Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 699
Filtrar
1.
Nat Immunol ; 24(1): 30-41, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36443515

RESUMO

Inflammasome complexes are pivotal in the innate immune response. The NLR family pyrin domain containing protein 3 (NLRP3) inflammasome is activated in response to a broad variety of cellular stressors. However, a primary and converging sensing mechanism by the NLRP3 receptor initiating inflammasome assembly remains ill defined. Here, we demonstrate that NLRP3 inflammasome activators primarily converge on disruption of endoplasmic reticulum-endosome membrane contact sites (EECS). This defect causes endosomal accumulation of phosphatidylinositol 4-phosphate (PI4P) and a consequent impairment of endosome-to-trans-Golgi network trafficking (ETT), necessary steps for endosomal recruitment of NLRP3 and subsequent inflammasome activation. Lowering endosomal PI4P levels prevents endosomal association of NLRP3 and inhibits inflammasome activation. Disruption of EECS or ETT is sufficient to enhance endosomal PI4P levels, to recruit NLRP3 to endosomes and to potentiate NLRP3 inflammasome activation. Mice with defects in ETT in the myeloid compartment are more susceptible to lipopolysaccharide-induced sepsis. Our study thus identifies a distinct cellular mechanism leading to endosomal NLRP3 recruitment and inflammasome activation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Imunidade Inata , Proteínas de Transporte/metabolismo , Endossomos/metabolismo
2.
Nano Lett ; 24(2): 607-616, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38095305

RESUMO

In recent years, live-cell-based drug delivery systems have gained considerable attention. However, shear stress, which accompanies blood flow, may cause cell death and weaken the delivery performance. In this study, we found that reducing cholesterol in macrophage plasma membranes enhanced their tumor targeting ability by more than 2-fold. Our study demonstrates that the reduced cholesterol level deactivated the mammalian target of rapamycin (mTOR) and consequently promoted the nuclear translocation of transcription factor EB (TFEB), which in turn enhanced the expression of superoxide dismutase (SOD) to reduce reactive oxygen species (ROS) induced by shear stress. A proof-of-concept system using low cholesterol macrophages attached to MXene (e.g., l-RX) was fabricated. In a melanoma mouse model, l-RX and laser irradiation treatments eliminated tumors with no recurrences observed in mice. Therefore, cholesterol reduction is a simple and effective way to enhance the targeting performance of macrophage-based drug delivery systems.


Assuntos
Macrófagos , Superóxido Dismutase , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Sistemas de Liberação de Medicamentos , Colesterol/metabolismo , Mamíferos/metabolismo
3.
FASEB J ; 37(7): e22960, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37335566

RESUMO

Anovulation is the main feature of infertile women with polycystic ovary syndrome (PCOS), and there is very limited understanding of the role of plasma exosomes and miRNAs in it. To identify the effect of PCOS patients' plasma exosomes and exosomal miRNAs, we isolated plasma exosomes of PCOS patients and normal women and injected into 8-week-old ICR female mice via tail vein. The changes in estrus cycle, serum hormone levels, and ovarian morphology were observed. KGN cells were cultured and transfected with mimics and inhibitors of differentially expressed exosomal miRNAs (miR-18a-3p, miR-20b-5p, miR-106a-5p, miR-126-3p, and miR-146a-5p) and then tested for steroid hormone synthesis, proliferation, and apoptosis. The results showed that female ICR mice injected with plasma exosomes from PCOS patients presented ovarian oligo-cyclicity. Hormone synthesis and proliferation of granulosa cells were affected by differentially expressed PCOS plasma-derived exosomal miRNAs, of which miR-126-3p having the most evident effect. MiR-126-3p affected the proliferation of granulosa cells by inhibiting PDGFRß and its downstream PI3K-AKT pathway. Our results demonstrated plasma exosomes and contained miRNAs in PCOS patients affect the estrus cycle of mice, hormone secretion, and proliferation of granulosa cells. This study provides a novel understanding about the function of plasma exosomes and exosomal miRNAs in PCOS.


Assuntos
Exossomos , Infertilidade Feminina , MicroRNAs , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Exossomos/genética , Exossomos/metabolismo , Células da Granulosa/metabolismo , Hormônios/metabolismo , Infertilidade Feminina/metabolismo , Camundongos Endogâmicos ICR , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo
4.
Reprod Biomed Online ; 49(3): 103992, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38889592

RESUMO

RESEARCH QUESTION: What is the potential transmission of metabolic phenotype from IVF offspring to the subsequent generation? DESIGN: An IVF mouse model was established. The F1 generation mice were produced though IVF or natural mating and the F2 generation was obtained through the mating of F1 generation males with normal females. Their metabolic phenotype, including systemic and hepatic glucolipid metabolism, was examined. RESULTS: It was found that IVF F1 males exhibited metabolic changes. Compared with the control group, the IVF F1 generation showed increased body weight, elevated fasting glucose and insulin, and increased serum triglyceride concentrations. IVF F1 mice also showed an increased expression of hepatic lipogenesis and autophagy genes. Moreover, IVF F1 males transmitted some metabolic changes to their own male progeny (IVF F2) in the absence of a dietary challenge. IVF F2 mice had increased peri-epididymal and subcutaneous fat and decreased insulin sensitivity. Under the 'second hit' of a high-fat diet, IVF F2 mice further showed increased hepatic lipid deposition with unaltered autophagy levels. CONCLUSION: This research demonstrates the impact of IVF on hepatic glucose-lipid metabolism in two successive generations of offspring, highlighting the need for additional investigation. Enhanced understanding of the mechanisms underlying the transmission of multigenerational effects induced by IVF could potentially lead to the advancement of therapeutic interventions for individuals experiencing infertility.

5.
Pharm Res ; 41(2): 387-400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243127

RESUMO

OBJECTIVE: This study aims to establish a Flow-through Visualization Dissolution System (FVDS) that combines time-lapse macro-imaging and a flow-through cell to simultaneously elucidate dissolution and disintegration profiles. METHODS: Three cefaclor extended-release tablets (CEC-1, CEC-2, CEC-3) from different manufacturers were subjected to dissolution tests using both the US Pharmacopeia basket method and the FVDS method. Two dissolution media plans were implemented in FVDS: i) Plan I involved dissolution in pH1.0 medium for 12 h; ii) Plan II initiated dissolution in pH1.0 medium for 1 h, followed by pH6.8 phosphate buffer for 11 h. The resulting dissolution data were fitted using classic mathematical models. Pixel information was further extracted from images obtained using FVDS and plotted over time. RESULTS: The basket method showed the cumulative dissolution of all three tablets in pH1.0, pH4.0 and water reached 80% within 6 h, but remained below 60% in the pH6.8 medium. The f2 values indicated CEC-2 was similar to CEC-1 in the pH4.0 medium, pH6.8 medium and water. Using FVDS with medium plan II, the cumulative dissolution of CEC-1 and CEC-2 reached about 80% showing similarity, while no similarity was observed between CEC-3 and CEC-1. The f2 factor of the percentage area change profiles also showed consistent results in the dissolution profile of medium plan II. However, FVDS with medium plan I cannot distinguish between CEC-2 and CEC-3. CONCLUSION: FVDS offers an alternative to traditional dissolution methods by integrating imaging analysis as a complementary tool to disintegration and dissolution testing methods.


Assuntos
Processamento de Imagem Assistida por Computador , Água , Solubilidade , Imagem com Lapso de Tempo , Comprimidos
6.
Analyst ; 149(3): 909-916, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38189476

RESUMO

Off-axis integrated cavity output spectroscopy (OA-ICOS) has attracted much interest because it potentially allows highly sensitive field measurements with robust optical alignment. In this paper, a novel instrument that employs a high-finesse optical cavity as an absorption cell has been developed for sensitive measurements of multi-component gases N2O, H2O and CO in the atmosphere based on a mid-infrared quantum cascade laser (QCL) and OA-ICOS. In order to improve the energy utilization and increase the signal-to-noise ratio (SNR) of the signal, a new type of optical path structure of the laser re-injection method is adopted. Furthermore, the system performance can be effectively improved by using a new intervention method of injecting radio frequency (RF) white noise into a laser driver to suppress cavity mode noise and combining the wavelength modulation method (WMS). We compared the sensitivity of the second harmonic signal demodulation between the re-injection method and the standard OA-ICOS, and the SNR increased by 2.68 times compared to the latter. Analysis of the spectral measurements with Allan variance indicates that within an integration time of 1 s, the measurement accuracy of N2O, H2O, and CO is 6.71 ppb, 13.945 ppm, and 1.81 ppb, respectively, and within an integration time of 820 s, the measurement accuracy of N2O, H2O, and CO can be further improved to 1.26 ppb, 2.089 ppm, and 172 ppt, respectively. Our approach represents an underlying analytical method that provides guidelines for monitoring of representative gases in the atmosphere, industrial processes, emergency safety, etc.

7.
Med Sci Monit ; 30: e943551, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959178

RESUMO

BACKGROUND Gastrointestinal diffuse large B-cell lymphoma (GI-DLBCL) is the most common histological subtype of extra-nodal DLBCL, but the risk factors, prognostic biomarkers, histopathological classifications, and treatment strategies have not had significant progress. Emerging evidence shows that cystatin SN (CST1) is involved in tumor progression in several cancer types, but its role in GI-DLBCL has not been revealed. MATERIAL AND METHODS We established a cohort consisting of 84 patients with GI-DLBCL who underwent surgical resection. The expression of CST1 in the cohort was investigated by immunohistochemistry, which divided the patients into subgroups with low or high expression of CST1. Moreover, the CST1 expression in GI-DLBCL tissues or adjacent GI tissues were compared with RT-qPCR. The correlation between CST1 expression and clinicopathological factors was analyzed with the chi-square test. The prognostic significance of CST1 was estimated by univariate and multivariate analysis, and statistical significance was analyzed with the log-rank test. RESULTS CST1 was aberrantly upregulated in GI-DLBCL tissues compared with in non-tumor GI tissues. High expression of CST1 indicated poor prognosis of GI-DLBCL (P=0.012), and CST1 can be regarded as an independent prognostic biomarker of GI-DLBCL (hazard ratio=3.07). In our study, serum lactate dehydrogenase (P=0.002), performance status (P=0.003), Lugano stage (P=0.002), and International Prognostic Index (P=0.001) were also prognostic factors of GI-DLBCL. CONCLUSIONS CST1 is an independent prognostic biomarker of GI-DLBCL, indicating unfavorable prognosis. Our results suggested that CST1 detection can be a promising method to stratify high-risk patients and guide individual treatment.


Assuntos
Biomarcadores Tumorais , Neoplasias Gastrointestinais , Linfoma Difuso de Grandes Células B , Humanos , Masculino , Feminino , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Pessoa de Meia-Idade , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/genética , Idoso , Adulto , Cistatinas Salivares/metabolismo , Cistatinas Salivares/genética , Imuno-Histoquímica , Estudos de Coortes
8.
Nano Lett ; 23(8): 3309-3316, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36946560

RESUMO

Integrating single atoms and clusters into one system is a novel strategy to achieve desired catalytic performances. Compared with homogeneous single-atom cluster catalysts, heterogeneous ones combine the merits of different species and therefore show greater potential. However, it is still challenging to construct single-atom cluster systems of heterogeneous species, and the underlying mechanism for activity improvement remains unclear. In this work, we developed a heterogeneous single-atom cluster catalyst (ConIr1/N-C) for efficient oxygen evolution. The Ir single atoms worked in synergy with the Co clusters at a distance of about 8 Å, which optimized the configuration of the key intermediates. Consequently, the oxygen evolution activity was significantly improved on ConIr1/N-C relative to the Co cluster catalyst (Con/N-C), exhibiting an overpotential lower by 107 mV than that of Con/N-C at 10 mA cm-2 and a turnover frequency 50.9 times as much as that of Con/N-C at an overpotential of 300 mV.

9.
J Environ Manage ; 358: 120832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599089

RESUMO

Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 µm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.


Assuntos
Biodegradação Ambiental , Larva , Microplásticos , Polietileno , Tenebrio , Animais , Tenebrio/metabolismo , Polietileno/metabolismo , Microplásticos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo
10.
Angew Chem Int Ed Engl ; : e202404418, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576258

RESUMO

The catalytic performance of single-atom catalysts was strictly limited by isolated single-atom sites. Fabricating high-density single atoms to realize the synergetic interaction in neighbouring single atoms could optimize the adsorption behaviors of reaction intermediates, which exhibited great potential to break performance limitations and deepen mechanistic understanding of electrocatalysis. However, the catalytic behavior governed by neighbouring single atoms is particularly elusive and has yet to be understood. Herein, we revealed that the synergetic interaction in neighbouring single atoms contributes to superior performance for oxygen evolution relative to isolated Ir single atoms. Neighbouring single atoms was achieved by fabricating high-density single atoms to narrow the distance between single atoms. Electrochemical measurements demonstrated that the Nei-Ir1/CoGaOOH with neighbouring Ir single atoms exhibited a low overpotential of 170 mV at a current density of 10 mA cm-2, and long-durable stability over 2000 h for oxygen evolution. Mechanistic studies revealed that neighbouring single atoms synergetic stabilized the *OOH intermediates via extra hydrogen bonding interactions, thus significantly reducing the reaction energy barriers, as compared to isolated Ir single atoms. The discovery of the synergetic interaction in neighbouring single atoms could offer guidance for the development of efficient electrocatalysts, thus accelerating the world's transition to sustainable energy.

11.
Angew Chem Int Ed Engl ; : e202408771, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880771

RESUMO

Single-atom catalysts have emerged as cutting-edge hotspots in the field of material science owing to their excellent catalytic performance brought about by well-defined metal single-atom sites (M SASs). Herein, we report a novel synthesis strategy based on the hetero-charge coupling effect (HCCE) to prepare M SASs loaded on N and S co-doped porous carbon (M1/NSC). The proposed strategy was widely applied to prepare 17 types of M1/NSC composed of single or multi-metal with the integrated regulation of the coordination environment and electronic structure, exhibiting good universality and flexible adjustability. Furthermore, this strategy provided a low-cost method of efficiently synthesizing M1/NSC with high yields, that can produce more than 50 g catalyst at one time, which is key to large-scale production. Among various as-prepared unary M1/NSC catalysts, Fe1/NSC delivered excellent performance for electrocatalytic nitrate reduction to NH3 with high NH3 Faradaic efficiency of 86.6% and high NH3 yield rate of 1.50 mg h-1 mgcat.-1 at -0.6 V vs. RHE. Even using Fe1/NSC as a cathode in a Zn-nitrate battery, it exhibited a high open circuit voltage of 1.756 V and high energy density of 4.42 mW cm-2 with good cycling stability.

12.
Angew Chem Int Ed Engl ; : e202408914, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957932

RESUMO

Dual-atom catalysts (DACs) have been proposed to break the limitation of single-atom catalysts (SACs) in the synergistic activation of multiple molecules and intermediates, offering an additional degree of freedom for catalytic regulation. However, it remains a challenge to synthesize DACs with high uniformity, atomic accuracy, and satisfactory loadings. Herein, we report a facile cascade synthetic strategy for DAC via precise electrostatic interaction control and neighboring vacancy construction. We synthesized well-defined, uniformly dispersed dual Fe sites which were connected by two nitrogen bonds (denoted as Fe-N2-Fe). The as-synthesized DAC exhibited superior catalytic performances towards oxygen reduction reaction, including good half-wave potential (0.91 V), high kinetic current density (21.66 mA cm-2), and perfect durability. Theoretical calculation revealed that the DAC structure effectively tunes the oxygen adsorption configuration and decreases the cleavage barrier, thereby improving the catalytic kinetics. The DAC-based zinc-air batteries exhibited impressive power densities of 169.8 and 52.18 mW cm-2 at 25 oC and -40 oC, which is 1.7 and 2.0 times higher than those based on Pt/C+Ir/C, respectively. We also demonstrated the universality of our strategy in synthesizing other M-N2-M DACs (M= Co, Cu, Ru, Pd, Pt, and Au), facilitating the construction of a DAC library for different catalytic applications.

13.
Opt Express ; 31(10): 16770-16780, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157749

RESUMO

For wide dynamic range gas concentration detection based on tunable diode laser absorption spectroscopy (TDLAS), direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) are usually used in combination. However, in some application scenarios such as high-speed flow field detection, natural gas leakage, or industrial production, the requirements of wide-range, fast response and calibration-free must be met. Taking applicability and cost of TDALS-based sensor into consideration, a method of optimized direct absorption spectroscopy (ODAS) based on signal correlation and spectral reconstruction is developed in this paper. This method can achieve adaptive selection of the optimal benchmark spectrum for spectral reconstruction. Moreover, methane (CH4) is taken as an example to carry out the experimental verification. Experimental results proved that the method satisfies wide dynamic range detection of more than 4 orders of magnitude. It is worth noting that when measuring large absorbance with concentration of 75 × 104 ppm with DAS and ODAS method, respectively, the maximum value of residual is reduced from 3.43 to 0.07. Furthermore, whether measuring gas of small or large absorbance with different concentrations, which vary from 100 ppm to 75 × 104 ppm, the correlation coefficient between standard concentrations and inverted concentrations is 0.997, showing the linear consistency of the method in wide dynamic range. In addition, the absolute error is 1.81 × 104 ppm when measuring large absorbance of 75 × 104 ppm. It greatly improves the accuracy and reliability with the new method. In summary, the ODAS method can not only fulfill the measurement of gas concentration in wide range, but also further expand the application prospects of TDLAS.

14.
Mol Pharm ; 20(6): 2978-2990, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37115233

RESUMO

Under physiological conditions, nanoparticles (NPs) inevitably interact with proteins, resulting in extensive protein adsorption and the formation of a protein corona. Recent studies have shown that the different surface properties of NPs lead to varying degrees of conformational changes of adsorbed proteins. However, the impact of corona protein conformation on the in vitro and in vivo profiles of NPs remain largely unexplored. Herein, d-α-tocopherol polyethylene glycol 1000 succinate-based NPs with natural human serum albumin (HSAN) corona or thermally denatured HSA (HSAD) corona were synthesized following a previously established method. We then conducted a systematic study of the protein conformation as well as adsorption behaviors. Additionally, the impact of protein corona conformation on the NPs profiles in vitro and in vivo were elucidated to gain insight into its biological behaviors as a targeted delivery system for renal tubule diseases. Overall, NPs modified by HSAN corona showed improved serum stability, greater cell uptake efficiency, better renal tubular targetability, and therapeutic efficacy on acute kidney injury in rats than NPs modified by HSAD corona. Hence, the conformation of protein adsorbed on the surface of NPs may impact the in vitro and in vivo profiles of NPs.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Ratos , Animais , Albuminas , Proteínas , Nanopartículas/metabolismo , Conformação Proteica
15.
Pharm Res ; 40(7): 1821-1833, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37291463

RESUMO

PURPOSE: Cerebral ischemia-reperfusion (I/R) injury remains a leading cause of mobility and mortality among patients with ischemic stroke. This study aims to develop a human serum albumin (HSA)-enriched nanoparticle platform for solubilizing clopidogrel bisulfate (CLP) for intravenous administration, and to explore the protective effect of HSA-enriched nanoparticles loaded with CLP (CLP-ANPs) against cerebral I/R injury in transient middle cerebral artery occlusion (MCAO) rat model. METHODS: CLP-ANPs were synthesized via a modified nanoparticle albumin-bound technology, lyophilized, and then characterized by morphology, particle size, zeta potential, drug loading capacity, encapsulation efficiency, stability and in vitro release kinetics. In vivo pharmacokinetic studies were conducted using Sprague-Dawley (SD) rats. Also, an MCAO rat model was established to explore the therapeutic effect of CLP-ANPs on cerebral I/R injury. RESULTS: CLP-ANPs remained spherical particles with a layer of proteins forming protein corona. Lyophilized CLP-ANPs after dispersion displayed an average size of about 235.6 ± 6.6 nm (PDI = 0.16 ± 0.08) with a zeta potential of about - 13.5 ± 1.8 mV. CLP-ANPs achieved sustained release for up to 168 h in vitro. Next, a single injection of CLP-ANPs dose-dependently reversed the histopathological changes induced by cerebral I/R injury possibly via attenuating apoptosis and reducing oxidative damages in the brain tissues. CONCLUSIONS: CLP-ANPs represent a promising and translatable platform system for the management of cerebral I/R injury during ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Nanopartículas , Traumatismo por Reperfusão , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Clopidogrel/uso terapêutico , Albumina Sérica Humana , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
16.
Environ Sci Technol ; 57(8): 3031-3041, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790312

RESUMO

Tenebrio molitor and Tenebrio obscurus (Coleoptera: Tenebrionidae) larvae are two commercial insects that eat plant and crop residues as diets and also biodegrade synthetic plastics polyethylene (PE). We examined biodegradation of low-density PE (LDPE) foam (Mn = 28.9 kDa and Mw = 342.0 kDa) with and without respective co-diets, i.e., wheat brain (WB) or corn flour (CF), corn straw (CS), and rice straw (RS) at 4:1 (w/w), and their gut microbiome and genetic metabolic functional groups at 27.0 ± 0.5 °C after 28 days of incubation. The presence of co-diets enhanced LDPE consumption in both larvae and broad-depolymerized the ingested LDPE. The diet type shaped gut microbial diversity, potential pathways, and metabolic functions. The sequence of effectiveness of co-diets was WB or CF > CS > RS for larval development and LDPE degradation. Co-occurrence networks indicated that the larvae co-fed with LDPE displayed more complex correlations of gut microbiome than the larvae fed with single diets. The primary diet of WB or CF and crop residues CS and RS provided energy and nitrogen source to significantly enhance LDPE biodegradation with synergistic activities of the gut microbiota. For the larvae fed LDPE and LDPE plus co-diets, nitrogen fixation function was stimulated compared to normal diets and associated with LDPE biodegradation.


Assuntos
Besouros , Microbioma Gastrointestinal , Tenebrio , Animais , Larva/metabolismo , Tenebrio/metabolismo , Polietileno , Poliestirenos , Carbono/metabolismo , Besouros/metabolismo , Dieta
17.
BMC Cardiovasc Disord ; 23(1): 598, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062386

RESUMO

BACKGROUND: Extracorporeal circulation auxiliary to open heart surgery is a common procedure used to treat heart diseases. However, the optimal transfusion strategy for patients undergoing this surgery remains a subject of debate. This study aims to investigate the association between hemoglobin levels and clinical outcomes in patients undergoing extracorporeal circulation auxiliary to open heart surgery, with the ultimate goal of improving surgical success rates and enhancing patients' quality of life. METHODS: A retrospective analysis was conducted on data from the Medical Information Mart for Intensive Care IV 2.2 (MIMIC-IV 2.2) database, including 4144 patients. The patients were categorized into five groups based on their minimum hemoglobin levels during hospitalization. Baseline characteristics, clinical scores, laboratory results, and clinical outcome data were collected. Statistical analyses utilized descriptive statistics, ANOVA or Kruskal-Wallis tests, Kaplan-Meier method, and Log-rank test. RESULTS: The results revealed a significant correlation between hemoglobin levels and in-hospital mortality, as well as mortality rates at 30 days, 60 days, and 180 days (p < 0.001). Patients with lower hemoglobin levels exhibited higher mortality rates. However, once hemoglobin levels exceeded 7g/dL, no significant difference in mortality rates was observed (p = 0.557). Additionally, lower hemoglobin levels were associated with prolonged hospital stay, ICU admission time, and mechanical ventilation time (p < 0.001). Furthermore, hemoglobin levels were significantly correlated with complication risk, norepinephrine dosage, and red blood cell transfusion volume (p < 0.001). However, there was no significant difference among the groups in terms of major complications, specifically sepsis (p > 0.05). CONCLUSION: The study highlights the importance of managing hemoglobin levels in patients undergoing heart surgery with extracorporeal circulation. Hemoglobin levels can serve as valuable indicators for predicting clinical outcomes and guiding treatment decisions. Physicians should carefully consider hemoglobin levels to optimize transfusion strategies and improve postoperative patient outcomes. Further research and intervention studies are warranted to validate and implement these findings in clinical practice.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Qualidade de Vida , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Circulação Extracorpórea/efeitos adversos , Hemoglobinas
18.
Acta Pharmacol Sin ; 44(4): 832-840, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36271156

RESUMO

Liposomes decorated with tumour-targeting cell-penetrating peptides can enhance specific drug delivery at the tumour site. The TR peptide, c(RGDfK)-AGYLLGHINLHHLAHL(Aib)HHIL, is pH-sensitive and actively targets tumour cells that overexpress integrin receptor αvß3, such as B16F10 melanoma cells. Liposomes can be modified with the TR peptide by two different methods: utilization of the cysteine residue on TR to link DSPE-PEG2000-Mal contained in the liposome formula (LIPTR) or decoration of TR with a C18 stearyl chain (C18-TR) for direct insertion into the liposomal phospholipid bilayer through electrostatic and hydrophobic interactions (LIPC18-TR). We found that both TR and C18-TR effectively reversed the surface charge of the liposomes when the systems encountered the low pH of the tumour microenvironment, but LIPC18-TR exhibited a greater increase in the charge, which led to higher cellular uptake efficiency. Correspondingly, the IC50 values of PTX-LIPTR and PTX-LIPC18-TR in B16F10 cells in vitro were 2.1-fold and 2.5-fold lower than that of the unmodified PTX-loaded liposomes (PTX-LIP), respectively, in an acidic microenvironment (pH 6.3). In B16F10 tumour-bearing mice, intravenous administration of PTX-LIPTR and PTX-LIPC18-TR (8 mg/kg PTX every other day for a total of 4 injections) caused tumour reduction ratios of 39.4% and 56.1%, respectively, compared to 20.8% after PTX-LIP administration. Thus, we demonstrated that TR peptide modification could improve the antitumour efficiency of liposomal delivery systems, with C18-TR presenting significantly better results. After investigating different modification methods, our data show that selecting an adequate method is vital even when the same molecule is used for decoration.


Assuntos
Lipossomos , Neoplasias , Camundongos , Animais , Lipossomos/química , Paclitaxel/química , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/química , Linhagem Celular Tumoral , Microambiente Tumoral
19.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177635

RESUMO

In 2016, Google proposed a congestion control algorithm based on bottleneck bandwidth and round-trip propagation time (BBR). The BBR congestion control algorithm measures the network bottleneck bandwidth and minimum delay in real-time to calculate the bandwidth delay product (BDP) and then adjusts the transmission rate to maximize throughput and minimize latency. However, relevant research reveals that BBR still has issues such as RTT unfairness, high packet loss rate, and deep buffer performance degradation. This article focuses on its most prominent RTT fairness issue as a starting point for optimization research. Using fluid models to describe the data transmission process in BBR congestion control, a fairness optimization strategy based on pacing gain is proposed. Triangular functions, inverse proportional functions, and gamma correction functions are analyzed and selected to construct the pacing gain model, forming three different adjustment functions for adaptive adjustment of the transmission rate. Simulation and real experiments show that the three optimization algorithms significantly improve the fairness and network transmission performance of the original BBR algorithm. In particular, the optimization algorithm that employs the gamma correction function as the gain model exhibits the best stability.

20.
Sensors (Basel) ; 23(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112225

RESUMO

In this study, a method for double-beam quantum cascade laser absorption spectroscopy (DB-QCLAS) was developed. Two mid-infrared distributed feedback quantum cascade laser beams were coupled in an optical cavity for the monitoring of NO and NO2 (NO at 5.26 µm; NO2 at 6.13 µm). Appropriate lines in the absorption spectra were selected, and the influence of common gases in the atmosphere, such as H2O and CO2, was avoided. By analyzing the spectral lines under different pressure conditions, the appropriate measurement pressure of 111 mbar was selected. Under this pressure, the interference between adjacent spectral lines could be effectively distinguished. The experimental results show that the standard deviations for NO and NO2 were 1.57 ppm and 2.67 ppm, respectively. Moreover, in order to improve the feasibility of this technology for detecting chemical reactions between NO and O2, the standard gases of NO and O2 were used to fill the cavity. A chemical reaction instantaneously began, and the concentrations of the two gases were immediately changed. Through this experiment, we hope to develop new ideas for the accurate and rapid analysis of the process of NOx conversion and to lay a foundation for a deeper understanding of the chemical changes in atmospheric environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA