference for further research on the molecular biology of tea plants.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Cafeína/metabolismo , Camellia sinensis/química , Catequina/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Glutamatos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Redes e Vias Metabólicas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transcriptoma
16.
Proc Natl Acad Sci U S A ; 112(50): E7022-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621743

RESUMO

Polyploidy, or whole-genome duplication (WGD), serves as a key innovation in plant evolution and is an important genomic feature for all eukaryotes. Neopolyploids have to overcome difficulties in meiosis, genomic alterations, changes of gene expression, and epigenomic reorganization. However, the underlying mechanisms for these processes are poorly understood. One of the most interesting aspects is that genome doubling events increase the dosage of all genes. Unlike allopolyploids entangled by both hybridization and polyploidization, autopolyploids, especially artificial lines, in relatively uniform genetic background offer a model system to understand mechanisms of genome-dosage effects. To investigate DNA methylation effects in response to WGD rather than hybridization, we produced autotetraploid rice with its diploid donor, Oryza sativa ssp. indica cv. Aijiaonante, both of which were independently self-pollinated over 48 generations, and generated and compared their comprehensive transcriptomes, base pair-resolution methylomes, and siRNAomes. DNA methylation variation of transposable elements (TEs) was observed as widespread in autotetraploid rice, in which hypermethylation of class II DNA transposons was predominantly noted in CHG and CHH contexts. This was accompanied by changes of 24-nt siRNA abundance, indicating the role of the RNA-directed DNA methylation pathway. Our results showed that the increased methylation state of class II TEs may suppress the expression of neighboring genes in autotetraploid rice that has obtained double alleles, leading to no significant differences in transcriptome alterations for most genes from its diploid donor. Collectively, our findings suggest that chromosome doubling induces methylation variation in TEs that affect gene expression and may become a "genome shock" response factor to help neoautopolyploids adapt to genome-dosage effects.


Assuntos
Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Poliploidia , Cromossomos de Plantas/genética , Diploide , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Oryza/citologia , Fenótipo , RNA Interferente Pequeno/metabolismo
17.
Proc Natl Acad Sci U S A ; 111(46): E4954-62, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368197

RESUMO

Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm.


Assuntos
Adaptação Fisiológica/genética , Interação Gene-Ambiente , Genoma de Planta , Oryza/genética , África , Sequência de Aminoácidos , Ásia , Austrália , Sequência de Bases , Diploide , Evolução Molecular , Dosagem de Genes , Genes de Plantas , Variação Genética , MicroRNAs/genética , Dados de Sequência Molecular , Família Multigênica , Oryza/classificação , Filogenia , Proteínas de Plantas/genética , RNA de Plantas/genética , Seleção Genética , Alinhamento de Sequência , Homologia de Sequência , América do Sul , Especificidade da Espécie
18.
BMC Genomics ; 16: 298, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25881092

RESUMO

BACKGROUND: Camellia taliensis is one of the most important wild relatives of cultivated tea tree, C. sinensis. The species extensively occupies mountainous habitats representing a wide-range abiotic tolerance and biotic resistance and thus harbors valuable gene resources that may greatly benefit genetic improvement of cultivated tea tree. However, owning to a large genome size of ~3 Gb and structurally complex genome, there are fairly limited genetic information and particularly few genomic resources publicly available for this species. To better understand the key pathways determining tea flavor and enhance tea tree breeding programs, we performed a high-throughput transcriptome sequencing for C. taliensis. RESULTS: In this study, approximate 241.5 million high-quality paired-end reads, accounting for ~24 Gb of sequence data, were generated from tender shoots, young leaves, flower buds and flowers using Illumina HiSeq 2000 platform. De novo assembly with further processing and filtering yielded a set of 67,923 transcripts with an average length of 685 bp and an N50 of 995 bp. Based on sequence similarity searches against public databases, a total of 39,475 transcripts were annotated with gene descriptions, conserved protein domains or gene ontology (GO) terms. Candidate genes for major metabolic pathways involved in tea quality were identified and experimentally validated using RT-qPCR. Further gene expression profiles showed that they are differentially regulated at different developmental stages. To gain insights into the evolution of these genes, we aligned them to the previously cloned orthologous genes in C. sinensis, and found that considerable nucleotide variation within several genes involved in important secondary metabolic biosynthesis pathways, of which flavone synthase II gene (FNSII) is the most variable between these two species. Moreover, comparative analyses revealed that C. taliensis shows a remarkable expansion of LEA genes, compared to C. sinensis, which might contribute to the observed stronger stress resistance of C. taliensis. CONCLUSION: We reported the first large-coverage transcriptome datasets for C. taliensis using the next-generation sequencing technology. Such comprehensive EST datasets provide an unprecedented opportunity for identifying genes involved in several major metabolic pathways and will accelerate functional genomic studies and genetic improvement efforts of tea trees in the future.


Assuntos
Redes e Vias Metabólicas/genética , Chá/genética , Transcriptoma/genética , Bases de Dados Genéticas , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA , Chá/crescimento & desenvolvimento
19.
Plant Physiol ; 161(4): 1844-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23396833

RESUMO

The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs.


Assuntos
Evolução Molecular , Flores/genética , Duplicação Gênica/genética , Genes Duplicados/genética , Genes de Plantas/genética , Magnoliopsida/genética , Modelos Logísticos , Anotação de Sequência Molecular , Análise de Componente Principal , Duplicações Segmentares Genômicas/genética , Seleção Genética , Sintenia/genética
20.
Heliyon ; 10(15): e35522, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170331

RESUMO

Early non-destructive detection of stress effect is crucial for efficient breeding strategies and germplasm characterization. Recently developed hyperspectral technologies allow to perform fast real-time phenotyping through reflectance-based vegetation indices. However, efficiency of these vegetation indices has to be validated for each crop in different environment. The aim of this study was to reveal efficient vegetation indices for phenotyping of abiotic stress (cold, freezing and nitrogen deficiency) response in tea plant. Among 31 studied VIs, few indices were efficient to distinguish tolerant and susceptible tea plants under abiotic stress: ZMI (Zarco-Tejada & Miller Index), VREI1,2,3 (Vogelmann Red Edge Indices), RENDVI (Red Edge Normalized Difference Vegetation Index), CTR1 and CTR2 (Carter Indices). Most of these indices are calculated based on reflectance in near-infrared area at 705-760 nm, indicating this range as promising for tea germplasm characterization under abiotic stresses. Tolerant tea plants showed the following values under freezing: ZMI ≥1.90, VREI1 ≥ 1.40, RENDVI ≥0.38, Ctr1 ≤ 1.74. The leaf N-content was positively correlated (Pearson's) with the following indices ZMI, VREI1, RENDVI, while negatively correlated with CTR, and VREI2,3. These results will be useful for tea germplasm management, genomics and breeding research aimed at abiotic stress tolerance of tea plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA