Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(21): 217202, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530667

RESUMO

We report on the study of both perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya interaction (DMI) at an oxide/ferromagnetic metal (FM) interface, i.e., BaTiO_{3} (BTO)/CoFeB. Thanks to the functional properties of the BTO film and the capability to precisely control its growth, we are able to distinguish the dominant role of the oxide termination (TiO_{2} vs BaO) from the moderate effect of ferroelectric polarization in the BTO film, on the PMA and DMI at an oxide/FM interface. We find that the interfacial magnetic anisotropy energy of the BaO-BTO/CoFeB structure is 2 times larger than that of the TiO_{2}-BTO/CoFeB, while the DMI of the TiO_{2}-BTO/CoFeB interface is larger. We explain the observed phenomena by first principles calculations, which ascribe them to the different electronic states around the Fermi level at oxide/ferromagnetic metal interfaces and the different spin-flip process. This study paves the way for further investigation of the PMA and DMI at various oxide/FM structures and thus their applications in the promising field of energy-efficient devices.

2.
Adv Mater ; 35(12): e2208954, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36647621

RESUMO

Spin-orbit torque (SOT)-induced switching of perpendicular magnetization in the absence of magnetic field is crucial for the application of SOT-based spintronic devices. Recent works have demonstrated that the low-symmetry crystal structure in CuPt/CoPt can give rise to an out-of-plane (OOP) spin torque and lead to deterministic magnetization switching without an external field. However, it is essential to improve OOP effective field for the efficient switching. In this work, the impact of interface oxidation on the generation of OOP effective field in a CuPt/ferromagnet heterostructure is systematically studied. By introducing an oxidized CuPt surface, it is found that the field-free switching performance shows remarkable improvement. OOP effective field measurement indicates that the oxidation treatment can enhance the OOP effective field by more than two times. It is also demonstrated that this oxidation-induced OOP SOT efficiency enhancement is independent of the device shapes, magnetic materials, or magnetization easy axis. This work contributes to improve the performance of SOT devices and provides an effective fabrication guidance for future spintronic devices that utilize OOP SOT.

3.
Nat Commun ; 13(1): 3539, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725723

RESUMO

All-electric switching of perpendicular magnetization is a prerequisite for the integration of fast, high-density, and low-power magnetic memories and magnetic logic devices into electric circuits. To date, the field-free spin-orbit torque (SOT) switching of perpendicular magnetization has been observed in SOT bilayer and trilayer systems through various asymmetric designs, which mainly aim to break the mirror symmetry. Here, we report that the perpendicular magnetization of CoxPt100-x single layers within a special composition range (20 < x < 56) can be deterministically switched by electrical current in the absence of external magnetic field. Specifically, the Co30Pt70 shows the largest out-of-plane effective field efficiency and best switching performance. We demonstrate that this unique property arises from the cooperation of two structural mechanisms: the low crystal symmetry property at the Co platelet/Pt interfaces and the composition gradient along the thickness direction. Compared with that in bilayers or trilayers, the field-free switching in CoxPt100-x single layer greatly simplifies the SOT structure and avoids additional asymmetric designs.

4.
Adv Mater ; 34(33): e2109449, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35751473

RESUMO

Van der Waals materials are attracting great attention in the field of spintronics due to their novel physical properties. For example, they are utilized as spin-current generating materials in spin-orbit torque (SOT) devices, which offers an electrical way to control the magnetic state and is promising for future low-power electronics. However, SOTs have mostly been demonstrated in vdW materials with strong spin-orbit coupling (SOC). Here, the observation of a current-induced SOT in the h-BN/SrRuO3 bilayer structure is reported, where the vdW material (h-BN) is an insulator with negligible SOC. Importantly, this SOT is strong enough to induce the switching of the perpendicular magnetization in SrRuO3 . First-principles calculations suggest a giant Rashba effect at the interface between vdW material and SrRuO3 (110)pc thin film, which leads to the observed SOT based on a simplified tight-binding model. Furthermore, it is demonstrated that the current-induced magnetization switching can be modulated by the electric field. This study paves the way for exploring the current-induced SOT and magnetization switching by integrating vdW materials with ferromagnets.

5.
Nat Nanotechnol ; 16(3): 277-282, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33462431

RESUMO

Modern magnetic-memory technology requires all-electric control of perpendicular magnetization with low energy consumption. While spin-orbit torque (SOT) in heavy metal/ferromagnet (HM/FM) heterostructures1-5 holds promise for applications in magnetic random access memory, until today, it has been limited to the in-plane direction. Such in-plane torque can switch perpendicular magnetization only deterministically with the help of additional symmetry breaking, for example, through the application of an external magnetic field2,4, an interlayer/exchange coupling6-9 or an asymmetric design10-14. Instead, an out-of-plane SOT15 could directly switch perpendicular magnetization. Here we observe an out-of-plane SOT in an HM/FM bilayer of L11-ordered CuPt/CoPt and demonstrate field-free switching of the perpendicular magnetization of the CoPt layer. The low-symmetry point group (3m1) at the CuPt/CoPt interface gives rise to this spin torque, hereinafter referred to as 3m torque, which strongly depends on the relative orientation of the current flow and the crystal symmetry. We observe a three-fold angular dependence in both the field-free switching and the current-induced out-of-plane effective field. Because of the intrinsic nature of the 3m torque, the field-free switching in CuPt/CoPt shows good endurance in cycling experiments. Experiments involving a wide variety of SOT bilayers with low-symmetry point groups16,17 at the interface may reveal further unconventional spin torques in the future.

6.
Adv Mater ; 33(36): e2101316, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302392

RESUMO

The magnetic Weyl fermion originates from the time reversal symmetry (TRS)-breaking in magnetic crystalline structures, where the topology and magnetism entangle with each other. Therefore, the magnetic Weyl fermion is expected to be effectively tuned by the magnetic field and electrical field, which holds promise for future topologically protected electronics. However, the electrical field control of the magnetic Weyl fermion has rarely been reported, which is prevented by the limited number of identified magnetic Weyl solids. Here, the electric field control of the magnetic Weyl fermion is demonstrated in an epitaxial SrRuO3 (111) thin film. The magnetic Weyl fermion in the SrRuO3 films is indicated by the chiral anomaly induced magnetotransport, and is verified by the observed Weyl nodes in the electronic structures characterized by the angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. Through the ionic-liquid gating experiment, the effective manipulation of the Weyl fermion by electric field is demonstrated, in terms of the sign-change of the ordinary Hall effect, the nonmonotonic tuning of the anomalous Hall effect, and the observation of the linear magnetoresistance under proper gating voltages. The work may stimulate the searching and tuning of Weyl fermions in other magnetic materials, which are promising in energy-efficient electronics.

7.
Adv Mater ; 32(14): e1904415, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32090416

RESUMO

Topologically protected magnetic states have a variety of potential applications in future spintronics owing to their nanoscale size (<100 nm) and unique dynamics. These fascinating states, however, usually are located at the interfaces or surfaces of ultrathin systems due to the short interaction range of the Dzyaloshinskii-Moriya interaction (DMI). Here, magnetic topological states in a 40-unit cells (16 nm) SrRuO3 layer are successfully created via an interlayer exchange coupling mechanism and the interfacial DMI. By controlling the thickness of an antiferromagnetic and ferromagnetic layer, interfacial ionic polarization, as well as the transformation between ferromagnetic and magnetic topological states, can be modulated. Using micromagnetic simulations, the formation and stability of robust magnetic skyrmions in SrRuO3 /BiFeO3 heterostructures are elucidated. Magnetic skyrmions in thick multiferroic heterostructures are promising for the development of topological electronics as well as rendering a practical approach to extend the interfacial topological phenomena to bulk via antiferromagnetic order.

8.
Adv Mater ; 32(42): e2002704, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32851704

RESUMO

Resistive random-access memories (ReRAMs) based on transition metal dichalcogenide layers are promising physical sources for random number generation (RNG). However, most ReRAM devices undergo performance degradation from cycle to cycle, which makes preserving a normal probability distribution during operation a challenging task. Here, ReRAM devices with excellent stability are reported by using a MoS2 /polymer heterostructure as active layer. The stability enhancement manifests in outstanding cumulative probabilities for both high- and low-resistivity states of the memory cells. Moreover, the intrinsic values of the high-resistivity state are found to be an excellent source of randomness as suggested by a Chi-square test. It is demonstrated that one of these cells alone can generate ten distinct random states, in contrast to the four conventional binary cells that would be required for an equivalent number of states. This work unravels a scalable interface engineering process for the production of high-performance ReRAM devices, and sheds light on their promising application as reliable RNGs for enhanced cybersecurity in the big data era.

9.
Nat Nanotechnol ; 14(10): 939-944, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501531

RESUMO

The electrical switching of magnetization through spin-orbit torque (SOT)1 holds promise for application in information technologies, such as low-power, non-volatile magnetic memory. Materials with strong spin-orbit coupling, such as heavy metals2-4 and topological insulators5,6, can convert a charge current into a spin current. The spin current can then execute a transfer torque on the magnetization of a neighbouring magnetic layer, usually a ferromagnetic metal like CoFeB, and reverse its magnetization. Here, we combine a ferromagnetic transition metal oxide7 with an oxide with strong spin-orbit coupling8 to demonstrate all-oxide SOT devices. We show current-induced magnetization switching in SrIrO3/SrRuO3 bilayer structures. By controlling the magnetocrystalline anisotropy of SrRuO3 on (001)- and (110)-oriented SrTiO3 (STO) substrates, we designed two types of SOT switching schemes. For the bilayer on the STO(001) substrate, a magnetic-field-free switching was achieved, which remained undisturbed even when the external magnetic field reached 100 mT. The charge-to-spin conversion efficiency for the bilayer on the STO(110) substrate ranged from 0.58 to 0.86, depending on the directionality of the current flow with respect to the crystalline symmetry. All-oxide SOT structures may help to realize field-free switching through a magnetocrystalline anisotropy design.

10.
Adv Mater ; 31(8): e1807008, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30614567

RESUMO

Topological Hall effect (THE), appearing as bumps and/or dips in the Hall resistance curves, is considered as a hallmark of the skyrmion spin texture originated from the inversion symmetry breaking and spin-orbit interaction. Recently, Néel-type skyrmion is proposed based on the observed THE in 5d transition metal oxides heterostructures such as SrRuO3 /SrIrO3 bilayers, where the interfacial Dzyaloshinskii-Moriya interaction (DMI), due to the strong spin-orbit coupling (SOC) in SrIrO3 and the broken inversion symmetry at the interface, is believed to play a significant role. Here the emergence of THE in SrRuO3 single layers with thickness ranging from 3 to 6 nm is experimentally demonstrated. It is found that the oxygen octahedron rotation in SrRuO3 also has a significant effect on the observed THE. Furthermore, the THE may be continuously tuned by an applied electrical field. It is proposed that the large SOC of Ru ions together with the broken inversion symmetry, mainly from the interface, produce the DMI that is responsible for the observed THE. The emergence of the gate-tunable DMI in SrRuO3 single layer may stimulate further investigations of new spin-orbit physics in strong SOC oxides.

11.
ACS Appl Mater Interfaces ; 11(33): 30446-30452, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31347362

RESUMO

To realize high-speed nonvolatile magnetic memory with low energy consumption, electric switching of perpendicular magnetization by spin-orbit torque in the heavy metal/ferromagnetic (HM/FM) structure has recently attracted intensive attention. Conventionally, an external in-plane magnetic field for breaking the symmetry is required for achieving electric switching of perpendicular magnetization. However, electric switching without external field is the prerequisite for the integration of magnetic functionality into the integrated circuit devices. Here, we propose a new method of utilizing a W wedge in the Pt/W/FM structure to induce a spin current gradient, which can result in an in-plane equivalent field along the wedge thickness gradient direction. We experimentally demonstrate the deterministic magnetization switching of perpendicular Co/Ni multilayers without external magnetic field when the electric current is along the wedge thickness gradient direction. Our findings shed light on free field electric switching of magnetization by a new physical parameter-an asymmetric spin current induced by a bilayer wedge structure.

12.
Adv Mater ; 31(21): e1900776, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30957913

RESUMO

2D transition metal dichalcogenides have attracted much attention in the field of spintronics due to their rich spin-dependent properties. The promise of highly compact and low-energy-consumption spin-orbit torque (SOT) devices motivates the search for structures and materials that can satisfy the requirements of giant perpendicular magnetic anisotropy (PMA) and large SOT simultaneously in SOT-based magnetic memory. Here, it is demonstrated that PMA and SOT in a heavy metal/transition metal ferromagnet structure, Pt/[Co/Ni]2 , can be greatly enhanced by introducing a molybdenum disulfide (MoS2 ) underlayer. According to first-principles calculation and X-ray absorption spectroscopy (XAS), the enhancement of the PMA is ascribed to the modification of the orbital hybridization at the interface of Pt/Co due to MoS2 . The enhancement of SOT by the role played by MoS2 is explained, which is strongly supported by the identical behavior of SOT and PMA as a function of Pt thickness. This work provides new possibilities to integrate 2D materials into promising spintronics devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA