Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Kidney Int ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084257

RESUMO

IgA nephropathy (IgAN) is the most common type of glomerulonephritis that frequently progresses to kidney failure. However, the molecular pathogenesis underlying IgAN remains largely unknown. Here, we investigated the role of galectin-3 (Gal-3), a galactoside-binding protein in IgAN pathogenesis, and showed that Gal-3 expression by the kidney was significantly enhanced in patients with IgAN. In both TEPC-15 hybridoma-derived IgA-induced, passive, and spontaneous "grouped" ddY IgAN models, Gal-3 expression was clearly increased with disease severity in the glomeruli, peri-glomerular regions, and some kidney tubules. Gal-3 knockout (KO) in the passive IgAN model had significantly improved proteinuria, kidney function and reduced severity of kidney pathology, including neutrophil infiltration and decreased differentiation of Th17 cells from kidney-draining lymph nodes, despite increased percentages of regulatory T cells. Gal-3 KO also inhibited the NLRP3 inflammasome, yet it enhanced autophagy and improved kidney inflammation and fibrosis. Moreover, administration of 6-de-O-sulfated, N-acetylated low-molecular-weight heparin, a competitive Gal-3 binding inhibitor, restored kidney function and improved kidney lesions in passive IgAN mice. Thus, our results suggest that Gal-3 is critically involved in IgAN pathogenesis by activating the NLRP3 inflammasome and promoting Th17 cell differentiation. Hence, targeting Gal-3 action may represent a new therapeutic strategy for treatment of this kidney disease.

2.
Br J Nutr ; 127(10): 1467-1481, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34420528

RESUMO

The findings regarding the associations between red meat, fish and poultry consumption, and the metabolic syndrome (Mets) have been inconclusive, and evidence from Chinese populations is scarce. A cross-sectional study was performed to investigate the associations between red meat, fish and poultry consumption, and the prevalence of the Mets and its components among the residents of Suzhou Industrial Park, Suzhou, China. A total of 4424 participants were eligible for the analysis. A logistic regression model was used to estimate the OR and 95 % CI for the prevalence of the Mets and its components according to red meat, fish and poultry consumption. In addition, the data of our cross-sectional study were meta-analysed under a random effects model along with those of published observational studies to generate the summary relative risks (RR) of the associations between the highest v. lowest categories of red meat, fish and poultry consumption and the Mets and its components. In the cross-sectional study, the multivariable-adjusted OR for the highest v. lowest quartiles of consumption was 1·23 (95 % CI 1·02, 1·48) for red meat, 0·83 (95 % CI 0·72, 0·97) for fish and 0·93 (95 % CI 0·74, 1·18) for poultry. In the meta-analysis, the pooled RR for the highest v. lowest categories of consumption was 1·20 (95 % CI 1·06, 1·35) for red meat, 0·88 (95 % CI 0·81, 0·96) for fish and 0·97 (95 % CI 0·85, 1·10) for poultry. The findings of both cross-sectional studies and meta-analyses indicated that the association between fish consumption and the Mets may be partly driven by the inverse association of fish consumption with elevated TAG and reduced HDL-cholesterol and, to a lesser extent, fasting plasma glucose. No clear pattern of associations was observed between red meat or poultry consumption and the components of the Mets. The current findings add weight to the evidence that the Mets may be positively associated with red meat consumption, inversely associated with fish consumption and neutrally associated with poultry consumption.


Assuntos
Síndrome Metabólica , Carne Vermelha , Animais , Estudos Transversais , Peixes , Humanos , Carne , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/etiologia , Estudos Observacionais como Assunto , Aves Domésticas , Fatores de Risco
3.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36613785

RESUMO

Galectin-2 is a prototype member of the galactoside-binding galectin family. It is predominately expressed in the gastrointestinal tract but is also detected in several other tissues such as the placenta and in the cardiovascular system. Galectin-2 expression and secretion by epithelial cells has been reported to contribute to the strength of the mucus layer, protect the integrity of epithelia. A number of studies have also suggested the involvement of galectin-2 in tissue inflammation, immune response and cell apoptosis. Alteration of galectin-2 expression occurs in inflammatory bowel disease, coronary artery diseases, rheumatoid arthritis, cancer, and pregnancy disorders and has been shown to be involved in disease pathogenesis. This review discusses our current understanding of the role and actions of galectin-2 in regulation of these pathophysiological conditions.


Assuntos
Artrite Reumatoide , Neoplasias , Gravidez , Feminino , Humanos , Galectina 2/genética , Galectinas , Neoplasias/metabolismo , Placenta/metabolismo
4.
Carcinogenesis ; 42(8): 1079-1088, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34223877

RESUMO

Peanut agglutinin (PNA) is a carbohydrate-binding protein in peanuts that accounts for ~0.15% peanut weight. PNA is highly resistant to cooking and digestion and is rapidly detectable in the blood after peanut consumption. Our previous studies have shown that circulating PNA mimics the actions of endogenous galactoside-binding protein galectin-3 by interaction with tumour cell-associated MUC1 and promotes circulating tumour cell metastatic spreading. The present study shows that circulating PNA interacts with micro- as well as macro-vascular endothelial cells and induces endothelial secretion of cytokines MCP-1 (CCL2) and IL-6 in vitro and in vivo. The increased secretion of these cytokines autocrinely/paracrinely enhances the expression of endothelial cell surface adhesion molecules including integrins, VCAM and selectin, leading to increased tumour cell-endothelial adhesion and endothelial tubule formation. Binding of PNA to endothelial surface MCAM (CD146), via N-linked glycans, and subsequent activation of PI3K-AKT-PREAS40 signalling is here shown responsible for PNA-induced secretion of MCP-1 and IL-6 by vascular endothelium. Thus, in addition to its influence on promoting tumour cell spreading by interaction with tumour cell-associated MUC1, circulating PNA might also influence metastasis by enhancing the secretion of metastasis-promoting MCP-1 and IL-6 from the vascular endothelium.


Assuntos
Arachis , Citocinas/metabolismo , Metástase Neoplásica/patologia , Aglutinina de Amendoim/sangue , Animais , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mucina-1/metabolismo , Aglutinina de Amendoim/farmacologia , Transdução de Sinais
5.
J Cell Biochem ; 121(12): 4756-4771, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32056279

RESUMO

Angiogenesis and vasculogenic mimicry (VM) are the main causes of tumor metastasis and recurrence. In this study, we investigated the antiangiogenesis and anti-VM formation of a novel microtubule depolymerizing agent, DHPAC, as well as combretastatin A4 (CA4, a combretastatin derivate) in non-small-cell lung cancer (NSCLC), subsequently elucidating the underlying mechanisms. In human umbilical vein endothelial cells (HUVECs), DHPAC could enter cells and inhibit proliferation, migration, and angiogenesis in the presence and absence of conditioned medium from H1299 cells. Interestingly, the inhibition was enhanced under the stimulation of the conditioned medium. Under hypoxia or normoxia, DHPAC suppressed signal transducer and activator of transcription 3 phosphorylation and reduced vascular endothelial growth factor (VEGF) expression and secretion from HUVECs, thus impeding the activation of the downstream signal transduction pathway of VEGF/VEGFR2. However, JNK inhibitors reversed the inhibitory effect of DHPAC on the angiogenesis, suggesting that DHPAC regulated angiogenesis through activating JNK. In H1299 cells, DHPAC could inhibit proliferation, migration, invasion, and the formation of VM. In addition, DHPAC inhibited the phosphorylation of FAK and AKT and decreased the expressions of VEGF, matrix metalloproteinase 2 (MMP2), MMP9 and Laminin 5, suggesting that DHPAC inhibited VM formation via the FAK/AKT signaling pathway. In addition, CA4 showed a similar effect as DHPAC against angiogenesis and VM formation. These new findings support the use of microtubule destabilizing agents as a promising strategy for cancer therapy.

6.
Biochem Biophys Res Commun ; 523(2): 336-341, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31866013

RESUMO

The ß-galactoside-binding protein, galectin-3, is extensively involved in cancer development, progression and metastasis through multiple mechanisms. Inhibition of the galectin-3-mediated actions is increasingly considered as a promising therapeutic approach for cancer treatment. Our early studies have identified several novel galectin-3 binding inhibitors from chemical modification of the anticoagulant drug heparin. These heparin-derived galectin-3 binding inhibitors, which show no anticoagulant activity and bind to the galectin-3 canonical carbohydrate-binding site, induce galectin-3 conformational changes and inhibit galectin-3-mediated cancer cell adhesion, invasion and angiogenesis in vitro and reduce metastasis in mice. In this study, we determined the binding affinities of these heparin-derived ligands to galectin-3 using an isothermal titration calorimetry (ITC) ligand displacement approach. Such ITC experiments showed that the 2-de-O-sulphated, N-acetylated (compound E) and 6-de-O-sulphated, N-acetylated (F) heparin-derived ligands and their ultra-low molecular weight sub-fractions (E3 and F3) bind to galectin-3 with KD ranging from 0.96 to 1.32 mM.Differential scanning fluorimetry analysis revealed that, in contrast to the disaccharide ligand, N-acetyl-lactosamine, which binds to the fully folded form of galectin-3 and promotes galectin-3 thermal stability, the heparin-derived ligands preferentially bind to the unfolded state of galectin-3 and cause destabilization of the galectin-3 protein structure. These results provide molecular insights into the interaction of galectin-3 with the heparin-derived ligands and explain the previously demonstrated in vitro and in vivo effects of these binding inhibitors on galectin-3-mediated cancer cell behaviours.


Assuntos
Galectina 3/antagonistas & inibidores , Heparina/análogos & derivados , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Proteínas Sanguíneas , Calorimetria , Fluorometria , Galectina 3/química , Galectina 3/metabolismo , Galectinas , Heparina/metabolismo , Heparina/farmacologia , Humanos , Ligantes , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/metabolismo
7.
Br J Nutr ; 123(9): 1013-1023, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31964442

RESUMO

The association between milk consumption and the metabolic syndrome remains inconclusive, and data from Chinese populations are scarce. We conducted a cross-sectional study to investigate the association between milk consumption and the metabolic syndrome and its components among the residents of Suzhou Industrial Park, Suzhou, China. A total of 5149 participants were included in the final analysis. A logistic regression model was applied to estimate the OR and 95 % CI for the prevalence of the metabolic syndrome and its components according to milk consumption. In addition, the results of our study were further meta-analysed with other published observational studies to quantify the association between the highest v. lowest categories of milk consumption and the metabolic syndrome and its components. There was no significant difference in the odds of having the metabolic syndrome between milk consumers and non-milk consumers (OR 0·86, 95 % CI 0·73, 1·01). However, milk consumers had lower odds of having elevated waist circumference (OR 0·78, 95 % CI 0·67, 0·92), elevated TAG (OR 0·83, 95 % CI 0·70, 0·99) and elevated blood pressure (OR 0·85, 95 % CI 0·73, 0·99). When the results were pooled together with other published studies, higher milk consumption was inversely associated with the risk of the metabolic syndrome (relative risk 0·80, 95 % CI 0·72, 0·88) and its components (except elevated fasting blood glucose); however, these results should be treated with caution as high heterogeneity was observed. In summary, the currently available evidence from observational studies suggests that higher milk consumption may be inversely associated with the metabolic syndrome.


Assuntos
Dieta/efeitos adversos , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/etiologia , Leite , Adulto , Animais , China/epidemiologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Nutr Cancer ; 71(4): 634-642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30672325

RESUMO

TF antigen binding lectins from dietary sources PNA, ACA, ABL, JAC, and SRL from Sclerotium rolfsii have been reported to induce diverse effects on cancer cell proliferation by different mechanisms. This study aimed to compare effects of these lectins on growth and cell cycle progression in colon cancer HT29 and SW620 cells. As reported SRL, ABL, and JAC inhibited while PNA and ACA increased cell proliferation. ABL and JAC treated HT29 cells showed increased cell population in G0/G1 phase. PNA, ACA, ABL, and JAC increased SW620 cell population in S and decreased in G2/M phase. In contrast, SRL and JAC increased hypodiploid population in both the cells. PNA and ACA reduced whereas SRL and ABL diminished cell cyclin D1 expression. SRL, PNA, and ACA also reduced cellular cyclin D3 level while SRL, ABL, and JAC reduced cyclin E levels. ABL decreased CDK5 levels while SRL and ACA completely abolished CDK5 expression. All the lectins completely abolished cyclin D2 expression. These results not only confirms growth regulatory effects of TF-binding lectins but also indicates different effects of these lectins on cell growth is associated with regulation on expression of cell cycle associated proteins in G1-S phase and on cell cycle progression.


Assuntos
Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Lectinas/farmacologia , Amaranthus/química , Antígenos Glicosídicos Associados a Tumores/metabolismo , Arachis/química , Basidiomycota/química , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Ciclina D3/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Células HT29 , Humanos , Lectinas/isolamento & purificação , Lectinas/metabolismo
9.
J Biol Chem ; 292(20): 8381-8389, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28364041

RESUMO

The galactoside-binding protein galectin-3 is increasingly recognized as an important player in cancer development, progression, and metastasis via its interactions with various galactoside-terminated glycans. We have shown previously that circulating galectin-3, which is increased up to 30-fold in cancer patients, promotes blood-borne metastasis in an animal cancer model. This effect is partly attributable to the interaction of galectin-3 with unknown receptor(s) on vascular endothelial cells and causes endothelial secretion of several metastasis-promoting cytokines. Here we sought to identify the galectin-3-binding molecule(s) on the endothelial cell surface responsible for the galectin-3-mediated cytokine secretion. Using two different galectin-3 affinity purification processes, we extracted four cell membrane glycoproteins, CD146/melanoma cell adhesion molecule (MCAM)/MUC18, CD31/platelet endothelial cell adhesion molecule-1 (PECAM-1), CD144/VE-cadherin, and CD106/Endoglin, from vascular endothelial cells. CD146 was the major galectin-3-binding ligand and strongly co-localized with galectin-3 on endothelial cell surfaces treated with exogenous galectin-3. Moreover, galectin-3 bound to N-linked glycans on CD146 and induced CD146 dimerization and subsequent activation of AKT signaling. siRNA-mediated suppression of CD146 expression completely abolished the galectin-3-induced secretion of IL-6 and G-CSF cytokines from the endothelial cells. Thus, CD146/MCAM is the functional galectin-3-binding ligand on endothelial cell surfaces responsible for galectin-3-induced secretion of metastasis-promoting cytokines. We conclude that CD146/MCAM interactions with circulating galectin-3 may have an important influence on cancer progression and metastasis.


Assuntos
Galectina 3/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Interleucina-6/metabolismo , Multimerização Proteica , Antígenos CD/genética , Antígenos CD/metabolismo , Proteínas Sanguíneas , Antígeno CD146/genética , Antígeno CD146/metabolismo , Caderinas/genética , Caderinas/metabolismo , Galectina 3/genética , Galectinas , Fator Estimulador de Colônias de Granulócitos/genética , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Interleucina-6/genética , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
10.
Mol Carcinog ; 57(1): 44-56, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28833603

RESUMO

Hepatocellular carcinoma (HCC) has poor prognosis due to the advanced disease stages by the time it is diagnosed, high recurrence rates and metastasis. In the present study, we investigated the effects of metformin (a safe anti-diabetic drug) and curcumin (a turmeric polyphenol extracted from rhizome of Curcuma longa Linn.) on proliferation, apoptosis, invasion, metastasis, and angiogenesis of HCC in vitro and in vivo. It was found that co-treatment of metformin and curcumin could not only induce tumor cells into apoptosis through activating the mitochondria pathways, but also suppress the invasion, metastasis of HCC cells and angiogenesis of HUVECs. These effects were associated with downregulation of the expression of MMP2/9, VEGF, and VEGFR-2, up-regulation of PTEN, P53 and suppression of PI3K/Akt/mTOR/NF-κB and EGFR/STAT3 signaling. Co-administration of metformin and curcumin significantly inhibited HCC tumor growth than administration with metformin or curcumin alone in a xenograft mouse model. Thus, metformin and curcumin in combination showed a better anti-tumor effects in hepatoma cells than either metformin or curcumin presence alone and might represent an effective therapeutic strategy for HCC treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Animais , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Curcumina/administração & dosagem , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/patologia , Metformina/administração & dosagem , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Glycobiology ; 25(12): 1375-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26347523

RESUMO

Sclerotium rolfsii lectin (SRL) is a lectin isolated from fungus S. rolfsii and has high binding specificity toward the oncofetal Thomsen-Friedenreich carbohydrate antigen (Galß1-3GalNAc-α-O-Ser/Thr, T or TF), which is expressed in more than 90% of human cancers. Our previous studies have shown that binding of SRL to human colon, breast and ovarian cancer cells induces cell apoptosis in vitro and suppresses tumor growth in vivo. This study investigated the SRL-mediated cell signaling in human colon cancer HT29 cells by mRNA and miRNA microarrays. It was found that SRL treatment results in altered expression of several hundred molecules including mitogen-activated protein kinase (MAPK) and c-JUN-associated, apoptosis-associated and cell cycle and DNA replication-associated signaling molecules. Pathway analysis using GeneSpring 12.6.1 revealed that SRL treatment induces changes of MAPK and c-JUN-associated signaling pathways as early as 2 h while changes of cell cycle, DNA replication and apoptosis pathways were significantly affected only after 24 h. A significant change of cell miRNA expression was also observed after 12 h treatment of the cells with SRL. These changes were further validated by quantitative real time polymerase chain reaction and immunoblotting. This study thus suggests that the presence of SRL affects multiple signaling pathways in cancer cells with early effects on cell proliferation pathways associated with MAPK and c-JUN, followed by miRNA-associated cell activity and apoptosis. This provides insight information into the molecular mechanism of the anticancer activity of this fungal lectin.


Assuntos
Antineoplásicos/farmacologia , Proteínas Fúngicas/farmacologia , Lectinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transcriptoma , Agaricales/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Humanos
12.
Carcinogenesis ; 35(12): 2815-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25326505

RESUMO

Peanut agglutinin (PNA), which accounts for ~0.15% of the weight of the common peanut, is a carbohydrate-binding protein that binds the oncofoetal Thomsen-Friedenreich (TF) disaccharide (galactoseß1,3N-acetylgalactosamineα-) that is overexpressed by ~90% of human cancers. Previous studies have shown that PNA is highly resistant to cooking and digestion and rapidly enters the human blood circulation after peanut ingestion. This study investigates the hypothesis that PNA appearance in the circulation after peanut ingestion may mimic the actions of endogenous TF-binding human galectin-3 in metastasis promotion. It shows that PNA at concentrations similar to those found in blood circulation after peanut ingestion increases cancer cell heterotypic adhesion to the blood vascular endothelium and enhances the formation of tumour cell homotypic aggregates, two important steps in the metastasis cascade, and enhances metastasis in a mouse metastasis model. These effects of PNA are shown to result from its interaction with the cancer-associated TF disaccharide on the transmembrane mucin protein MUC1, causing MUC1 cell surface polarization that reveals underlying cell surface adhesion molecules. Thus, PNA appearance in the blood circulation after peanut ingestion mimics the actions of endogenous galectin-3 and promotes cancer cell metastatic spread by interaction with cancer-associated TF/MUC1. As metastasis accounts for the majority of cancer-associated fatality, regular consumption of peanuts by cancer patients would therefore be expected to have an adverse effect on cancer survival.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/secundário , Endotélio Vascular/efeitos dos fármacos , Galectina 3/metabolismo , Mucina-1/metabolismo , Aglutinina de Amendoim/farmacologia , Animais , Anoikis/efeitos dos fármacos , Apoptose , Western Blotting , Adesão Celular , Movimento Celular , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mucina-1/química , Mucina-1/genética , Metástase Neoplásica , Aglutinina de Amendoim/sangue , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Neurochem Res ; 39(2): 276-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24357351

RESUMO

We investigated the effects of CXC137, a tetramethylpyrazine piperazine derivate, on cell damage induced by N-methyl-D-aspartate (NMDA) in human derived neuroblastoma cells (SH-SY5Y) and its effect on memory dysfunction of rats with vascular dementia. It was found that the presence of CXC137 increased SH-SY5Y cells viability by inhibition of cell apoptosis induced by NMDA. These effects of CXC137 were accompanied by increases of the antioxidant superoxide dismutase activity and the level of reduced glutathione, and a decrease of lipid peroxidation product, malondialdehyde. The presence of CXC137 also showed to produce strong inhibition of cellular lactate dehydrogenase leakage, cell apoptosis and intracellular calcium overload. In a vascular dementia rat model established by bilateral common carotid arteries occlusion, treatment with CXC137 from 2 to 35 day of post-operation significantly improves the motor performance, spatial learning and memory capability of rats in both the prehensile traction test and Morris water maze test, an effect that was companied by reductions of the animal glutamic acid levels and the degree of brain mitochondrial swelling. These results suggest that CXC137 can improve the memory dysfunction in dementia and thus has important therapeutic potential for the treatment of dementia.


Assuntos
Demência Vascular/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Piperazinas/farmacologia , Pirazinas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Demência Vascular/metabolismo , Demência Vascular/fisiopatologia , Humanos , Masculino , Transtornos da Memória/metabolismo , Piperazinas/uso terapêutico , Pirazinas/uso terapêutico , Ratos , Ratos Sprague-Dawley
14.
Biomed Environ Sci ; 27(12): 965-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25484013

RESUMO

The effects of genetic factors on the noise-induced hearing loss (NIHL) are still unclear. In the present study, eight single-nucleotide polymorphisms (SNPs) included rs1227049 and rs3802711 (CDH23), rs1695 (GSTP1), rs137852540 (GJB2), rs2289274 (PMCA2), rs4880 (SOD2), rs7943316, and rs769214 within CAT that might associated with NIHL were further validated in Chinese workers. The results showed that the carriers of the T allele (AT+TT) of rs7943316 and A allele (GA+AA) of rs769214, were significantly associated with an increased risk of NIHL compared to those with AA genotype (P<0.05) and GG genotype (P<0.05). Moreover, a significant three-locus model (P=0.0107) involving rs2016520, rs9794, and rs1805192 were observed that might associated with NIHL, with 53.95% of testing accuracy. Thus, our present study provided the evidence that GJB2, SOD2, and CAT genes might account for the NIHL development in independently and/or in an interactive manner.


Assuntos
Catalase/genética , Conexinas/genética , Perda Auditiva Provocada por Ruído/genética , Superóxido Dismutase/genética , Povo Asiático/genética , Estudos de Casos e Controles , China , Conexina 26 , Predisposição Genética para Doença , Humanos , Masculino
15.
J Cell Biochem ; 114(1): 174-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22887358

RESUMO

PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tumor suppressor and has been suggested recently to be involved in the regulation of cardiovascular diseases. The molecular mechanisms of this regulation are however poorly understood. This study shows that down regulation of PTEN expression and activity by angiotensin II (Ang II) increased proliferation and migration of vascular smooth muscle cells (VSMCs). The presence of Ang II induced rapid PTEN phosphorylation and oxidation in accordance with increased AKT and FAK phosphorylation. The Ang II-mediated VSMC proliferation and migration was inhibited when cellular PTEN expression was increased by AT1 inhibitor losartan, PPARγ agonist rosiglitazone, NF-κB inhibitor BAY 11-7082. Over expression of PTEN in VSMCs by adenovirus transduction also resulted in inhibition of cell proliferation and migration in response to Ang II. These results suggest that PTEN down-regulation is involved in proliferation and migration of VSMCs induced by Ang II. This provides insight into the molecular regulation of PTEN in vascular smooth muscle cells and suggests that targeting the action of PTEN may represent an effective therapeutic approach for the treatment of cardiovascular diseases.


Assuntos
Angiotensina II/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Adenoviridae , Angiotensina II/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Aorta Torácica/citologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Losartan/farmacologia , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Nitrilas/farmacologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Tiazolidinedionas/farmacologia , Técnicas de Cultura de Tecidos , Transdução Genética , Vasodilatadores/farmacologia
16.
Cell Death Dis ; 14(4): 268, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055381

RESUMO

Galectin-3 is a galactoside-binding protein that is commonly overexpressed in many epithelial cancers. It is increasingly recognized as a multi-functional, multi-mode promoter in cancer development, progression, and metastasis. This study reports that galectin-3 secretion by human colon cancer cells induces cancer cell secretion, in an autocrine/paracrine manner, of a number of proteases including cathepsin-B, MMP-1 and MMP-13. The secretion of these proteases causes disruption of epithelial monolayer integrity, increases its permeability and promotes tumour cell invasion. This effect of galectin-3 is shown to be mediated through induction of cellular PYK2-GSK3α/ß signalling and can be prevented by the presence of galectin-3 binding inhibitors. This study thus reveals an important mechanism in galectin-3-mediated promotion of cancer progression and metastasis. It provides further evidence to the increased realization of galectin-3 as a potential therapeutic target for the treatment of cancer.


Assuntos
Neoplasias do Colo , Galectina 3 , Humanos , Galectina 3/genética , Galectina 3/metabolismo , Peptídeo Hidrolases , Neoplasias do Colo/metabolismo , Epitélio/metabolismo
17.
Cell Death Dis ; 14(8): 547, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612278

RESUMO

Although most cell membrane proteins are modified by glycosylation, our understanding of the role and actions of protein glycosylation is still very limited. ß1,3galactosyltransferase (C1GalT1) is a key glycosyltransferase that controls the biosynthesis of the Core 1 structure of O-linked mucin type glycans and is overexpressed by many common types of epithelial cancers. This study reports that suppression of C1GalT1 expression in human colon cancer cells caused substantial changes of protein glycosylation of cell membrane proteins, many of which were ligands of the galactoside-binding galectin-3 and the macrophage galactose-type lectin (MGL). This led to significant reduction of cancer cell proliferation, adhesion, migration and the ability of tumour cells to form colonies. Crucially, C1GalT1 suppression significantly reduced galectin-3-mediated tumour cell-cell interaction and galectin-3-promoted tumour cell activities. In the meantime, C1GalT1 suppression substantially increased MGL-mediated macrophage-tumour cell interaction and macrophage-tumour cell phagocytosis and cytokine secretion. C1GalT1-expressing cancer cells implanted in chick embryos resulted in the formation of significantly bigger tumours than C1GalT1-suppressed cells and the presence of galectin-3 increased tumour growth of C1GalT1-expressing but not C1GalT1-suppressed cells. More MGL-expressing macrophages and dendritic cells were seen to be attracted to the tumour microenvironment in ME C1galt1-/-/Erb mice than in C1galt1f/f /Erb mice. These results indicate that expression of C1GalT1 by tumour cells reciprocally controls tumour cell-cell and tumour-macrophage interactions mediated by galectin-3 and MGL with double impact on cancer development and progression. C1GalT1 overexpression in epithelial cancers therefore may represent a fundamental mechanism in cancer promotion and in reduction of immune response/surveillance in cancer progression.


Assuntos
Neoplasias do Colo , Galectina 3 , Embrião de Galinha , Humanos , Animais , Camundongos , Galectina 3/genética , Galactose , Neoplasias do Colo/genética , Glicosilação , Macrófagos , Microambiente Tumoral
18.
Glycobiology ; 22(9): 1227-35, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22653662

RESUMO

Glycan array analysis of Sclerotium rolfsii lectin (SRL) revealed its exquisite binding specificity to the oncofetal Thomsen-Friedenreich (Galß1-3GalNAcα-O-Ser/Thr, T or TF) antigen and its derivatives. This study shows that SRL strongly inhibits the growth of human colon cancer HT29 and DLD-1 cells by binding to cell surface glycans and induction of apoptosis through both the caspase-8 and -9 mediated signaling. SRL showed no or very weak binding to normal human colon tissues but strong binding to cancerous and metastatic tissues. Intratumor injection of SRL at subtoxic concentrations in NOD-SCID mice bearing HT29 xenografts resulted in total tumor regression in 9 days and no subsequent tumor recurrence. As the increased expression of TF-associated glycans is commonly seen in human cancers, SRL has the potential to be developed as a therapeutic agent for cancer.


Assuntos
Antígenos de Neoplasias/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Ascomicetos/química , Neoplasias do Colo/tratamento farmacológico , Lectinas/uso terapêutico , Animais , Antígenos de Neoplasias/imunologia , Antígenos Glicosídicos Associados a Tumores/imunologia , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Humanos , Injeções , Lectinas/isolamento & purificação , Lectinas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Neoplasias Experimentais , Polissacarídeos/química , Polissacarídeos/imunologia , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos
19.
Cancers (Basel) ; 14(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35805035

RESUMO

Matrix metalloproteinase-13 (MMP-13) is a member of the Matrix metalloproteinases (MMPs) family of endopeptidases. MMP-13 is produced in low amounts and is well-regulated during normal physiological conditions. Its expression and secretion are, however, increased in various cancers, where it plays multiple roles in tumour progression and metastasis. As an interstitial collagenase, MMP-13 can proteolytically cleave not only collagens I, II and III, but also a range of extracellular matrix proteins (ECMs). Its action causes ECM remodelling and often leads to the release of various sequestered growth and angiogenetic factors that promote tumour cell growth, invasion and angiogenesis. This review summarizes our current understanding of the regulation of MMP-13 expression and secretion and discusses the actions of MMP-13 in cancer progression and metastasis.

20.
Biomolecules ; 12(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36291660

RESUMO

Melanoma cell adhesion molecule (MCAM, CD146, MUC18) is a heavily glycosylated transmembrane protein and a marker of melanoma metastasis. It is expressed in advanced primary melanoma and metastasis but rarely in benign naevi or normal melanocytes. More and more evidence has shown that activation of the MCAM on cell surface plays a vital role in melanoma progression and metastasis. However, the natural MCAM binding ligand that initiates MCAM activation in melanoma so far remains elusive. This study revealed that galectin-3, a galactoside-binding protein that is commonly overexpressed in many cancers including melanoma, is naturally associated with MCAM on the surface of both skin and uveal melanoma cells. Binding of galectin-3 to MCAM, via O-linked glycans on the MCAM, induces MCAM dimerization and clustering on cell surface and subsequent activation of downstream AKT signalling. This leads to the increases of a number of important steps in melanoma progression of cell proliferation, adhesion, migration, and invasion. Thus, galectin-3 is a natural binding ligand of MCAM in melanoma, and their interaction activates MCAM and promotes MCAM-mediated melanoma progression. Targeting the galectin-3-MCAM interaction may potentially be a useful therapeutic strategy for melanoma treatment.


Assuntos
Galectina 3 , Melanoma , Humanos , Antígeno CD146/metabolismo , Galectina 3/genética , Ligantes , Proteínas Proto-Oncogênicas c-akt , Melanoma/patologia , Galactosídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA