RESUMO
Compact efficient high-power continuous-wave Nd:YVO4 Raman lasers for selectable wavelengths within 559-603â nm are achieved by using KGW crystal for intracavity stimulated Raman scattering (SRS) and lithium triborate (LBO) crystal for intracavity sum frequency generation (SFG) and second harmonic generation (SHG). The LBO crystal with the cut angle in the XY plane for the type-I phase matching is used to perform intracavity SHG or SFG. Experimental results reveal that the participated Stokes lines include the internal vibration mode at 901â cm-1, the external vibrational mode at 209â cm-1, and the combination mode of the 901â cm-1 and 209â cm-1 Raman shifts. By tuning LBO temperature for attaining the maximum output power, the output spectrum reveals the triple peaks of 588.7, 595.7, and 603.1â nm with the intensity ratio of 10:4:1. Under this circumstance, the output power can reach the highest value of 10.8 W at a pump power of 40 W. Furthermore, the output spectrum can be simply concentrated on the single peaks among 588.7 (orange), 565.7 (yellow), and 559.1â nm (lime) by tuning LBO temperature to fulfill the selection of the critical phase matching. The output powers at a pump power of 40 W can be up to 8.0, 6.1, and 9.8 W for the single-peak emission at 588.7, 565.7, and 559.1â nm, respectively. Finally, a dual-peak emission of 565.7 and 572.3â nm with total output power of 5.2 W can be generated by tuning LBO temperature to match the SFG for 572.3â nm.
RESUMO
High-power efficient continuous-wave Nd:YVO4/KGW Raman lasers at 555 and 559â nm are achieved by using a double-sided dichroic coating output coupler to improve the resonance quality factor. The Np-cut potassium gadolinium tungstate (KGW) is used to generate the Stokes waves at 1159 and 1177â nm by placing the polarization of the1064â nm fundamental wave parallel to the Ng and Nm axes, respectively. The lithium triborate (LBO) crystal with the cut angle in the XY plane for the type-I phase matching is used to perform the intracavity sum frequency generation for yielding the green light at 555â nm and the lime light at 559â nm at the optimal phase matching temperature. Experimental results were systematically accomplished to comprehend the optimal cavity length for the conversion efficiency. Under the optimal cavity length, the output powers can reach 6.6 and 6.3 W at a pump power of 22 W for the wavelengths of 555 and 559â nm, respectively. The conversion efficiencies can be up to 30% and 28.6% for 555 and 559â nm, respectively.
RESUMO
Although natural attenuation is an economic remediation strategy for uranium (U) contamination, the role of organic molecules in driving U natural attenuation in postmining aquifers is not well-understood. Groundwaters were sampled to investigate the chemical, isotopic, and dissolved organic matter (DOM) compositions and their relationships to U natural attenuation from production wells and postmining wells in a typical U deposit (the Qianjiadian U deposit) mined by neutral in situ leaching. Results showed that Fe(II) concentrations and δ34SSO4 and δ18OSO4 values increased, but U concentrations decreased significantly from production wells to postmining wells, indicating that Fe(III) reduction and sulfate reduction were the predominant processes contributing to U natural attenuation. Microbial humic-like and protein-like components mediated the reduction of Fe(III) and sulfate, respectively. Organic molecules with H/C > 1.5 were conducive to microbe-mediated reduction of Fe(III) and sulfate and facilitated the natural attenuation of dissolved U. The average U attenuation rate was -1.07 mg/L/yr, with which the U-contaminated groundwater would be naturally attenuated in approximately 11.2 years. The study highlights the specific organic molecules regulating the natural attenuation of groundwater U via the reduction of Fe(III) and sulfate.
Assuntos
Água Subterrânea , Mineração , Urânio , Poluentes Radioativos da Água , Água Subterrânea/química , Poluentes Radioativos da Água/análise , Compostos Orgânicos , Isótopos , Biodegradação Ambiental , SulfatosRESUMO
Ammonium-related pathways are important for groundwater arsenic (As) enrichment, especially via microbial Fe(III) reduction coupled with anaerobic ammonium oxidation; however, the key pathways (and microorganisms) underpinning ammonium-induced Fe(III) reduction and their contributions to As mobilization in groundwater are still unknown. To address this gap, aquifer sediments hosting high As groundwater from the western Hetao Basin were incubated with 15N-labeled ammonium and external organic carbon sources (including glucose, lactate, and lactate/acetate). Decreases in ammonium concentrations were positively correlated with increases in the total produced Fe(II) (Fe(II)tot) and released As. The molar ratios of Fe(II)tot to oxidized ammonium ranged from 3.1 to 3.7 for all incubations, and the δ15N values of N2 from the headspace increased in 15N-labeled ammonium-treated series, suggesting N2 as the key end product of ammonium oxidation. The addition of ammonium increased the As release by 16.1% to 49.6%, which was more pronounced when copresented with organic electron donors. Genome-resolved metagenomic analyses (326 good-quality MAGs) suggested that ammonium-induced Fe(III) reduction in this system required syntrophic metabolic interactions between bacterial Fe(III) reduction and archaeal ammonium oxidation. The current results highlight the significance of syntrophic ammonium-stimulated Fe(III) reduction in driving As mobilization, which is underestimated in high As groundwater.
RESUMO
Iodate reduction by dissimilatory iodate-reducing microorganisms (DIRMs) plays a crucial role in the biogeochemical cycling of iodine on Earth. However, the occurrence and distribution of DIRMs in iodine-rich groundwater remain unclear. In this study, we isolated the dissimilatory iodate-reducing bacteriumAzonexus hydrophilusstrain NCP973 from a geogenic high-iodine groundwater of China for the first time. The analysis of genome, transcriptome, and heterologous expression revealed that strain NCP973 uses the dissimilatory iodate-reducing enzyme IdrABP1P2 to reduce dissolved or in situ sediment-bound iodate to iodide. The location of IdrABP1P2 in the conjugative plasmid of strain NCP973 implies that IdrABP1P2 could be spread by horizontal gene transfer and allow the recipient microorganisms to participate in the enrichment of iodide in aquifers. Based on the global iodine-rich groundwater metagenomes and genomes, the identification of idrA showed that phylogenetically diverse DIRMs are widely distributed not only in geogenic high-iodine groundwater of China but also in radionuclide-contaminated groundwater of USA as well as in subsurface cavern waters in Germany and Italy. Moreover, the abundance of idrA was found to be higher in groundwater with a relatively high iodine content. Collectively, these results suggest that terrestrial iodine-affected groundwater systems are another important habitat for DIRMs in addition to marine environments, and their activity in aquifers triggers the mobilization and enrichment of iodine in groundwater worldwide.
RESUMO
Berberine is a natural isoquinoline alkaloid with low toxicity, which exists in a wide variety of medicinal plants. Berberine has been demonstrated to exhibit potent prevention of indomethacin-induced gastric injury (GI) but the related mechanism remains unclear. In the present study, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics was applied for the first time to investigate the alteration of serum metabolites in the protection of berberine against indomethacin-induced gastric injury in rats. Subsequently, bioinformatics was utilized to analyze the potential metabolic pathway of the anti-GI effect of berberine. The pharmacodynamic data indicated that berberine could ameliorate gastric pathological damage, inhibit the level of proinflammatory factors in serum, and increase the level of antioxidant factors in serum. The LC-MS-based metabolomics analysis conducted in this study demonstrated the presence of 57 differential metabolites in the serum of rats with induced GI caused by indomethacin, which was associated with 29 metabolic pathways. Moreover, the study revealed that berberine showed a significant impact on the differential metabolites, with 45 differential metabolites being reported between the model group and the group treated with berberine. The differential metabolites were associated with 24 metabolic pathways, and berberine administration regulated 14 of the 57 differential metabolites, affecting 14 of the 29 metabolic pathways. The primary metabolic pathways affected were glutathione metabolism and arachidonic acid metabolism. Based on the results, it can be concluded that berberine has a gastroprotective effect on the GI. This study is particularly significant since it is the first to elucidate the mechanism of berberine's action on GI. The results suggest that berberine's action may be related to energy metabolism, oxidative stress, and inflammation regulation. These findings may pave the way for the development of new therapeutic interventions for the prevention and management of NSAID-induced GI disorders.
Assuntos
Berberina , Gastropatias , Ratos , Animais , Indometacina , Berberina/farmacologia , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem , Metabolômica/métodos , Gastropatias/tratamento farmacológicoRESUMO
BACKGROUND: Current practice guidelines for optimal infusion rates during early intravenous hydration in patients with acute pancreatitis (AP) remain inconsistent. This systematic review and meta-analysis aimed to compare treatment outcomes between aggressive and non-aggressive intravenous hydration in severe and non-severe AP. METHODS: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We systematically searched PubMed, Embase and Cochrane Library for randomized controlled trials (RCTs) on November 23, 2022, and hand-searched the reference lists of included RCTs, relevant review articles and clinical guidelines. We included RCTs that compared clinical outcomes from aggressive and non-aggressive intravenous hydration in AP. Meta-analysis was performed using a random-effects model for participants with severe AP and non-severe AP. Our primary outcome was all-cause mortality, and several secondary outcomes included fluid-related complications, clinical improvement and APACHE II scores within 48 h. RESULTS: We included a total of 9 RCTs with 953 participants. The meta-analysis indicated that, compared to non-aggressive intravenous hydration, aggressive intravenous hydration significantly increased mortality risk in severe AP (pooled RR: 2.45, 95% CI: 1.37, 4.40), while the result in non-severe AP was inconclusive (pooled RR: 2.26, 95% CI: 0.54, 9.44). However, aggressive intravenous hydration significantly increased fluid-related complication risk in both severe (pooled RR: 2.22, 95% CI 1.36, 3.63) and non-severe AP (pooled RR: 3.25, 95% CI: 1.53, 6.93). The meta-analysis indicated worse APACHE II scores (pooled mean difference: 3.31, 95% CI: 1.79, 4.84) in severe AP, and no increased likelihood of clinical improvement (pooled RR:1.20, 95% CI: 0.63, 2.29) in non-severe AP. Sensitivity analyses including only RCTs with goal-directed fluid therapy after initial fluid resuscitation therapy yielded consistent results. CONCLUSIONS: Aggressive intravenous hydration increased the mortality risk in severe AP, and fluid-related complication risk in both severe and non-severe AP. More conservative intravenous fluid resuscitation protocols for AP are suggested.
Assuntos
Pancreatite , Humanos , Pancreatite/terapia , Administração Intravenosa , Resultado do Tratamento , Ressuscitação/efeitos adversos , Hidratação/efeitos adversosRESUMO
Nine new flavonoids dimers, psocorylins R-Z (1-9), were isolated from the fruits of Psoralea corylifolia L. (Psoraleae Fructus), a traditional Chinese medicine. The structures of these compounds were elucidated via multiple spectroscopic techniques and X-ray diffraction. Psocorylins R (1) and S (2) were rare cyclobutane-containing chalcone dimers, and psocorylins T-Z (3-9) were established by CC or COC bond of two flavonoid monomers. The structural-types, flavonoids dimers, were isolated from the plant for the first time, enriching the chemical diversity. The cytotoxicity assay suggested that compounds 1, 2, 4, 5, 6 and 8 exhibited cytotoxic activities against MCF-7 cells. Furthermore, compounds 1 and 8 significantly increased intracellular ROS levels, decreased MMP and induced apoptosis of MCF-7 cells. They markedly upregulated the expression of Bax and cleaved caspase-3, and suppressed Bcl-2 and caspase-3 levels, indicating their mechanism of Bcl-2/Bax/Cleaved caspase-3 pathway. Hence, our findings not only promoted the chemical investigation of Psoraleae Fructus, but also provided potential bioactive natural products for anti-cancer.
Assuntos
Flavonoides , Psoralea , Humanos , Proteína X Associada a bcl-2 , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Fabaceae/química , Flavonoides/química , Flavonoides/farmacologia , Frutas/química , Células MCF-7/efeitos dos fármacos , Células MCF-7/metabolismo , Polímeros , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Psoralea/químicaRESUMO
Singlet oxygen (1O2)-mediated oxidation represents an attractive strategy for incorporation of oxygen atoms from air under mild and environmentally benign conditions. However, the 1O2 reaction with enamine suffers from fragmentation, leading to very unsuccessful transformation. Here, Lewis acid is introduced to intercept [2 + 2] or "ene" reaction intermediates of the 1O2 reaction and enables oxidative dimerization of enamines to produce pyrrolin-4-ones in good to excellent yields. Mechanistic studies reveal the formation of the imino ketone intermediate from the interaction of 1O2 and enamine, which is able to interact with Lewis acid, relaying the 1O2 reaction in enamine chemistry. For the first time, selective cross-dimerization of two different enamines is achieved. Due to the advantages of mild conditions, high chemoselectivity, and up to 99% yield, a promising strategy has been developed for synthesizing aza-heterocycles under ambient conditions, which can be further applied for the synthesis of imidazolone, quinoxaline, and highly functionalized imine.
Assuntos
Ácidos de Lewis , Oxigênio Singlete , Dimerização , Iminas , OxirreduçãoRESUMO
High-arsenic (As) groundwaters, a worldwide issue, are critically controlled by multiple interconnected biogeochemical processes. However, there is limited information on the complex biogeochemical interaction networks that cause groundwater As enrichment in aquifer systems. The western Hetao basin was selected as a study area to address this knowledge gap, offering an aquifer system where groundwater flows from an oxidizing proximal fan (low dissolved As) to a reducing flat plain (high dissolved As). The key microbial interaction networks underpinning the biogeochemical pathways responsible for As mobilization along the groundwater flow path were characterized by genome-resolved metagenomic analysis. Genes associated with microbial Fe(II) oxidation and dissimilatory nitrate reduction were noted in the proximal fan, suggesting the importance of nitrate-dependent Fe(II) oxidation in immobilizing As. However, genes catalyzing microbial Fe(III) reduction (omcS) and As(V) detoxification (arsC) were highlighted in groundwater samples downgradient flow path, inferring that reductive dissolution of As-bearing Fe(III) (oxyhydr)oxides mobilized As(V), followed by enzymatic reduction to As(III). Genes associated with ammonium oxidation (hzsABC and hdh) were also positively correlated with Fe(III) reduction (omcS), suggesting a role for the Feammox process in driving As mobilization. The current study illustrates how genomic sequencing tools can help dissect complex biogeochemical systems, and strengthen biogeochemical models that capture key aspects of groundwater As enrichment.
Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/química , Compostos Férricos/metabolismo , Compostos Ferrosos , Água Subterrânea/química , Nitratos/análise , Oxirredução , Poluentes Químicos da Água/químicaRESUMO
Three new alkamides, achilleamide B-D (1-3) along with five known alkamides (4-8) were isolated from the aerial parts of Achillea alpina L. Structures were elucidated by spectroscopic analysis. Modified Mosher's method and electronic circular dichroism (ECD) calculations were introduced for the absolute configuration of 3. The neuroprotective effects of all the compounds were evaluated by 6-hydroxydopamine (6-OHDA)-induced cell death in human neuroblastoma SH-SY5Y cells, with concentration for 50 % of maximal effect (EC50 ) values of 3.16-24.75â µM, and the structure-activity relationship was conducted.
Assuntos
Achillea , Neuroblastoma , Fármacos Neuroprotetores , Achillea/química , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Componentes Aéreos da Planta/químicaRESUMO
The Zuojin Pill consists of Coptidis Rhizoma (CR) and Euodiae Fructus (EF). It has been a classic prescription for the treatment of gastrointestinal diseases in China since ancient times. Alkaloids are considered to be its main pharmacologically active substances. The authors of the present study investigated the feasibility of preparing high purity total alkaloids (TAs) from CR and EF extracts separately and evaluated the effect for the treatment of bile reflux gastritis (BRG). Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. were used in the study. An optimized method for the enrichment and purification of TAs with macroporous resin was established. Furthermore, qualitative analysis by using ultra-high performance liquid chromatography coupled with electrospray ionization and quadrupole-time of flight mass spectrometry (UHPLC-ESI-QTOF-MS) was explored to identify the components of purified TAs. Thirty-one compounds, thirty alkaloids and one phenolic compound, were identified or tentatively assigned by comparison with reference standards or literature data. A method of ultra-high performance liquid chromatography coupled with diode array detector (UHPLC-DAD) for quantitative analysis was also developed. The contents of nine alkaloids were determined. Moreover, a rat model of BRG was used to investigate the therapeutic effect of the combination of purified TAs from CR and EF. Gastric pathologic examination suggested that the alkaloids' combination could markedly attenuate the pathological changes of gastric mucosa.
Assuntos
Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Refluxo Biliar/tratamento farmacológico , Coptis/química , Evodia/química , Gastrite/tratamento farmacológico , Resinas Vegetais/química , Alcaloides/química , Animais , Refluxo Biliar/metabolismo , Refluxo Biliar/patologia , Gastrite/metabolismo , Gastrite/patologia , Ratos , Ratos Sprague-DawleyRESUMO
Absorption is crucial to the resultant efficacy of oral drugs where the intestinal bacteria flora functions as one of the first-pass effects.The present study investigated the biotransformation of psoralenoside and isopsoralenoside in Chinese medicine Psoraleae Fructus(the dried fruit of Psoralea corylifolia) with the internationally recognized human intestinal bacteria flora model in vitro.Pso-ralenoside and isopsoralenoside were anaerobically incubated with human intestinal bacteria flora at 37 â, respectively, and biotransformation products were analyzed and identified using high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS) and comparison with reference standards.The main biotransformation products of psoralenoside were psoralen and a small amount of 6,7-furano-hydrocoumaric acid, and the main biotransformation products of isopsoralenoside were isopsoralen and a small amount of 5,6-furano-hydrocoumaric acid.
Assuntos
Medicamentos de Ervas Chinesas , Psoralea , Bactérias , Benzofuranos , Biotransformação , Cromatografia Líquida de Alta Pressão , Frutas , Glicosídeos , HumanosRESUMO
Biogeochemical processes critically control the groundwater arsenic (As) enrichment; however, the key active As-mobilizing biogeochemical processes and associated microbes in high dissolved As and sulfate aquifers are poorly understood. To address this issue, the groundwater-sediment geochemistry, total and active microbial communities, and their potential functions in the groundwater-sediment microbiota from the western Hetao basin were determined using 16S rRNA gene (rDNA) and associated 16S rRNA (rRNA) sequencing. The relative abundances of either sediment or groundwater total and active microbial communities were positively correlated. Interestingly, groundwater active microbial communities were mainly associated with ammonium and sulfide, while sediment active communities were highly related to water-extractable nitrate. Both sediment-sourced and groundwater-sourced active microorganisms (rRNA/rDNA ratios > 1) noted Fe(III)-reducers (induced by ammonium oxidation) and As(V)-reducers, emphasizing the As mobilization via Fe(III) and/or As(V) reduction. Moreover, active cryptic sulfur cycling between groundwater and sediments was implicated in affecting As mobilization. Sediment-sourced active microorganisms were potentially involved in anaerobic pyrite oxidation (driven by denitrification), while groundwater-sourced organisms were associated with sulfur disproportionation and sulfate reduction. This study provides an extended whole-picture concept model of active As-N-S-Fe biogeochemical processes affecting As mobilization in high dissolved As and sulfate aquifers.
Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , DNA , Compostos Férricos , Sedimentos Geológicos , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análiseRESUMO
Si Shen Wan is a classic traditional Chinese medicine formula, which has been used to treat chronic colitis for thousands of years. Many research and experience show that Si Shen Wan was developed by the combination of two sets of "Herb Pairs," Er Shen Wan and Fructus Schisandrae Chinensis Powder. This research aimed to revealing the effective substances, guide the clinical treatment, and represent the synergy effects from the view of pharmacokinetics. An ultra high performance liquid chromatography with tandem mass spectrometry method was established and validated for simultaneous quantification of 26 main bioactive compounds in normal and colitis rat plasma after oral administration of Si Shen Wan and its "Herb Pairs" extract. The method validation results illustrated that the experimental method was reliable and reproducible for quantitative determination of the biological samples. The pharmacokinetic behaviors in different groups were compared and discussed comprehensively, which indicated that the treatment of Si Shen Wan has a superiority in synthetic action of the "Herb Pairs" for the higher peak concentrations and bioavailability of some mainly components. Furthermore, the synergy effect was still existing backed up again for the longer eliminate time and a better bioavailability in colitis groups. The pharmacokinetics research of multiple components in Si Shen Wan and its "Herb Pairs" supplied a significant basis for better understanding the metabolic mechanism of these formulas in both normal and pathological state.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Colite/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Colite/sangue , Humanos , Masculino , Plasma/química , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND A cardioprotective effect of salvianolic acid A (SalA) has been described, but it is unknown whether SalA can protect cardiomyocytes against doxorubicin (Dox)-induced cardiotoxicity. This study aimed to investigate whether SalA could inhibit Dox-induced apoptosis in H9C2 cells and to uncover the potential mechanism. MATERIAL AND METHODS H9C2 cardiomyocytes exposed to Dox were treated with SalA or not, and then cell viability, apoptosis, and the expression of nuclear factor-kappaB (NF-kappaB) signaling were detected by Cell Counting Kit-8, TUNEL staining, and western blot assays, respectively. Nuclear factor kappa B subunit 1 (NFKB1) was overexpressed in H9C2 cells, and then alterations in cell viability and apoptosis in H9C2 cells co-treated with Dox and SalA were investigated. RESULTS SalA (2, 10, and 50 µM) had no effect on H9C2 cell viability, while Dox reduced cell viability in a concentration-dependent manner. In addition, SalA rescued Dox-decreased cell viability. Dox also triggered apoptosis as evidenced by an increased ratio of TUNEL-positive cells, enhanced expression of pro-apoptotic proteins, and reduced expression of anti-apoptotic protein BCL-2, which were all partially blocked by SalA co-treatment. The proteins involved in NF-kappaB signaling including IkappaBalpha, IKKalpha, IKKß, and p65 were activated by Dox but inactivated by SalA co-treatment. Moreover, Dox increased NFKB1 mRNA and nuclear expression, which was blocked by SalA. NFKB1 could bind to plasmacytoma variant translocation 1 (PVT1) and upregulate PVT1 expression. Mechanistically, the overexpression of NFKB1 blocked the inhibitory effect of SalA on Dox-induced cell viability impairment and apoptosis. CONCLUSIONS We demonstrated that SalA may exert a protective effect against Dox-induced H9C2 injury and apoptosis via inhibition of NFKB1 expression, thereby downregulating lncRNA PVT1.
Assuntos
Ácidos Cafeicos/farmacologia , Cardiotoxicidade/prevenção & controle , Lactatos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Plasmocitoma/metabolismo , RNA Longo não Codificante/efeitos dos fármacos , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Ratos , Transdução de Sinais/efeitos dos fármacosRESUMO
The absorption is the key to the resulted efficacy of orally administered drugs and the small intestine is the main site to absorb the orally administered drug. In this paper, internationally recognized human colon adenocarcinoma cell line(Caco-2) monola-yer model which can simulate small intestinal epithelial cell was used to comparatively study the absorption and transportation diffe-rences of total coumarins and main individual coumarin in Angelica dahurica 'Yubaizhi' by separately using 6-and 12-well plates. It was found that apparent permeability coefficient(P_(app)) values of oxypeucedanin hydrate, byakangelicin and phellopterin were at the quantitative degree of 1 × 10~(-5) cm·s~(-1) when the individual administration was conducted independently, indicating that they were well-absorbed compounds. P_(app) ratio of their bi-directional transportation was close to 1, indicating that they can be absorbed across Caco-2 monolayer by passive diffusion mechanism without carrier mediation during the transportation. The similar trend of transportation was also observed for imperatorin, isoimperatorin and bergapten. The P_(app) values of oxypeucedanin hydrate, byakangelicin and bergapten were at quantitative degree of 1 × 10~(-5) cm·s~(-1) when the administration of total coumarins in Angelica dahurica 'Yubaizhi' was conducted, indicating that they were well-absorbed compounds. The results were consistent with those of independent administration of individual coumarins. Whereas, the P_(app) values of imperatorin, phellopterin and isoimperatorin in the total coumarins decreased, indicating that the interaction between compounds may exist although the P_(app) value ratio of bi-directional transportation was between 0.5 and 1.5. The results laid the foundation for intestinal absorption study of Angelica dahurica 'Yubaizhi' coumarins in compound Chinese medicine.
Assuntos
Angelica , Medicamentos de Ervas Chinesas , Células CACO-2 , Cumarínicos , Humanos , Absorção Intestinal , Raízes de PlantasRESUMO
This study intends to develop a high performance liquid chromatography-diode array detection(HPLC-DAD) method for simultaneous determination of chlorogenic acid, 2-hydroxymethyl-3-hydroxyl-1-butene-4-O-ß-D-(6â³-O-caffeoyl)-glucopyranoside, pubescenoside B, huazhongilexone-7-O-ß-D-glucopyranoside, rutin, isochlorogenic acid B, isochlorogenic acid A, isochlorogenic acid C in Ilex hainanensis. The HPLC conditions are as follows: Waters XBridge C_(18 )column(4.6 mm×250 mm, 5 µm), mobile phase of 0.5% formic acid in water(A)-acetonitrile(B), gradient elution(0-8 min, 5%-12% B; 8-18 min, 12%-18% B; 18-30 min, 18%-25% B; 30-40 min, 25%-30% B; 40-42 min, 30%-80% B; 42-45 min, 80% B) at the flow rate of 0.8 mL·min~(-1), detection wavelengths of 282, 324, and 360 nm, column temperature of 25 â, and injection volume of 5 µL. The content of the 8 phenols in 8 samples was 0.30-6.29, 0.29-3.27, 0.15-10.4, 0.51-5.85, 0.49-9.02, 0.51-4.68, 1.93-13.4, and 0.87-5.95 mg·g~(-1), respectively. Moreover, the content of phenols in the samples collected in October was higher than that of samples harvested in other months. The established method is accurate and sensitive for the determination of phenols in I. hainanensis, which is useful for the quality improvement of this herbal medicine.
Assuntos
Medicamentos de Ervas Chinesas , Ilex , Cromatografia Líquida de Alta Pressão , FenóisRESUMO
Peritoneal fibrosis (PF) represents a well-recognized complication associated with continuous ambulatory peritoneal dialysis therapy, characterized by a reversible epithelial-to-mesenchymal transition (EMT) at the early stage. The aim of the current study was to investigate the effects linked with the long noncoding RNA (lncRNA) AK089579 on the EMT of peritoneal mesothelial cells (PMCs) as well as the associated regulatory mechanisms of AK089579 downstream of tyrosine kinase 2 (DOK2) and microRNA-296-3p (miR-296-3p). Enrichment analysis, gene intersection association analysis, and a gene-gene intersection network were initially constructed to ascertain whether AK089579 regulated the expression of DOK2 through the mediation of miR-296-3p via the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in PF. After the PF mouse model had been constructed, the expression of the proteins associated with the JAK2/STAT3 signaling pathway and EMT and PMC migration and invasion were all determined accordingly. Based on the obtained results, AK089579 was determined to function as a competing endogenous RNA for miR-296-3p while acting to up-regulate the expression of DOK2, which is a target gene of miR-296-3p. AK089579 was detected to confer an inhibitory effect on the activation of the JAK2/STAT3 signaling pathway, whereby the migration and invasion of PMCs among the mice models were suppressed. Meanwhile, up-regulated miR-296-3p and down-regulated DOK2 produced contrasting effects when compared with the aforementioned findings. Treatment with wp10066, a JAK2/STAS3 signaling pathway inhibitor, was shown to reverse the effects exerted by up-regulated miR-296-3p. Taken together, the central findings of the current study present evidence highlighting the capability of the lncRNA AK089579 to bind competitively to miR-296-3p and indirectly enhance the expression of DOK2, which in turn suppresses the activation of the JAK2/STAT3 signaling pathway, whereby the EMT, migration, and invasion of PMCs was inhibited in PF.-Zhang, X. W., Wang, L., Ding, H. Long noncoding RNA AK089579 inhibits epithelial-to-mesenchymal transition of peritoneal mesothelial cells by competitively binding to microRNA-296-3p via DOK2 in peritoneal fibrosis.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Transição Epitelial-Mesenquimal/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Análise em Microsséries , Fibrose Peritoneal/genética , Fibrose Peritoneal/metabolismo , RNA Longo não Codificante/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Molecular characteristics of natural organic matter (NOM) and their potential connections to arsenic enrichment processes remain poorly understood. Here, we examine dissolved organic matter (DOM) in groundwater and water-soluble organic matter (WSOM) in aquifer sediments being depth-matched with groundwater samples from a typical arid-semiarid basin (Hetao Basin, China) hosting high arsenic groundwater. We used Fourier transform ion cyclotron resonance mass spectrometry to determine molecular characteristics of DOM and WSOM and evaluate potential roles of biodegradable compounds in microbially mediated arsenic mobility at the molecular level. High-arsenic groundwater DOM was generally enriched in recalcitrant molecules (including lignins and aromatic structures). Although potential contribution of recalcitrant compounds to arsenic enrichment cannot be ruled out, preferential degradation of the labile molecules coupled with reduction of Fe(III) (oxyhydr)oxides seemed to dominate arsenic mobilization. Both the number and the intensity of biodegradable compounds (including aliphatic/proteins and carbohydrates) were higher in WSOM than those in DOM in depth-matched high-arsenic groundwater (arsenic >0.67 µmol/L or 50 µg/L). Groundwater arsenic concentration generally increased with the increase in the number and the intensity of unique biodegradable compounds (especially N-containing compounds) in WSOM at matched depths. Anoxic incubations of sediments and deionized water show that more arsenic and Fe(II) were released from aquifer sediments with greater numbers and intensities of consumed biodegradable compounds in WSOM (especially N-containing compounds), with a higher proportion of microbially derived compounds produced. These observations indicate that the biodegradation of aliphatic/proteins and carbohydrates (especially CHON formulas) in WSOM fueling the reductive dissolution of Fe(III) (oxyhydr)oxides predominantly promotes arsenic release from aquifer solids. Our unique data present a better understanding of arsenic mobilization shaped by microbial degradation of labile organic compounds in anoxic aquifers at the molecular level.