Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Med Sci ; 21(1): 107-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164360

RESUMO

NF-κB activation is pivotal for the excess inflammation causing the critical condition and mortality of respiratory viral infection patients. This study was aimed to evaluate the effect of a banana plant extract (BPE) on suppressing NF-κB activity and acute lung inflammatory responses in mice induced by a synthetic double-stranded RNA viral mimetic, polyinosinic-polycytidylic acid (poly (I:C)). The inflammatory responses were analyzed by immunohistochemistry and HE stains and ELISA. The NF-κB activities were detected by immunohistochemistry in vivo and immunofluorescence and Western blot in vitro. Results showed that BPE significantly decreased influx of immune cells (neutrophils, lymphocytes, and total WBC), markedly suppressed the elevation of pro-inflammatory cytokines and chemokines (IL-6, RANTES, IFN-γ, MCP-1, keratinocyte-derived chemokine, and IL-17), and restored the diminished anti-inflammatory IL-10 in the bronchoalveolar lavage fluid (BALF) of poly (I:C)-stimulated mice. Accordingly, HE staining revealed that BPE treatment alleviated poly (I:C)-induced inflammatory cell infiltration and histopathologic changes in mice lungs. Moreover, immunohistochemical analysis showed that BPE reduced the pulmonary IL-6, CD11b (macrophage marker), and nuclear NF-κB p65 staining intensities, whilst restored that of IL-10 in poly (I:C)-stimulated mice. In vitro, BPE antagonized poly(I:C)-induced elevation of IL-6, nitric oxide, reactive oxygen species, NF-κB p65 signaling, and transient activation of p38 MAPK in human lung epithelial-like A549 cells. Taken together, BPE ameliorated viral mimic poly(I:C)-induced acute pulmonary inflammation in mice, evidenced by reduced inflammatory cell infiltration and regulation of both pro- and anti-inflammatory cytokines. The mechanism of action might closely associate with NF-κB signaling inhibition.


Assuntos
Musa , Pneumonia , Camundongos , Humanos , Animais , NF-kappa B , Poli I-C/farmacologia , Poli I-C/uso terapêutico , Interleucina-10 , Interleucina-6 , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Citocinas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Quimiocinas , Anti-Inflamatórios/uso terapêutico
2.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834326

RESUMO

About 80% of lung cancer patients are diagnosed with non-small cell lung cancer (NSCLC). EGFR mutation and overexpression are common in NSCLC, thus making EGFR signaling a key target for therapy. While EGFR kinase inhibitors (EGFR-TKIs) are widely used and efficacious in treatment, increases in resistance and tumor recurrence with alternative survival pathway activation, such as that of AXL and MET, occur frequently. AXL is one of the EMT (epithelial-mesenchymal transition) signature genes, and EMT morphological changes are also responsible for EGFR-TKI resistance. MIG6 is a negative regulator of ERBB signaling and has been reported to be positively correlated with EGFR-TKI resistance, and downregulation of MIG6 by miR-200 enhances EMT transition. While MIG6 and AXL are both correlated with EMT and EGFR signaling pathways, how AXL, MIG6 and EGFR interplay in lung cancer remains elusive. Correlations between AXL and MIG6 expression were analyzed using Oncomine or the CCLE. A luciferase reporter assay was used for determining MIG6 promoter activity. Ectopic overexpression, RNA interference, Western blot analysis, qRT-PCR, a proximity ligation assay and a coimmunoprecipitation assay were performed to analyze the effects of certain gene expressions on protein-protein interaction and to explore the underlying mechanisms. An in vitro kinase assay and LC-MS/MS were utilized to determine the phosphorylation sites of AXL. In this study, we demonstrate that MIG6 is a novel substrate of AXL and is stabilized upon phosphorylation at Y310 and Y394/395 by AXL. This study reveals a connection between MIG6 and AXL in lung cancer. AXL phosphorylates and stabilizes MIG6 protein, and in this way EGFR signaling may be modulated. This study may provide new insights into the EGFR regulatory network and may help to advance cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Fosforilação , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Cromatografia Líquida , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Recidiva Local de Neoplasia , Mutação
3.
Mar Drugs ; 18(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751169

RESUMO

Non-small cell lung cancer (NSCLC)-carrying specific epidermal growth factor receptor (EGFR) mutations can be effectively treated by a tyrosine kinase inhibitor such as gefitinib. However, the inevitable development of acquired resistance leads to the eventual failure of therapy. In this study, we show the combination effect of omega-3 fatty acid-enriched fish oil (FO) and selenium (Se) on reversing the acquired gefitinib-resistance of HCC827 NSCLC cells. The gefitinib-resistant subline HCC827GR possesses lowered proapoptotic CHOP (CCAAT/enhancer-binding protein homologous protein) and elevated cytoprotective GRP78 (glucose regulated protein of a 78 kDa molecular weight) endoplasmic reticulum (ER) stress response elements, and it has elevated ß-catenin and cyclooxygenase-2 (COX-2) levels. Combining FO and Se counteracts the above features of HCC827GR cells, accompanied by the suppression of their raised epithelial-to-mesenchymal transition (EMT) and cancer stem markers, such as vimentin, AXL, N-cadherin, CD133, CD44, and ABCG2. Accordingly, an FO and Se combination augments the gefitinib-mediated growth inhibition and apoptosis of HCC827GR cells, along with the enhanced activation of caspase -3, -9, and ER stress-related caspase-4. Intriguingly, gefitinib further increases the elevated ABCG2 and cancer stem-like side population in HCC827GR cells, which can also be diminished by the FO and Se combination. The results suggest the potential of combining FO and Se in relieving the acquired resistance of NSCLC patients to targeted therapy.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Gefitinibe/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Selênio/farmacologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Combinação de Medicamentos , Chaperona BiP do Retículo Endoplasmático , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
4.
Mar Drugs ; 17(9)2019 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500384

RESUMO

Malignant glioma (MG) is a poor prognostic brain tumor with inevitable recurrence after multimodality treatment. Searching for more effective treatment is urgently needed. Differentiation induction via epigenetic modification has been proposed as a potential anticancer strategy. Natural products are known as fruitful sources of epigenetic modifiers with wide safety margins. We thus explored the effects of oligo-fucoidan (OF) from brown seaweed on this notion in MG cells including Grade III U87MG cells and Grade IV glioblastoma multiforme (GBM)8401 cells and compared to the immortalized astrocyte SVGp12 cells. The results showed that OF markedly suppress the proliferation of MG cells and only slightly affected that of SVGp12 cells. OF inhibited the protein expressions of DNA methyltransferases 1, 3A and 3B (DNMT1, 3A and 3B) accompanied with obvious mRNA induction of differentiation markers (MBP, OLIG2, S100ß, GFAP, NeuN and MAP2) both in U87MG and GBM8401 cells. Accordingly, the methylation of p21, a DNMT3B target gene, was decreased by OF. In combination with the clinical DNMT inhibitor decitabine, OF could synergize the growth inhibition and MBP induction in U87MG cells. Appropriated clinical trials are warranted to evaluate this potential complementary approach for MG therapy after confirmation of the effects in vivo.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Glioma/tratamento farmacológico , Polissacarídeos/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioma/genética , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico
5.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781399

RESUMO

Radiotherapy for treatment of hepatocellular carcinoma causes severe side effects, including acute hepatitis and chronic fibrosis. Complementary and alternative medicine (CAM) has emerged as an important part of integrative medicine in the management of diseases. Antrodia cinnamomea (AC), a valuable medicinal fungus originally found only in Taiwan, has been shown to possess anti-oxidation, vaso-relaxtation, anti-inflammation, anti-hepatitis, and anti-cancer effects. In this paper we evaluate the protective effects of ethanol extract of Antrodia cinnamomea (ACE) against radiotoxicity both in normal liver cell line CL48 and in tumor-bearing mice. In CL48, ACE protects cells by eliminating irradiation-induced reactive oxygen species (ROS) through the induction of Nrf2 and the downstream redox system enzymes. The protective effect of ACE was also demonstrated in tumor-bearing mice by alleviating irradiation-induced acute hepatitis. ACE could also protect mice from CCl4-induced hepatitis. Since both radiation and CCl4 cause free radicals, these results indicate that ACE likely contains active components that protect normal liver cells from free radical attack and can potentially benefit hepatocellular carcinoma (HCC) patients during radiotherapy.


Assuntos
Antrodia/química , Hepatite/tratamento farmacológico , Protetores contra Radiação/uso terapêutico , Doença Aguda , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citoproteção/efeitos dos fármacos , Feminino , Sequestradores de Radicais Livres/farmacologia , Hepatite/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos da radiação , Humanos , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Transporte Proteico/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Soluções , Raios X
6.
BMC Cancer ; 16: 245, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27012679

RESUMO

BACKGROUND: Eliminating cancer stem cells (CSCs) has been suggested for prevention of tumor recurrence and metastasis. Honokiol, an active compound of Magnolia officinalis, had been proposed to be a potential candidate drug for cancer treatment. We explored its effects on the elimination of oral CSCs both in vitro and in vivo. METHODS: By using the Hoechst side population (SP) technique, CSCs-like SP cells were isolated from human oral squamous cell carcinoma (OSCC) cell lines, SAS and OECM-1. Effects of honokiol on the apoptosis and signaling pathways of SP-derived spheres were examined by Annexin V/Propidium iodide staining and Western blotting, respectively. The in vivo effectiveness was examined by xenograft mouse model and immunohistochemical tissue staining. RESULTS: The SP cells possessed higher stemness marker expression (ABCG2, Ep-CAM, Oct-4 and Nestin), clonogenicity, sphere formation capacity as well as tumorigenicity when compared to the parental cells. Treatment of these SP-derived spheres with honokiol resulted in apoptosis induction via Bax/Bcl-2 and caspase-3-dependent pathway. This apoptosis induction was associated with marked suppression of JAK2/STAT3, Akt and Erk signaling pathways in honokiol-treated SAS spheres. Consistent with its effect on JAK2/STAT3 suppression, honokiol also markedly inhibited IL-6-mediated migration of SAS cells. Accordingly, honokiol dose-dependently inhibited the growth of SAS SP xenograft and markedly reduced the immunohistochemical staining of PCNA and endothelial marker CD31 in the xenograft tumor. CONCLUSIONS: Honokiol suppressed the sphere formation and xenograft growth of oral CSC-like cells in association with apoptosis induction and inhibition of survival/proliferation signaling pathways as well as angiogenesis. These results suggest its potential as an integrative medicine for combating oral cancer through targeting on CSCs.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Lignanas/administração & dosagem , Neoplasias Bucais/tratamento farmacológico , Proteínas de Neoplasias/biossíntese , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinases/biossíntese , Camundongos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição STAT/biossíntese , Células da Side Population/efeitos dos fármacos , Células da Side Population/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mar Drugs ; 13(10): 6099-116, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26404322

RESUMO

Accumulating evidence has revealed that fucoidan exhibits anti-tumor activities by arresting cell cycle and inducing apoptosis in many types of cancer cells including hepatocellular carcinoma (HCC). Exploring its effect on microRNA expression, we found that fucoidan markedly upregulated miR-29b of human HCC cells. The induction of miR-29b was accompanied with suppression of its downstream target DNMT3B in a dose-dependent manner. The reduction of luciferase activity of DNMT3B 3'-UTR reporter by fucoidan was as markedly as that by miR-29b mimic, indicating that fucoidan induced miR-29b to suppress DNMT3B. Accordingly, the mRNA and protein levels of MTSS1 (metastasis suppressor 1), a target silenced by DNMT3B, were increased after fucoidan treatment. Furthermore, fucoidan also down-regulated TGF-ß receptor and Smad signaling of HCC cells. All these effects leaded to the inhibition of EMT (increased E-cadherin and decreased N-cadherin) and prevention of extracellular matrix degradation (increased TIMP-1 and decreased MMP2, 9), by which the invasion activity of HCC cells was diminished. Our results demonstrate the profound effect of fucoidan not only on the regulation of miR-29b-DNMT3B-MTSS1 axis but also on the inhibition of TGF-ß signaling in HCC cells, suggesting the potential of using fucoidan as integrative therapeutics against invasion and metastasis of HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/genética , Polissacarídeos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Polissacarídeos/administração & dosagem , RNA Mensageiro/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , DNA Metiltransferase 3B
8.
Cancers (Basel) ; 16(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001490

RESUMO

Chemotherapy remains a cornerstone in lung cancer treatment, yet emerging evidence suggests that sublethal low doses may inadvertently enhance the malignancy. This study investigates the paradoxical effects of sublethal low-dose chemotherapy on non-small-cell lung cancer (NSCLC) cells, emphasizing the role of Aldo-keto reductase family 1 member B10 (AKR1B10). We found that sublethal doses of chemotherapy unexpectedly increased cancer cell migration approximately 2-fold and invasion approximately threefold, potentially promoting metastasis. Our analysis revealed a significant upregulation of AKR1B10 in response to taxol and doxorubicin treatment, correlating with poor survival rates in lung cancer patients. Furthermore, silencing AKR1B10 resulted in a 1-2-fold reduction in cell proliferation and a 2-3-fold reduction in colony formation and migration while increasing chemotherapy sensitivity. In contrast, the overexpression of AKR1B10 stimulated growth rate by approximately 2-fold via ERK pathway activation, underscoring its potential as a target for therapeutic intervention. The reversal of these effects upon the application of an ERK-specific inhibitor further validates the significance of the ERK pathway in AKR1B10-mediated chemoresistance. In conclusion, our findings significantly contribute to the understanding of chemotherapy-induced adaptations in lung cancer cells. The elevated AKR1B10 expression following sublethal chemotherapy presents a novel molecular mechanism contributing to the development of chemoresistance. It highlights the need for strategic approaches in chemotherapy administration to circumvent the inadvertent enhancement of cancer aggressiveness. This study positions AKR1B10 as a potential therapeutic target, offering a new avenue to improve lung cancer treatment outcomes by mitigating the adverse effects of sublethal chemotherapy.

9.
Nutrients ; 15(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960146

RESUMO

Prostate cancer (PC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related death in males worldwide. Early-stage PC patients can benefit from surgical, radiation, and hormonal therapies; however, once the tumor transitions to an androgen-refractory state, the efficacy of treatments diminishes considerably. Recently, the exploration of natural products, particularly dietary phytochemicals, has intensified in response to addressing this prevailing medical challenge. In this study, we uncovered a synergistic effect from combinatorial treatment with lovastatin (an active component in red yeast rice) and Antrodia camphorata (AC, a folk mushroom) extract against PC3 human androgen-refractory PC cells. This combinatorial modality resulted in cell cycle arrest at the G0/G1 phase and induced apoptosis, accompanied by a marked reduction in molecules responsible for cellular proliferation (p-Rb/Rb, Cyclin A, Cyclin D1, and CDK1), aggressiveness (AXL, p-AKT, and survivin), and stemness (SIRT1, Notch1, and c-Myc). In contrast, treatment with either AC or lovastatin alone only exerted limited impacts on the cell cycle, apoptosis, and the aforementioned signaling molecules. Notably, significant reductions in canonical PC stemness markers (CD44 and CD133) were observed in lovastatin/AC-treated PC3 cells. Furthermore, lovastatin and AC have been individually examined for their anti-PC properties. Our findings elucidate a pioneering discovery in the synergistic combinatorial efficacy of AC and clinically viable concentrations of lovastatin on PC3 PC cells, offering novel insights into improving the therapeutic effects of dietary natural products for future strategic design of therapeutics against androgen-refractory prostate cancer.


Assuntos
Produtos Biológicos , Neoplasias da Próstata , Masculino , Humanos , Androgênios/metabolismo , Células PC-3 , Lovastatina/farmacologia , Proliferação de Células , Apoptose , Neoplasias da Próstata/patologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral
10.
Artigo em Inglês | MEDLINE | ID: mdl-23097677

RESUMO

There are increasing pieces of evidence suggesting that the recurrence of cancer may result from a small subpopulation of cancer stem cells, which are resistant to the conventional chemotherapy and radiotherapy. We investigated the effects of Chinese herbal mixture Tien-Hsien Liquid (THL) on the cancer stem-like side population (SP) cells isolated from human hepatoma cells. After sorting and subsequent culture, the SP cells from Huh7 hepatoma cells appear to have higher clonogenicity and mRNA expressions of stemness genes such as SMO, ABCG2, CD133, ß-catenin, and Oct-4 than those of non-SP cells. At dose of 2 mg/mL, THL reduced the proportion of SP cells in HepG2, Hep3B, and Huh7 cells from 1.33% to 0.49%, 1.55% to 0.43%, and 1.69% to 0.27%, respectively. The viability and colony formation of Huh7 SP cells were effectively suppressed by THL dose-dependently, accompanied with the inhibition of stemness genes, e.g., ABCG2, CD133, and SMO. The tumorigenicity of THL-treated Huh7 SP cells in NOD/SCID mice was also diminished. Moreover, combination with THL could synergize the effect of doxorubicin against Huh7 SP cells. Our data indicate that THL may act as a cancer stem cell targeting therapeutics and be regarded as complementary and integrative medicine in the treatment of hepatoma.

11.
Nutrients ; 14(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35956408

RESUMO

Cisplatin is a prevalent chemotherapeutic agent used for non-small cell lung cancer (NSCLC) that is difficult to treat by targeted therapy, but the emergence of resistance severely limits its efficacy. Thus, an effective strategy to combat cisplatin resistance is required. This study demonstrated that, at clinically achievable concentrations, the combination of selenium yeast (Se-Y) and fish oil (FO) could synergistically induce the apoptosis of cancer stem cell (CSC)-like A549 NSCLC sphere cells, accompanied by a reversal of their resistance to cisplatin. Compared to parental A549 cells, sphere cells have higher cisplatin resistance and possess elevated CSC markers (CD133 and ABCG2), epithelial-mesenchymal transition markers (anexelekto (AXL), vimentin, and N-cadherin), and cytoprotective endoplasmic reticulum (ER) stress marker (glucose-regulated protein 78) and increased oncogenic drivers, such as yes-associated protein, transcriptional coactivator with PDZ-binding motif, ß-catenin, and cyclooxygenase-2. In contrast, the proapoptotic ER stress marker CCAAT/enhancer-binding protein homologous protein and AMP-activated protein kinase (AMPK) activity were reduced in sphere cells. The Se-Y and FO combination synergistically counteracted the above molecular features of A549 sphere cells and diminished their elevated CSC-like side population. AMPK inhibition by compound C restored the side population proportion diminished by this nutrient combination. The results suggest that the Se-Y and FO combination can potentially improve the outcome of cisplatin-treated NSCLC with phenotypes such as A549 cells.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Células A549/efeitos dos fármacos , Células A549/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/efeitos adversos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Óleos de Peixe/metabolismo , Óleos de Peixe/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Células-Tronco Neoplásicas , Fenótipo , Saccharomyces cerevisiae/metabolismo , Selênio/metabolismo , Selênio/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-21423639

RESUMO

Aberrant activation of Wnt/ß-catenin signaling plays an important role in the development of colon cancer. HS7 is an active fraction extracted from Taiwanofungus camphoratus, which had been widely used as complementary medicine for Taiwan cancer patients in the past decades. In this study, we demonstrated the effects of HS7 on the growth inhibition, apoptosis induction, and Wnt/ß-catenin signaling suppression in human colon cancer cells. HS7 significantly inhibited proliferation of HT29, HCT116, and SW480 colon cancer cells in a dose- and time-dependent manner. The apoptosis induction was evidenced by DNA fragmentation and subG1 accumulation, which was associated with increased Bax/Bcl-2 ratio, activation of caspase-3 and cleavage of PARP. By using Tcf-dependent luciferase activity assay, HS7 was found to inhibit the ß-catenin/Tcf transcriptional activities. In addition, HS7 strongly suppressed the binding of Tcf complexes to its DNA-binding site shown in electrophoretic mobility shift assay. This inhibition was further confirmed by the decreased protein levels of Tcf-4 and ß-catenin. The ß-catenin/Tcf downstream target genes, such as survivin, c-myc, cyclin D1, MMP7, and MT1-MMP involved in apoptosis, invasion, and angiogenesis were also diminished as well. These results indicate that Taiwanofungus camphoratus may provide a benefit as integrative medicine for the treatment of colon cancer.

13.
Artigo em Inglês | MEDLINE | ID: mdl-19897545

RESUMO

Tien-Hsien Liquid (THL) is a Chinese herbal mixture that has been used worldwide as complementary treatment for cancer patients in the past decade. Recently, THL has been shown to induce apoptosis in various types of solid tumor cells in vitro. However, the underlying molecular mechanisms have not yet been well elucidated. In this study, we explored the effects of THL on acute promyelocytic leukemia (APL) NB4 cells, which could be effectively treated by some traditional Chinese remedies containing arsenic trioxide. The results showed THL could induce G2/M arrest and apoptosis in NB4 cells. Accordingly, the decrease of cyclin A and B1 were observed in THL-treated cells. The THL-induced apoptosis was accompanied with caspase-3 activation and decrease of PML-RARα fusion protein. Moreover, DNA methyltransferase 1 and oncogenic signaling pathways such as Akt/mTOR, Stat3 and ERK were also down-regulated by THL. By using ethyl acetate extraction and silica gel chromatography, an active fraction of THL named as EAS5 was isolated. At about 0.5-1% of the dose of THL, EAS5 appeared to have most of THL-induced multiple molecular targeting effects in NB4 cells. Based on the findings of these multi-targeting effects, THL might be regarding as a complementary and alternative therapeutic agent for refractory APL.

14.
Mol Carcinog ; 49(3): 235-46, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19908241

RESUMO

Troglitazone (TGZ) is a synthetic thiazolidinedione drug belonging to a group of potent peroxisome proliferator-activated receptor gamma (PPAR gamma) agonists known to inhibit proliferation, alter cell cycle regulation, and induce apoptosis in various cancer cell types. TGZ is an oral anti-type II diabetes drug that can reverse insulin resistance. For more then 100 yr, aspirin, a nonselective cyclooxygenase (COX) inhibitor, has been successfully used as an anti-inflammatory drug. Recently, Aspirin (ASA) and some other nonsteroidal anti-inflammatory drugs (NSAIDs) have drawn much attention for their protective effects against colon cancer and cardiovascular disease; it has been observed that ASA's anti-tumor effect can be attributed to inhibition of cell cycle progression, induction of apoptosis, and inhibition of angiogenesis. In this report we demonstrate for the first time that, when administered in combination, TGZ and ASA can produce a strong synergistic effect in growth inhibition and G(1) arrest in lung cancer CL1-0 and A549 cells. Examination by colony formation assay revealed an even more profound synergy. In Western blot, combined TGZ and ASA also could downregulate Cdk2, E2F-1, cyclin B1, cyclin D3 protein, and the ratio of phospho-Rb/Rb. Importantly, apoptosis was synergistically induced by the combination treatment, as evidenced by caspase-3 activation and PARP cleavage. The involvement of PI3K/Akt inhibition and p27 upregulation, as well as hypophosphorylation of Rac1 at ser71, were demonstrated. Taken together, these results suggest that clinically achievable concentrations of TGZ and ASA used in combination may produce a strong anticancer synergy that warrants further investigation for its clinical applications.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Aspirina/farmacologia , Ciclo Celular/efeitos dos fármacos , Cromanos/farmacologia , Neoplasias Pulmonares/patologia , Tiazolidinedionas/farmacologia , Western Blotting , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Sinergismo Farmacológico , Quimioterapia Combinada , Citometria de Fluxo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , PPAR gama/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Troglitazona , Células Tumorais Cultivadas
15.
Am J Chin Med ; 48(6): 1491-1509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32924531

RESUMO

Astragalus membranaceus is the most popular traditional Chinese medicine for managing vital energy deficiency. Its injectable polysaccharide PG2 has been used for relieving cancer-related fatigue, and PG2 has immune-modulatory and anti-inflammatory effects. In this study, we explored the effects of PG2 in lung adenocarcinoma A549 and CL1-2 cells and investigated its anticancer activity, and the results were validated in severe combined immunodeficiency (SCID) mice. Although PG2 did not inhibit the growth of these cells, it dose-dependently suppressed their migration and invasion, accompanied by reduced vimentin and AXL and induced epithelial cadherin (E-cadherin) expression. Regarding the underlying molecular mechanism, PG2 treatment reduced the macrophage migration inhibitory factor (MIF), an inflammatory cytokine that promotes the epithelial-mesenchymal transition and aggressiveness of cancer cells. Consistent with the previous finding that MIF regulates matrix metalloproteinase-13 (MMP-13) and AMP-activated protein kinase (AMPK), treatment with PG2 reduced MMP-13 and activated AMPK in A549 and CL1-2 cells in this study. In SCID mice injected with A549 cells through the tail vein, intraperitoneal injection with PG2 reduced lung and abdominal metastases in parallel with decreased immunohistochemical staining of AXL, vimentin, MMP-13, and MIF in the tumor. Collectively, data revealed a potential application of PG2 in integrative cancer treatment through the suppression of MIF in cancer cells and their aggressiveness.


Assuntos
Adenocarcinoma/patologia , Astragalus propinquus/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Oxirredutases Intramoleculares/metabolismo , Neoplasias Pulmonares/patologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fitoterapia , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia , Células A549 , Adenocarcinoma/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Injeções Intraperitoneais , Neoplasias Pulmonares/metabolismo , Camundongos SCID , Invasividade Neoplásica , Polissacarídeos/isolamento & purificação , Polissacarídeos/uso terapêutico
16.
Exp Ther Med ; 17(5): 4213-4222, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30988795

RESUMO

Bladder cancer is one of the most common types of malignant tumor worldwide. Current treatments, including chemo-/radiotherapy, only have limited efficacy on bladder cancer progression. Honokiol is an active component of Magnolia officinalis with multiple biological effects that may provide promising health benefits. In the present study, the anti-cancer properties of honokiol against bladder cancer cells were investigated by flow cytometric analysis. The results revealed that honokiol exhibited significant anti-proliferative effects on bladder cancer cell lines, particularly on BFTC-905 human transitional cell carcinoma cells. Furthermore, honokiol at low doses (≤25 µM) induced cell cycle arrest in G0/G1 phase, while it induced significant apoptotic cell death at high doses (≥50 µM; P<0.05). Furthermore, a significant accumulation of reactive oxygen species was identified in honokiol-treated cells. In addition, honokiol induced hyperpolarization of the mitochondrial membrane, which may lead to mitochondrial dysfunction. Finally, caspase-3/7 activation was identified in high-dose honokiol-treated bladder cancer cells. These results suggest that honokiol induces apoptosis via the mitochondrial pathway and honokiol-containing traditional herbal remedies may have a potential clinical application in the treatment of bladder cancer.

17.
Chin J Integr Med ; 2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29455376

RESUMO

OBJECTIVE: To investigate the potential neuroprotective effect of human urine extract cell differentiation agent 2 (CDA-2) by the model of serum deprivation-induced apoptosis of PC12 cells and study the underlying molecular mechanisms. METHODS: Apoptosis of PC12 cells was induced by serum deprivation. CDA-2 at doses of 0.5-4 mg/mL was used to treat the serum-deprived PC12 cells. The cellular viability was measured by sulforhodamine B binding assay and the cell apoptosis was determined by flow cytometer. Western blot was used to analyze the expression of differentiation markers and activity of extracellular signal-regulated kinase (ERK). The cellular morphology was examined under an inverted microscope. RESULTS: CDA-2 inhibited apoptotic cell death of serum-deprived PC12 cells in a dose-dependent manner. Expression of low- and mid-sized neurofilaments was observed in serum-deprived PC12 cells treated with CDA-2 or nerve growth factor (NGF). However, CDA-2 did not induce proliferation of these cells like NGF. The morphology of CDA-2 treated cells was changed from rounded to neuron-like flat polygonal shape in contrast to the extensive neurite outgrowth induced by NGF. CDA-2 transiently induced the phosphorylation of ERK in serum deprived-PC12 cells and the expression of neurofilaments induced by CDA-2 was attenuated by mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor PD98059. CONCLUSIONS: Human urine extract CDA-2 showed a potential neuroprotective activity which may correlate with ERK activation and differentiation induction.

18.
Nutrients ; 10(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297634

RESUMO

Selenium has been intensively studied for the use of cancer prevention and treatment. However, the clinical effects are still plausible. To enhance its efficacy, a combinational study of selenium yeast (SY) and fish oil (FO) was performed in A549, CL1-0, H1299, HCC827 lung adenocarcinoma (LADC) cells to investigate the enhancement in apoptosis induction and underlying mechanism. By sulforhodamine B staining, Western blot and flow cytometric assays, we found a synergism between SY and FO in growth inhibition and apoptosis induction of LADC cells. In contrast, the fetal lung fibroblast cells (MRC-5) were unsusceptible to this combination effect. FO synergized SY-induced apoptosis of A549 cells, accompanied with synergistic activation of AMP-activated protein kinase (AMPK) and reduction of Cyclooxygenase (COX)-2 and ß-catenin. Particularly, combining with FO not only enhanced the SY-elevated proapoptotic endoplasmic reticulum (ER) stress marker CCAAT/enhancer-binding protein homologous protein (CHOP), but also reduced the cytoprotective glucose regulated protein of molecular weight 78 kDa (GRP78). Consequently, the CHOP downstream targets such as phospho-JNK and death receptor 5 were also elevated, along with the cleavage of caspase-8, -3, and the ER stress-related caspase-4. Accordingly, inhibition of AMPK by compound C diminished the synergistic apoptosis induction, and elevated CHOP/GRP78 ratio by SY combined with FO. The AMPK-dependent synergism suggests the combination of SY and FO for chemoprevention and integrative treatment of LADC.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adenocarcinoma/tratamento farmacológico , Óleos de Peixe/uso terapêutico , Proteínas de Choque Térmico/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Selênio/uso terapêutico , Fator de Transcrição CHOP/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Sinergismo Farmacológico , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , MAP Quinase Quinase 4/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Selênio/farmacologia , Oligoelementos/farmacologia , Oligoelementos/uso terapêutico , Leveduras , beta Catenina/metabolismo
20.
J Ginseng Res ; 41(3): 247-256, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28701864

RESUMO

BACKGROUND: KG-135, a standardized formulation enriched with Rk1, Rg3, and Rg5 ginsenosides, has been shown to inhibit various types of cancer cells; however, the underlying mechanisms are not fully understood. In this study, we explored its effects in A549 human lung cancer cells to investigate the induction of Forkhead Class box O3a (FOXO3a) and autophagy. METHODS: Cell viability was determined by sulforhodamine B staining. Apoptosis and cell cycle distribution were analyzed using flow cytometry. The changes of protein levels were determined using Western blot analysis. Autophagy induction was monitored by the formation of acidic vesicular organelles stained with acridine orange. RESULTS: KG-135 effectively arrested the cells in G1 phase with limited apoptosis. Accordingly, a decrease of cyclin-dependent kinase-4, cyclin-dependent kinase-6, cyclin D1, and phospho-retinoblastoma protein, and an increase of p27 and p18 proteins were observed. Intriguingly, KG-135 increased the tumor suppressor FOXO3a and induced the accumulation of autophagy hallmark LC3-II and acidic vesicular organelles without an increase of the upstream marker Beclin-1. Unconventionally, the autophagy adaptor protein p62 (sequestosome 1) was increased rather than decreased. Blockade of autophagy by hydroxychloroquine dramatically potentiated KG-135-induced FOXO3a and its downstream (FasL) ligand accompanied by the cleavage of caspase-8. Meanwhile, the decrease of Bcl-2 and survivin, as well as the cleavage of caspase-9, were also drastically enhanced, resulting in massive apoptosis. CONCLUSION: Besides arresting the cells in G1 phase, KG-135 increased FOXO3a and induced an unconventional autophagy in A549 cells. Both the KG-135-activated extrinsic FOXO3a/FasL/caspase-8 and intrinsic caspase-9 apoptotic pathways were potentiated by blockade of autophagy. Combination of KG-135 and autophagy inhibitor may be a novel strategy as an integrative treatment for cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA