Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Lett ; 40(8): 1245-1251, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29869304

RESUMO

OBJECTIVES: Taxoid 10ß-O-acetyl transferase (DBAT) was redesigned to enhance its catalytic activity and substrate preference for baccatin III and taxol biosynthesis. RESULTS: Residues H162, D166 and R363 were determined as potential sites within the catalytic pocket of DBAT for molecular docking and site-directed mutagenesis to modify the activity of DBAT. Enzymatic activity assays revealed that the kcat/KM values of mutant H162A/R363H, D166H, R363H, D166H/R363H acting on 10-deacetylbaccatin III were about 3, 15, 26 and 60 times higher than that of the wild type of DBAT, respectively. Substrate preference assays indicated that these mutants (H162A/R363H, D166H, R363H, D166H/R363H) could transfer acetyl group from unnatural acetyl donor (e.g. vinyl acetate, sec-butyl acetate, isobutyl acetate, amyl acetate and isoamyl acetate) to 10-deacetylbaccatin III. CONCLUSION: Taxoid 10ß-O-acetyl transferase mutants with redesigned active sites displayed increased catalytic activities and modified substrate preferences, indicating their possible application in the enzymatic synthesis of baccatin III and taxol.


Assuntos
Acetilesterase/metabolismo , Histidina , Mutagênese Sítio-Dirigida/métodos , Proteínas Recombinantes/metabolismo , Taxoides/metabolismo , Acetilesterase/genética , Escherichia coli/genética , Histidina/genética , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Especificidade por Substrato , Taxus/enzimologia , Taxus/genética
2.
J Basic Microbiol ; 54(12): 1387-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25138463

RESUMO

(E, E, E)-Geranylgeraniol (GGOH) is a valuable ingredient of many perfumes and a valuable precursor for synthesizing pharmaceuticals. In an attempt to increase the GGOH concentration in Coprinopsis cinerea, we demonstrated that the expression of geranylgeranyl diphosphate synthase (ggpps) gene isolated from Taxus x media could promote GGOH production. Furthermore, the concentrations of squalene and ergosterol were measured in the engineered strains. Expectedly, significant decreases of squalene and ergosterol levels were observed in those strains transformed with ggpps gene. This could be explained by the partial redirection of metabolic flux from squalene to GGOH, whose biosynthesis competes for the same precursor with squalene. This work suggested that the expression of ggpps in higher fungi was an effective method for bio-production of GGOH.


Assuntos
Basidiomycota/metabolismo , Diterpenos/metabolismo , Farnesiltranstransferase/genética , Basidiomycota/genética , Ergosterol/metabolismo , Farnesiltranstransferase/metabolismo , Esqualeno/metabolismo , Taxus/enzimologia , Transformação Genética
3.
J Basic Microbiol ; 54 Suppl 1: S134-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23720193

RESUMO

A genomic laccase gene and cDNA were cloned from the white-rot fungi Ganoderma lucidum TR6. The genomic laccase gene contained 2086 bp with nine introns. The laccase cDNA had an open reading frame of 1563 bp. The deduced mature protein consisted of 520 amino acids. Both the genomic laccase gene and cDNA were expressed in the Pichia pastoris GS115. Laccase activities could be detected in transformants with laccase cDNA but not in transformants with genomic laccase gene. The highest activity value reached 685.8 U L(-1). The effects of temperature, pH and nitrogen source on laccase expression in P. pastoris were analyzed. The recombinant laccase was purified and the molecular mass was 73.4 KDa, a little bigger than native laccase. The optimal pH and temperature were specific at pH 3.5 and special range from 60 to 90 °C. The laccase was stable at pH 7.0 and temperature range of 20-30 °C. The Km and Vm values of this recombinant laccase for ABTS were 0.521 mM and 19.65 mM min(-1), respectively.


Assuntos
Lacase/metabolismo , Pichia/genética , Reishi/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , DNA Fúngico/química , DNA Fúngico/genética , Estabilidade Enzimática , Expressão Gênica , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Vetores Genéticos , Concentração de Íons de Hidrogênio , Íntrons , Cinética , Lacase/química , Lacase/genética , Lacase/isolamento & purificação , Dados de Sequência Molecular , Peso Molecular , Nitrogênio/metabolismo , Fases de Leitura Aberta , Pichia/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Reishi/genética , Análise de Sequência de DNA , Temperatura
4.
World J Microbiol Biotechnol ; 30(2): 613-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24030169

RESUMO

Squalene synthase (SQS) catalyzes the condensation of two molecules of farnesyl diphosphate to give presqualene diphosphate and the subsequent rearrangement to form squalene. The gene encoding squalene synthase was cloned from Poria cocos by degenerate PCR and inverse PCR. The open reading frame of the gene is 1,497 bp, which encodes 499 amino acid residues. A phylogenetic analysis revealed that P. cocos SQS belonged to the fungus group, and was more closely related to the SQS of Ganoderma lucidum than other fungi. The treatment of P. cocos with methyl jasmonate (MeJA) significantly enhanced the transcriptional level of P. cocos sqs gene and the content of squalene in P. cocos. The transcriptional level of sqs gene was approximately fourfold higher than the control sample and the squalene content reached 128.62 µg/g, when the concentration of MeJA was 300 µM after 72 h induction.


Assuntos
Acetatos/metabolismo , Ciclopentanos/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Oxilipinas/metabolismo , Poria/enzimologia , Esqualeno/metabolismo , Clonagem Molecular , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Farnesil-Difosfato Farnesiltransferase/biossíntese , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Reação em Cadeia da Polimerase , Poria/genética , Poria/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Regulação para Cima
5.
Mol Biotechnol ; 61(7): 498-505, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31119478

RESUMO

Taxoid 10ß-O-acetyltransferase (DBAT) is the key enzyme to produce baccatin III, a key precursor in paclitaxel synthesis, by acetyl group transfer from acetyl-CoA to the C10 hydroxyl of 10-deacetylbaccatin III. In this study, the recombinant DBAT (rDBAT) was immobilized by cross-linked enzyme aggregates (CLEAs). To further optimize the enzyme recovery, single-factor experiment and response surface methodology were applied. 60% ammonium sulfate as precipitant, 0.05% glutaraldehyde as fixing agent, pH 7.0, 2 h as cross-linking time, 30 °C as cross-linking temperature were confirmed to be the optimum conditions to prepare the CLEAs-rDBAT in single-factor experiment. In addition, 62% for ammonium sulfate saturation, 0.15% for glutaraldehyde, and pH 6.75 were confirmed to be the optimum conditions with averagely 73.9% activity recovery in 3 replications, which was consistent with the prediction of response surface methodology. After cross-linking, the optimum temperature of CLEAs-rDBAT rose up to 70 °C and CLEAs-rDBAT could be recycled for three times.


Assuntos
Acetiltransferases/biossíntese , Alcaloides/biossíntese , Enzimas Imobilizadas/biossíntese , Proteínas Recombinantes/biossíntese , Acetiltransferases/genética , Alcaloides/genética , Reagentes de Ligações Cruzadas , Paclitaxel/biossíntese , Taxoides
6.
Appl Biochem Biotechnol ; 186(4): 949-959, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29797298

RESUMO

Taxoid 10ß-O-acetyl transferase (DBAT) is a key enzyme in the biosynthesis of the famous anticancer drug paclitaxel, which catalyses the formation of baccatin III from 10-deacetylbaccatin III (10-DAB). However, the activity essential residues of the enzyme are still unknown, and the acylation mechanism from its natural substrate 10-deacetylbaccatin III and acetyl CoA to baccatin III remains unclear. In this study, the homology modelling, molecular docking, site-directed mutagenesis, and kinetic parameter determination of the enzyme were carried out. The results showed that the enzyme mutant DBATH162A resulted in complete loss of enzymatic activity, suggesting that the residue histidine at 162 was essential to DBAT activity. Residues D166 and R363 which were located in the pocket of the enzyme by homology modelling and molecular docking were also important for DBAT activity through the site-directed mutations. Furthermore, four amino acid residues including S31 and D34 from motif SXXD, D372 and G376 from motif DFGWG also played important roles on acylation. This was the first report of the elucidation of the activity essential residues of DBAT, making it possible for the further structural-based re-design of the enzyme for efficient biotransformation of baccatin III and paclitaxel.


Assuntos
Acetilcoenzima A/química , Aldeído-Cetona Transferases/química , Alcaloides/síntese química , Simulação de Acoplamento Molecular , Proteínas de Plantas/química , Taxoides/síntese química , Taxus/enzimologia , Aldeído-Cetona Transferases/genética , Alcaloides/química , Substituição de Aminoácidos , Mutação de Sentido Incorreto , Paclitaxel/síntese química , Paclitaxel/química , Proteínas de Plantas/genética , Taxoides/química , Taxus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA