Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 85: 46-60, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019249

RESUMO

Heme has attracted considerable attention due to its indispensable biological roles and applications in healthcare and artificial foods. The development and utilization of edible microorganisms instead of animals to produce heme is the most promising method to promote the large-scale industrial production and safe application of heme. However, the cytotoxicity of heme severely restricts its efficient synthesis by microorganisms, and the cytotoxic mechanism is not fully understood. In this study, the effect of heme toxicity on Saccharomyces cerevisiae was evaluated by enhancing its synthesis using metabolic engineering. The results showed that the accumulation of heme after the disruption of heme homeostasis caused serious impairments in cell growth and metabolism, as demonstrated by significantly poor growth, mitochondrial damage, cell deformations, and chapped cell surfaces, and these features which were further associated with substantially elevated reactive oxygen species (ROS) levels within the cell (mainly H2O2 and superoxide anion radicals). To improve cellular tolerance to heme, 5 rounds of laboratory evolution were performed, increasing heme production by 7.3-fold and 4.2-fold in terms of the titer (38.9 mg/L) and specific production capacity (1.4 mg/L/OD600), respectively. Based on comparative transcriptomic analyses, 32 genes were identified as candidates that can be modified to enhance heme production by more than 20% in S. cerevisiae. The combined overexpression of 5 genes (SPS22, REE1, PHO84, HEM4 and CLB2) was shown to be an optimal method to enhance heme production. Therefore, a strain with enhanced heme tolerance and ROS quenching ability (R5-M) was developed that could generate 380.5 mg/L heme with a productivity of 4.2 mg/L/h in fed-batch fermentation, with S. cerevisiae strains being the highest producers reported to date. These findings highlight the importance of improving heme tolerance for the microbial production of heme and provide a solution for efficient heme production by engineered yeasts.


Assuntos
Heme , Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Heme/metabolismo , Heme/biossíntese , Heme/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
J Basic Microbiol ; 64(4): e2300705, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253966

RESUMO

Ergothioneine (EGT) is a rare thiohistidine derivative with exceptional antioxidant properties. The blood level of EGT is considered highly reliable predictors for cardiovascular diseases and mortality, yet animals lack the ability to synthesize this compound. Free plasmids have been previously used to overexpress genes involved in the EGT biosynthetic pathway of Mycolicibacterium neoaurum. Here, we tentatively introduced a putative transporter gene mfsT1 into high-copy plasmids and sharply increased the ratio of extracellular EGT concentration from 18.7% to 44.9%. Subsequently, an additional copy of egtABCDE, hisG, and mfsT1 was inserted into the genome with a site-specific genomic integration tool of M. neoaurum, leading a 2.7 times increase in EGT production. Co-enhancing the S-adenosyl-L-methionine regeneration pathway, or alternatively, the integration of three copies of egtABCDE, hisG and mfsT1 into the genome further increased the total EGT yield by 16.1% (64.6 mg/L) and 21.7% (67.7 mg/L), respectively. After 168-h cultivation, the highest titer reached 85.9 mg/L in the latter strain with three inserted copies. This study provided a solid foundation for genome engineering to increase the production of EGT in M. neoaurum.


Assuntos
Ergotioneína , Mycobacteriaceae , Animais , Ergotioneína/genética , Ergotioneína/metabolismo , Antioxidantes/metabolismo
3.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257202

RESUMO

Photoelectrocatalytic (PEC) water decomposition provides a promising method for converting solar energy into green hydrogen energy. Indeed, significant advances and improvements have been made in various fundamental aspects for cutting-edge applications, such as water splitting and hydrogen production. However, the fairly low PEC efficiency of water decomposition by a semiconductor photoelectrode and photocorrosion seriously restrict the practical application of photoelectrochemistry. In this review, the mechanisms of PEC water decomposition are first introduced to provide a solid understanding of the PEC process and ensure that this review is accessible to a wide range of readers. Afterwards, notable achievements to date are outlined, and unique approaches involving promising semiconductor materials for efficient PEC hydrogen production, including metal oxide, sulfide, and graphite-phase carbon nitride, are described. Finally, four strategies which can effectively improve the hydrogen production rate-morphological control, doping, heterojunction, and surface modification-are discussed.

4.
Appl Microbiol Biotechnol ; 107(16): 5257-5267, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405431

RESUMO

The engineered probiotic Escherichia coli Nissle 1917 (EcN) is expected to be employed in the diagnosis and treatment of various diseases. However, the introduced plasmids typically require antibiotics to maintain genetic stability, and the cryptic plasmids in EcN are usually eliminated to avoid plasmid incompatibility which may change the inherent probiotic characteristics. Here, we provided a simple design to minimize the genetic change of probiotics by eliminating native plasmids and reintroducing the recombinants carrying functional genes. Specific insertion sites in the vectors showed significant differences in the expression of fluorescence proteins. Selected integration sites were applied in the de novo synthesis of salicylic acid, leading to a titer of 142.0 ± 6.0 mg/L in a shake flask with good production stability. Additionally, the design successfully realized the biosynthesis of ergothioneine (45 mg/L) by one-step construction. This work expands the application scope of native cryptic plasmids to the easy construction of functional pathways. KEY POINTS: • Cryptic plasmids of EcN were designed to express exogenous genes • Insertion sites with different expression intensities in cryptic plasmids were provided • Target products were stably produced by engineering cryptic plasmids.


Assuntos
Antibacterianos , Probióticos , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos/genética
5.
Microb Cell Fact ; 19(1): 80, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228591

RESUMO

BACKGROUND: The bioconversion of phytosterols into high value-added steroidal intermediates, including the 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), is the cornerstone in steroid pharmaceutical industry. However, the low transportation efficiency of hydrophobic substrates into mycobacterial cells severely limits the transformation. In this study, a robust and stable modification of the cell wall in M. neoaurum strain strikingly enhanced the cell permeability for the high production of steroids. RESULTS: The deletion of the nonessential kasB, encoding a ß-ketoacyl-acyl carrier protein synthase, led to a disturbed proportion of mycolic acids (MAs), which is one of the most important components in the cell wall of Mycobacterium neoaurum ATCC 25795. The determination of cell permeability displayed about two times improvement in the kasB-deficient strain than that of the wild type M. neoaurum. Thus, the deficiency of kasB in the 9-OHAD-producing strain resulted in a significant increase of 137.7% in the yield of 9α-hydroxy-4-androstene-3,17-dione (9-OHAD). Ultimately, the 9-OHAD productivity in an industrial used resting cell system was reached 0.1135 g/L/h (10.9 g/L 9-OHAD from 20 g/L phytosterol) and the conversion time was shortened by 33%. In addition, a similar self-enhancement effect (34.5%) was realized in the 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) producing strain. CONCLUSIONS: The modification of kasB resulted in a meaningful change in the cell wall mycolic acids. Deletion of the kasB gene remarkably improved the cell permeability, leading to a self-enhancement of the steroidal intermediate conversion. The results showed a high efficiency and feasibility of this construction strategy.


Assuntos
Parede Celular/metabolismo , Mycobacteriaceae/química , Fitosteróis/metabolismo , Esteroides/metabolismo
6.
Appl Microbiol Biotechnol ; 103(11): 4417-4427, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30968164

RESUMO

(2R,3S)-N-tert-Butoxycarbonyl-3-amino-1-chloro-2-hydroxy-4-phenylbutane (1b) is key for the synthesis of the antiviral drug atazanavir. It can be obtained via the stereoselective bioreduction of (3S)-3-(N-Boc-amino)-1-chloro-4-phenyl-butanone (1a) with short-chain dehydrogenase/reductase (SDR). However, the stereoselective bioreduction of this hydrophobic and bulky substrate still remained a challenge because of the steric hindrance effect and low mass transfer rate. In this study, SDR isolated from Novosphingobium aromaticivorans (NaSDR) having low activity to 1a, which was engineered to enhance catalytic efficiency through active pocket iterative saturation mutagenesis (ISM). The obtained mutant (muSDR) (G141V/I195L) had 3.57 times higher kcat than the wild type (WT) towards 1a. Molecular docking analysis revealed considerable differences in the distance between the substrate and catalytic residues in WT and mutant SDR. Moreover, muSDR reduced 15 ketones with excellent enantioselectivity, indicating broad substrate acceptance. After optimization of expression and reaction conditions, the conversion was completed in a scale-up reaction (500 mL) using 50% toluene with 500 mM substrate without additional NADH. These results show that muSDR may be a valuable biocatalyst for future industrial applications.


Assuntos
Antivirais/metabolismo , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Sphingomonadaceae/enzimologia , Biotransformação , Simulação de Acoplamento Molecular , Mutagênese , Engenharia de Proteínas , Redutases-Desidrogenases de Cadeia Curta/química , Redutases-Desidrogenases de Cadeia Curta/genética , Redutases-Desidrogenases de Cadeia Curta/isolamento & purificação , Solventes
7.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29728384

RESUMO

3-Ketosteroid 9α-hydroxylase (Ksh) consists of a terminal oxygenase (KshA) and a ferredoxin reductase and is indispensable in the cleavage of steroid nucleus in microorganisms. The activities of Kshs are crucial factors in determining the yield and distribution of products in the biotechnological transformation of sterols in industrial applications. In this study, two KshA homologues, KshA1N and KshA2N, were characterized and further engineered in a sterol-digesting strain, Mycobacterium neoaurum ATCC 25795, to construct androstenone-producing strains. kshA1N is a member of the gene cluster encoding sterol catabolism enzymes, and its transcription exhibited a 4.7-fold increase under cholesterol induction. Furthermore, null mutation of kshA1N led to the stable accumulation of androst-4-ene-3,17-dione (AD) and androst-1,4-diene-3,17-dione (ADD). We determined kshA2N to be a redundant form of kshA1N Through a combined modification of kshA1N, kshA2N, and other key genes involved in the metabolism of sterols, we constructed a high-yield ADD-producing strain that could produce 9.36 g liter-1 ADD from the transformation of 20 g liter-1 phytosterols in 168 h. Moreover, we improved a previously established 9α-hydroxy-AD-producing strain via the overexpression of a mutant KshA1N that had enhanced Ksh activity. Genetic engineering allowed the new strain to produce 11.7 g liter-1 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) from the transformation of 20.0 g liter-1 phytosterol in 120 h.IMPORTANCE Steroidal drugs are widely used for anti-inflammation, anti-tumor action, endocrine regulation, and fertility management, among other uses. The two main starting materials for the industrial synthesis of steroid drugs are phytosterol and diosgenin. The phytosterol processing is carried out by microbial transformation, which is thought to be superior to the diosgenin processing by chemical conversions, given its simple and environmentally friendly process. However, diosgenin has long been used as the primary starting material instead of phytosterol. This is in response to challenges in developing efficient microbial strains for industrial phytosterol transformation, which stem from complex metabolic processes that feature many currently unclear details. In this study, we identified two oxygenase homologues of 3-ketosteroid-9α-hydroxylase, KshA1N and KshA2N, in M. neoaurum and demonstrated their crucial role in determining the yield and variety of products from phytosterol transformation. This work has practical value in developing industrial strains for phytosterol biotransformation.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxigenases de Função Mista/genética , Mycobacterium/genética , Mycobacterium/metabolismo , Esteroides/metabolismo , Substituição de Aminoácidos , Androstadienos/metabolismo , Biotransformação , Colesterol , Diosgenina/metabolismo , Deleção de Genes , Engenharia Genética/métodos , Redes e Vias Metabólicas/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/metabolismo , Oxigenases/metabolismo , Fitosteróis/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
8.
Small ; 13(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28060468

RESUMO

Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current-voltage hysteresis. Herein, it is reported that yttrium-doped tin dioxide (Y-SnO2 ) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO2 ESLs: (1) it promotes the formation of well-aligned and more homogeneous distribution of SnO2 nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO2 nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y-SnO2 NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO2 NSA ESLs. The champion cell using Y-SnO2 NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady-state efficiency of 16.25%. The results suggest that low-temperature hydrothermal-synthesized Y-SnO2 NSA is a promising ESL for fabricating efficient and hysteresis-less PSC.

9.
Microb Cell Fact ; 16(1): 89, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28532497

RESUMO

BACKGROUND: The strategy of modifying the sterol catabolism pathway in mycobacteria has been adopted to produce steroidal pharmaceutical intermediates, such as 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), which is used to synthesize various steroids in the industry. However, the productivity is not desirable due to some inherent problems, including the unsatisfactory uptake rate and the low metabolic efficiency of sterols. The compact cell envelope of mycobacteria is a main barrier for the uptake of sterols. In this study, a combined strategy of improving the cell envelope permeability as well as the intracellular sterol metabolism efficiency was investigated to increase the productivity of 4-HBC. RESULTS: MmpL3, encoding a transmembrane transporter of trehalose monomycolate, is an important gene influencing the assembly of mycobacterial cell envelope. The disruption of mmpL3 in Mycobacterium neoaurum ATCC 25795 significantly enhanced the cell permeability by 23.4% and the consumption capacity of sterols by 15.6%. Therefore, the inactivation of mmpL3 was performed in a 4-HBC-producing strain derived from the wild type M. neoaurum and the 4-HBC production in the engineered strain was increased by 24.7%. Subsequently, to enhance the metabolic efficiency of sterols, four key genes, choM1, choM2, cyp125, and fadA5, involved in the sterol conversion pathway were individually overexpressed in the engineered mmpL3-deficient strain. The production of 4-HBC displayed the increases of 18.5, 8.9, 14.5, and 12.1%, respectively. Then, the more efficient genes (choM1, cyp125, and fadA5) were co-overexpressed in the engineered mmpL3-deficient strain, and the productivity of 4-HBC was ultimately increased by 20.3% (0.0633 g/L/h, 7.59 g/L 4-HBC from 20 g/L phytosterol) compared with its original productivity (0.0526 g/L/h, 6.31 g/L 4-HBC from 20 g/L phytosterol) in an industrial resting cell bio-transformation system. CONCLUSIONS: Increasing cell permeability combined with the co-overexpression of the key genes (cyp125, choM1, and fadA5) involved in the conversion pathway of sterol to 4-HBC was effective to enhance the productivity of 4-HBC. The strategy might also be useful for the conversion of sterol to other steroidal intermediates by mycobacteria.


Assuntos
Colestenonas/metabolismo , Genes Bacterianos , Mycobacterium/genética , Mycobacterium/metabolismo , Esteróis/química , Esteróis/metabolismo , Permeabilidade da Membrana Celular , Redes e Vias Metabólicas
10.
Nanotechnology ; 27(14): 145401, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26905933

RESUMO

A three-dimensional (3D) CoS/Ni(OH)2 nanocomposite structure based on CoS nanoflakes and two-dimensional (2D) Ni(OH)2 nanosheets were in situ synthesized on Ni foam by a whole hydrothermal reaction and electrodeposition process. The 3D CoS/Ni(OH)2 nanocomposite structures demonstrate the combined advantages of a sustained cycle stability of CoS and high specific capacitance from Ni(OH)2. The obtained CoS/Ni(OH)2 nanocomposite structures on Ni foam can directly serve as a binder-free electrode for a supercapacitor. For the 3D CoS/Ni(OH)2 nanocomposite electrode, the high specific capacitance is 1837 F g(-1) at a scan rate of 1 mV s(-1), which is obviously higher than both the bare CoS electrode and Ni(OH)2 electrode. The galvanostatic charge and discharge measurements illustrate that the 3D CoS/Ni(OH)2 nanocomposite electrode possesses excellent cycle stability, and it keeps a 95.8% retention of the initial capacity after 5000 cycles. Electrochemical impedance spectroscopy measurements also confirm that the 3D CoS/Ni(OH)2 nanocomposite electrode has better electrochemical characteristics. These remarkable performances can be attributed to the unique 3D nanoporous structure of CoS/Ni(OH)2 which leads to a large accessible surface area and a high stability during long-term operation. In addition, 2D Ni(OH)2 nanosheets in 3D nanocomposite structures can afford rapid mass transport and a strong synergistic effect of CoS and Ni(OH)2 as individual compositions contribute to the high performance of the nanocomposite structure electrode. These results may promote the design and implementation of nanocomposite structures in advanced supercapacitors.

11.
Phys Chem Chem Phys ; 18(24): 16436-43, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27264190

RESUMO

Efficient planar antimony sulfide (Sb2S3) heterojunction solar cells have been made using chemical bath deposited (CBD) Sb2S3 as the absorber, low-temperature solution-processed tin oxide (SnO2) as the electron conductor and poly (3-hexylthiophene) (P3HT) as the hole conductor. A solar conversion efficiency of 2.8% was obtained at 1 sun illumination using a planar device consisting of F-doped SnO2 substrate/SnO2/CBD-Sb2S3/P3HT/Au, whereas the solar cells based on a titanium dioxide (TiO2) electron conductor exhibited a power conversion efficiency of 1.9%. Compared with conventional Sb2S3 sensitized solar cells, the high-temperature processed mesoscopic TiO2 scaffold is no longer needed. More importantly, a low-temperature solution-processed SnO2 layer was introduced for electron transportation to substitute the high-temperature sintered dense blocking TiO2 layer. Our planar solar cells not only have simple geometry with fewer steps to fabricate but also show enhanced performance. The higher efficiency of planar Sb2S3 solar cell devices based on a SnO2 electron conductor is attributed to their high transparency, uniform surface, efficient electron transport properties of SnO2, suitable energy band alignment, and reduced recombination at the interface of SnO2/Sb2S3.

12.
J Am Chem Soc ; 137(21): 6730-3, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25987132

RESUMO

Lead halide perovskite solar cells with the high efficiencies typically use high-temperature processed TiO2 as the electron transporting layers (ETLs). Here, we demonstrate that low-temperature solution-processed nanocrystalline SnO2 can be an excellent alternative ETL material for efficient perovskite solar cells. Our best-performing planar cell using such a SnO2 ETL has achieved an average efficiency of 16.02%, obtained from efficiencies measured from both reverse and forward voltage scans. The outstanding performance of SnO2 ETLs is attributed to the excellent properties of nanocrystalline SnO2 films, such as good antireflection, suitable band edge positions, and high electron mobility. The simple low-temperature process is compatible with the roll-to-roll manufacturing of low-cost perovskite solar cells on flexible substrates.

13.
Biotechnol Biofuels Bioprod ; 17(1): 65, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741169

RESUMO

BACKGROUND: Ergothioneine (EGT) is a distinctive sulfur-containing histidine derivative, which has been recognized as a high-value antioxidant and cytoprotectant, and has a wide range of applications in food, medical, and cosmetic fields. Currently, microbial fermentation is a promising method to produce EGT as its advantages of green environmental protection, mild fermentation condition, and low production cost. However, due to the low-efficiency biosynthetic process in numerous cell factories, it is still a challenge to realize the industrial biopreparation of EGT. The non-conventional yeast Rhodotorula toruloides is considered as a potential candidate for EGT production, thanks to its safety for animals and natural ability to synthesize EGT. Nevertheless, its synthesis efficiency of EGT deserves further improvement. RESULTS: In this study, out of five target wild-type R. toruloides strains, R. toruloides 2.1389 (RT1389) was found to accumulate the highest EGT production, which could reach 79.0 mg/L at the shake flask level on the 7th day. To achieve iterative genome editing in strain RT1389, CRISPR-assisted Cre recombination (CACR) method was established. Based on it, an EGT-overproducing strain RT1389-2 was constructed by integrating an additional copy of EGT biosynthetic core genes RtEGT1 and RtEGT2 into the genome, the EGT titer of which was 1.5-fold increase over RT1389. As the supply of S-adenosylmethionine was identified as a key factor determining EGT production in strain RT1389, subsequently, a series of gene modifications including S-adenosylmethionine rebalancing were integrated into the strain RT1389-2, and the resulting mutants were rapidly screened according to their EGT production titers with a high-throughput screening method based on ergothionase. As a result, an engineered strain named as RT1389-3 was selected with a production titer of 267.4 mg/L EGT after 168 h in a 50 mL modified fermentation medium. CONCLUSIONS: This study characterized the EGT production capacity of these engineered strains, and demonstrated that CACR and high-throughput screening method allowed rapid engineering of R. toruloides mutants with improved EGT production. Furthermore, this study provided an engineered RT1389-3 strain with remarkable EGT production performance, which had potential industrial application prospects.

14.
J Agric Food Chem ; 72(1): 483-492, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38146267

RESUMO

Indigoidine, as a kind of natural blue pigment, is widely used in textiles, food, and pharmaceuticals and is mainly synthesized from l-glutamine via a condensation reaction by indigoidine synthetases, most of which originates from Streptomyces species. However, due to the complex metabolic switches of Streptomyces, most of the researchers choose to overexpress indigoidine synthetases in the heterologous host to achieve high-level production of indigoidine. Considering the advantages of low-cost culture medium and simple culture conditions during the large-scale culture of Streptomyces, here, an updated regulation system derived from the Streptomyces self-sustaining system, constructed in our previous study, was established for the highly efficient production of indigoidine in Streptomyces lividans TK24. The updated system was constructed via promoter mining and σhrdB expression optimization, and this system was applied to precisely and continuously regulate the expression of indigoidine synthetase IndC derived from Streptomyces albus J1704. Finally, the engineered strain was cultured with cheap industrial glycerol as a supplementary carbon source, and 14.3 and 46.27 g/L indigoidine could be achieved in a flask and a 4 L fermentor, respectively, reaching the highest level of microbial synthesis of indigoidine. This study will lay a foundation for the industrial application of Streptomyces cell factories to produce indigoidine.


Assuntos
Piperidonas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Piperidonas/metabolismo , Regiões Promotoras Genéticas , Peptídeo Sintases/genética
15.
Synth Syst Biotechnol ; 9(4): 834-841, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39113689

RESUMO

Coproporphyrin III (CP III), a natural porphyrin derivative, has extensive applications in the biomedical and material industries. S. cerevisiae has previously been engineered to highly accumulate the CP III precursor 5-aminolevulinic acid (ALA) through the C4 pathway. In this study, a combination of cytoplasmic metabolic engineering and mitochondrial compartmentalization was used to enhance CP III production in S. cerevisiae. By integrating pathway genes into the chromosome, the CP III titer gradually increased to 32.5 ± 0.5 mg/L in shake flask cultivation. Nevertheless, increasing the copy number of pathway genes did not consistently enhance CP III synthesis. Hence, the partial synthesis pathway was compartmentalized in mitochondria to evaluate its effectiveness in increasing CP III production. Subsequently, by superimposing the mitochondrial compartmentalization strategy on cytoplasmic metabolic engineered strains, the CP III titer was increased to 64.3 ± 1.9 mg/L. Furthermore, augmenting antioxidant pathway genes to reduce reactive oxygen species (ROS) levels effectively improved the growth of engineered strains, resulting in a further increase in the CP III titer to 82.9 ± 1.4 mg/L. Fed-batch fermentations in a 5 L bioreactor achieved a titer of 402.8 ± 9.3 mg/L for CP III. This study provides a new perspective on engineered yeast for the microbial production of porphyrins.

16.
Biotechnol Biofuels Bioprod ; 16(1): 98, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291661

RESUMO

BACKGROUND: The conversion of phytosterols to steroid synthons by engineered Mycolicibacteria comprises one of the core steps in the commercial production of steroid hormones. This is a complex oxidative catabolic process, and taking the production of androstenones as example, it requires about 10 equivalent flavin adenine dinucleotide (FAD). As the high demand for FAD, the insufficient supply of FAD may be a common issue limiting the conversion process. RESULTS: We substantiated, using the production of 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) as a model, that increasing intracellular FAD supply could effectively increase the conversion of phytosterols into 9-OHAD. Overexpressing ribB and ribC, two key genes involving in FAD synthesis, could significantly enhance the amount of intracellular FAD by 167.4% and the production of 9-OHAD by 25.6%. Subsequently, styrene monooxygenase NfStyA2B from Nocardia farcinica was employed to promote the cyclic regeneration of FAD by coupling the oxidation of nicotinamide adenine dinucleotide (NADH) to NAD+, and the production of 9-OHAD was further enhanced by 9.4%. However, the viable cell numbers decreased by 20.1%, which was attributed to sharply increased levels of H2O2 because of the regeneration of FAD from FADH2. Thus, we tried to resolve the conflict between FAD regeneration and cell growth by the overexpression of catalase and promotor replacement. Finally, a robust strain NF-P2 was obtained, which could produce 9.02 g/L 9-OHAD after adding 15 g/L phytosterols with productivity of 0.075 g/(L h), which was 66.7% higher than that produced by the original strain. CONCLUSIONS: This study highlighted that the cofactor engineering, including the supply and recycling of FAD and NAD+ in Mycolicibacterium, should be adopted as a parallel strategy with pathway engineering to improve the productivity of the industrial strains in the conversion of phytosterols into steroid synthons.

17.
Biotechnol Biofuels Bioprod ; 16(1): 121, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533054

RESUMO

BACKGROUND: Harnessing engineered Mycolicibacteria to convert cheap phytosterols into valuable steroid synthons is a basic way in the industry for the production of steroid hormones. Thus, C-19 and C-22 steroids are the two main types of commercial synthons and the products of C17 side chain degradation of phytosterols. During the conversion process of sterols, C-19 and C-22 steroids are often produced together, although one may be the main product and the other a minor byproduct. This is a major drawback of the engineered Mycolicibacteria for industrial application, which could be attributed to the co-existence of androstene-4-ene-3,17-dione (AD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (HBC) sub-pathways in the degradation of the sterol C17 side chain. Since the key mechanism underlying the HBC sub-pathway has not yet been clarified, the above shortcoming has not been resolved so far. RESULTS: The key gene involved in the putative HBC sub-pathway was excavated from the genome of M. neoaurum by comparative genomic analysis. Interestingly, an aldolase- encoding gene, atf1, was identified to be responsible for the first reaction of the HBC sub-pathway, and it exists as a conserved operon along with a DUF35-type gene chsH4, a reductase gene chsE6, and a transcriptional regulation gene kstR3 in the genome. Subsequently, atf1 and chsH4 were identified as the key genes involved in the HBC sub-pathway. Therefore, an updated strategy was proposed to develop engineered C-19 or C-22 steroid-producing strains by simultaneously modifying the AD and HBC sub-pathways. Taking the development of 4-HBC and 9-OHAD-producing strains as examples, the improved 4-HBC-producing strain achieved a 20.7 g/L production titer with a 92.5% molar yield and a 56.4% reduction in byproducts, and the improved 9-OHAD producing strain achieved a 19.87 g/L production titer with a 94.6% molar yield and a 43.7% reduction in byproduct production. CONCLUSIONS: The excellent performances of these strains demonstrated that the primary operon involved in the HBC sub-pathway improves the industrial strains in the conversion of phytosterols to steroid synthons.

18.
ACS Synth Biol ; 11(5): 1958-1970, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35500195

RESUMO

Genome mutagenesis drives the evolution of organisms. Here, we developed a CRISPR-Cas assisted random mutation (CARM) technique for whole-genome mutagenesis. The method leverages an entirely random gRNA library and SpCas9-NG to randomly damage genomes in a controllable shotgunlike manner that then triggers diverse and abundant mutations via low-fidelity repair. As a proof of principle, CARM was applied to evolve the capacity of Saccharomyces cerevisiae BY4741 to produce ß-carotene. After seven rounds of iterative evolution over two months, a ß-carotene hyperproducing strain, C7-143, was isolated with a 10.5-fold increase in ß-carotene production and 857 diverse genomic mutations that comprised indels, duplications, inversions, and chromosomal rearrangements. Transcriptomic analysis revealed that the expression of 2541 genes of strain C7-143 was significantly altered, suggesting that the metabolic landscape of the strain was deeply reconstructed. In addition, CARM was applied to evolve industrially relevant S. cerevisiae CEN.PK2-1C for S-adenosyl-L-methionine production, which was increased 2.28 times after just one round. Thus, CARM can contribute to increasing genetic diversity to identify new phenotypes that could further be investigated by reverse engineering.


Assuntos
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Sistemas CRISPR-Cas/genética , Edição de Genes , Engenharia Genética , Mutagênese , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , beta Caroteno/metabolismo
19.
ACS Synth Biol ; 11(1): 353-365, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34951314

RESUMO

Streptomyces species possess strong secondary metabolism, the switches of which from the primary metabolism are complex and thus a challenge to holistically optimize their productivities. To avoid the complex switches and to reduce the limitations of different metabolic stages on the synthesis of metabolites, we designed a Streptomyces self-sustained system (StSS) that contains two functional modules, the primary metabolism module (PM) and the secondary metabolism module (SM). The PM includes endogenous housekeeping sigma factor σhrdB and σhrdB-dependent promoters, which are used to express target genes in the primary metabolism phase. SM consists of the expression cassette of σhrdB under the control of a secondary metabolism promoter, which maintains continuous activity of the σhrdB-dependent promoters in the secondary metabolism phase. As a proof-of-principle, the StSS was used to boost the production of some non-toxic metabolites, including indigoidine, undecylprodigiosin (UDP), ergothioneine, and avermectin, in Streptomyces. All these metabolites can undergo a continuous production process spanning the primary and secondary metabolism stages instead of being limited to a specific stage. Scale-up of UDP fermentation in a 4 L fermentor indicated that the StSS is a stable and robust system, the titer of which was enhanced to 1.1 g/L, the highest at present. This study demonstrated that the StSS is a simple but powerful strategy to rationally engineer Streptomyces cell factories for the efficient production of non-toxic metabolites via reconstructing the relationships between primary and secondary metabolism.


Assuntos
Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Metabolismo Secundário/genética , Fator sigma/genética , Fator sigma/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
20.
Synth Syst Biotechnol ; 7(1): 453-459, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34938904

RESUMO

Biotransformation of soybean phytosterols into 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) by mycobacteria is the core step in the synthesis of adrenocortical hormone. However, the low permeability of the dense cell envelope largely inhibits the overall conversion efficiency of phytosterols. The antigen 85 (Ag85) complex encoded by fbpA, fbpB, and fbpC was proposed as the key factor in the combined catalysis of mycoloyl for producing mycolyl-arabinogalactan (m-AG) and trehalose dimycolate (TDM) in mycobacterial cell envelope. Herein, we confirmed that fbpC3 was essential for the biotransformation of trehalose monomycolate (TMM) to TDM in Mycolicibacterium neoaurum. The deficiency of this gene raised the cell permeability, thereby enhancing the steroid uptake and utilization. The 9-OHAD yield in the fbpC3-deficient 9-OHAD-producing strain was increased by 21.3%. Moreover, the combined deletion of fbpC3 and embC further increased the 9-OHAD yield compared to the single deletion of fbpC3. Finally, after 96 h of bioconversion in industrial resting cells, the 9-OHAD yield of 11.2 g/L was achieved from 20 g/L phytosterols and the productivity reached 0.116 g/L/h. In summary, this study suggested the critical role of the fbpC3 gene in the synthesis of TDM in M. neoaurum and verified the feasibility of improving the bioconversion efficiency of phytosterols through the cell envelope engineering strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA