Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Phys Chem Chem Phys ; 25(37): 25659-25669, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721212

RESUMO

With the advancement in terahertz technology, the terahertz electromagnetic field has been proven to be an effective strategy to tune the nanofluidic transport. In this study, we utilize molecular dynamics simulations to systematically analyze the transport of single-file water through a carbon nanotube (CNT) under terahertz electromagnetic fields, focusing on the CNT length, field strength, polarization direction and frequency. Strikingly, with the increase in field strength, the water flow exhibits a transition from normal to super permeation states because of the resonance effect, and the threshold field shifts to low values for long CNTs. The field component parallel to the CNT axis contributes to the resonance effect and increasing water flow, but the vertical component maintains the structure of the single-file water chain and even impedes the water flow. As a result, for a continuous change of field direction, the water flow changes from super permeation to normal states. With the increase in field frequency, the water flow also changes from super permeation to normal or even frozen states, where a higher frequency is required to trigger the super permeation states for lower field strength. Our results provide a comprehensive insight into the effect of terahertz electromagnetic field on the transport of single-file water chains and should have great implications for designing novel nanofluidic devices.

2.
Langmuir ; 37(42): 12318-12326, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34644087

RESUMO

Controlling the water transport in a given direction is essential to the design of novel nanofluidic devices, which is still a challenge because of thermal fluctuations on the nanoscale. In this work, we find an interesting electropumping phenomenon for charge-modified carbon nanotubes (CNTs) through a series of molecular dynamics simulations. In electric fields, the flowing counterions on the CNT inner surface provide a direct driving force for water conduction. Specifically, the dynamics of cations and anions exhibit distinct behaviors that lead to thoroughly different water dynamics in positively and negatively charged CNTs. Because of the competition between the increased ion number and ion-CNT interaction, the cation flux displays an interesting maximum behavior with the increase in surface charge density; however, the anion flux rises further at higher charge density because it is less attractive to the surface. Thus, the anion flux is always several times larger than cation flux that induces a higher water flux in positive CNTs with nearly 100% pumping efficiency, which highly exceeds the efficiency of pristine CNTs. With the change in charge density, the translocation time, occupancy number, and radial density profiles for water and ions also demonstrate a nontrivial difference for positive and negative CNTs. Furthermore, the ion flux exhibits an excellent linear relationship with the field strength, leading to the same water flux behavior. For the change in salt concentration, the pumping efficiency for positive CNTs is also nearly 100%. Our results provide significant new insight into the ionic transport through modified CNTs and should be helpful for the design of nanometer water pumps.

3.
J Chem Phys ; 153(18): 184503, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187400

RESUMO

Temperature governs the motion of molecules at the nanoscale and thus should play an essential role in determining the transport of water and ions through a nanochannel, which is still poorly understood. This work devotes to revealing the temperature effect on the coupling transport of water and ions through a carbon nanotube by molecular dynamics simulations. A fascinating finding is that the ion flux order changes from cation > anion to anion > cation with the increase in field strength, leading to the same direction change of water flux. The competition between ion hydration strength and mobility should be a partial reason for this ion flux order transition. High temperatures significantly promote the transport of water and ions, stabilize the water flux direction, and enhance the critical field strength. The ion translocation time exhibits an excellent Arrhenius relation with the temperature and a power law relation with the field strength, yielding to the Langevin dynamics. However, because of self-diffusion, the water translocation time displays different behaviors without following the ions. The high temperature also leads to an abnormal maximum behavior of the ion flux, deciphered by the massive increase in water flow that inversely hinders the ion flux, suggesting the coexistence of water-ion coupling transport and competition. Our results shed deep light on the temperature dependence of coupling transport of water and ions, answering a fundamental question on the water flux direction during the ionic transport, and thus should have great implications in the design of high flux nanofluidic devices.

4.
Langmuir ; 35(41): 13442-13451, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31539260

RESUMO

Controlling the water transport toward a given direction is still challenging, particularly due to thermal fluctuations of water motion at the nanoscale. While most of the previous works focus on the symmetric hydrophobic membrane systems, the role of the membrane in affecting the water transport remains largely unexplored. In this work, by using extensive molecular dynamics simulations, we find an interesting electropumping phenomenon, that is, the flowing counterions on an asymmetric hydrophobic-hydrophilic membrane can significantly drive the single-file water transport through a carbon nanotube, suggesting a nanometer water pump in a highly controllable fashion. The ion-water coupling motion in electric fields on the charged surface provides an indirect driving force for this pumping phenomenon. The water dynamics and thermal dynamics demonstrate a unique behavior with the change in electric fields, surface charge density, and even charge species. Particularly, due to the ion flux bifurcation for the positive and negative surfaces, the water dynamics such as the water flow, flux, and translocation time also exhibit similar asymmetry. Surprisingly, the positive surface charge induces an abnormal three-peak dipole distribution for the confined water and subsequent high flipping frequency. This can be attributed to the competition between the surface charge and interface water orientation on it. Our results indicate a new strategy to pump water through a nanochannel, making use of the counterion flowing on an asymmetric charged membrane, which are promising for future studies.

5.
Phys Chem Chem Phys ; 21(21): 11298-11305, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31106311

RESUMO

Understanding the blockage of ions for water transport through nanochannels is crucial for the design of desalination nanofluidic devices. In this work, we systematically clarify how ions block the single-file water transport through a (6,6) carbon nanotube (CNT) by using molecular dynamics simulations. We consider various pressure differences and salt concentrations. With the increase of pressure difference, the water flux shows a linear growth that coincides with the Hagen-Poiseuille equation. Interestingly, the dependence of the CNT-ion interaction on the salt concentration results in a distinct ion blockage effect that ultimately leads to water flux bifurcation. The water translocation time shows a power law decay with pressure, depending on the salt concentration. Furthermore, with the increase of salt concentration, the water flux shows a linear decay with a larger slope for higher pressure, while the water translocation time shows an opposite behavior. Therefore, the ions can not only block the water entering but also slow down the water motion inside the CNT. Notably, the probability of cations and anions appearing at the CNT entrance is quite similar, suggesting a similar blockage effect; however, anions show deeper interactions with the CNT because of their larger size. We finally find a unique linear relation between the water flux and occupancy divided by the translocation time. Our results provide insightful information on the ion blockage effect for the single-file water transport, and are thus helpful for the design of novel filtration membranes.

6.
Nanotechnology ; 29(22): 225706, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29547396

RESUMO

Graphene is a versatile 2D material and attracts an increasing amount of attention from a broad scientific community, including novel nanofluidic devices. In this work, we use molecular dynamics simulations to study the pressure driven water transport through graphene layers, focusing on the pore size homogeneity, realized by the arrangement of two pore sizes. For a given layer number, we find that water flux exhibits an excellent linear behavior with pressure, in agreement with the prediction of the Hagen-Poiseuille equation. Interestingly, the flux for concentrated pore size distribution is around two times larger than that of a uniform distribution. More surprisingly, under a given pressure, the water flux changes in an opposite way for these two distributions, where the flux ratio almost increases linearly with the layer number. For the largest layer number, more distributions suggest the same conclusion that higher water flux can be attained for more concentrated pore size distributions. Similar differences for the water translocation time and occupancy are also identified. The major reason for these results should clearly be due to the hydrogen bond and density profile distributions. Our results are helpful to delineate the exquisite role of pore size homogeneity, and should have great implications for the design of high flux nanofluidic devices and inversely the detection of pore structures.

7.
Phys Chem Chem Phys ; 19(33): 22406-22416, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28808710

RESUMO

Nanoparticles are highly versatile and exhibit broad applications in tuning material properties. Herein, we show through molecular dynamics simulations the possibility of a nanometer water pump, driven by the motion of nanoparticles (NPs) on a membrane surface. Surprisingly, considerable net water flux can be induced through a carbon nanotube (CNT) that is perpendicular to the NP motion. The water transport can occur in a highly controllable fashion, not only by using a single NP with different forces, but also by varying the CNT length or the NP number. Specifically, for a single NP, the water flow and flux are found to increase linearly with an increase in force, following the same behavior of NP velocity. Inversely, the water translocation time exhibits a linear decrease. We further revealed the unique relation between the water flow and occupancy divided by the translocation time. The CNT length can significantly screen the thermal fluctuation of an outside water reservoir, leading to an increase in the water flux and subsequent unidirectional transport. More interestingly, under moderate force, the water flow and flux demonstrate maximum behaviors with an increase in NP number, co-determined by the NP velocity and water occupancy. The maximum location shifts to the lower NP number region for a larger force. We also identify two CNT states that correspond to low water flow. Our results provide a significant new method to pump water molecules through a CNT channel, which is helpful for the design of controllable nanofluidic devices.

8.
J Chem Phys ; 146(20): 204902, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571349

RESUMO

Understanding the water permeation through a cell membrane is of primary importance for biological activities and a key step to capture its shape transformation in salt solution. In this work, we reveal the dynamical behaviors of osmotically driven transport of water molecules across a vesicle membrane by molecular dynamics simulations. Of particular interest is that the water transport in and out of vesicles is highly distinguishable given the osmotic force are the same, suggesting an asymmetric osmotic transportation. This asymmetric phenomenon exists in a broad range of parameter space such as the salt concentration, temperature, and vesicle size and can be ascribed to the similar asymmetric potential energy of lipid-ion, lipid-water, lipid-solution, lipid-lipid, and the lipid-lipid energy fluctuation. Specifically, the water flux has a linear increase with the salt concentration, similar to the prediction by Nernst-Planck equation or Fick's first law. Furthermore, due to the Arrhenius relation between the membrane permeability and temperature, the water flux also exhibits excellent Arrhenius dependence on the temperature. Meanwhile, the water flux shows a linear increase with the vesicle surface area since the flux amount across a unit membrane area should be a constant. Finally, we also present the anonymous diffusion behaviors for the vesicle itself, where transitions from normal diffusion at short times to subdiffusion at long times are identified. Our results provide significant new physical insights for the osmotic water permeation through a vesicle membrane and are helpful for future experimental studies.


Assuntos
Lipídeos/química , Simulação de Dinâmica Molecular , Água/química , Pressão Osmótica
9.
J Phys Chem B ; 125(40): 11232-11241, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34597047

RESUMO

Rectification phenomena occurring in asymmetric channels are essential for the design of novel nanofluidic devices such as nanodiodes. Previous studies mostly focus on ion current rectification, while its correlations with water dynamics are rarely explored. In this work, we analyze the transport of water and ions through asymmetric graphene channels under the drive of electric fields using molecular dynamics simulations. A key observation is that the water flux also exists in the rectification phenomenon that follows the ion flux behaviors because of their dynamical coupling relation in electric fields, and both their rectification ratios exhibit maximum behaviors with the change of the channel opening ratio. This is because the ion dehydration is highly asymmetric for small opening ratios. In addition, the cations and anions have distinct rectification ratios that are strongly dependent on the field strength, where the values for anions can even be 1-2 orders larger. This can be attributed to their different hydration shell and dehydration processes in the graphene channel. The translocation time of ions displays a power law relation with the field strength, in agreement with the prediction by Langevin dynamics. Due to the exclude-volume effect, the occupancy of water and ions shows a clear competition and thus changes in an opposite trend with the field strength. Our results demonstrate the rectification correlations between water and ions, and tuning the geometry of graphene channels provides a simple and robust new route to achieve high rectification ratios.


Assuntos
Grafite , Água , Cátions , Eletricidade , Transporte de Íons , Íons
10.
J Hand Surg Eur Vol ; 43(7): 708-711, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29874977

RESUMO

The aim of this study was to assess the results of capitate osteotomy and transposition for stage III Kienböck's disease. Capitate osteotomy and transposition combined with an autologous iliac bone graft was carried out in 17 patients. At the final follow-up for a mean of 68 months (range 16-127 months) after surgery, the mean visual analogue scale score was 0.6 (range 0-5). The mean Wrightington wrist function score was 8. The mean grip strength was 79% of the unaffected side. There were 16 satisfactory results. The one unsatisfactory result occurred in a woman who developed a nonunion of the osteotomy. There were no other complications of the surgery. Our results show that capitate osteotomy and transposition is a simple and reliable method for the management of stage III Kienböck's disease. LEVEL OF EVIDENCE: IV.


Assuntos
Capitato/cirurgia , Capitato/transplante , Osteonecrose/cirurgia , Osteotomia , Adulto , Feminino , Seguimentos , Força da Mão , Humanos , Ílio/transplante , Masculino , Pessoa de Meia-Idade , Osteonecrose/classificação , Retorno ao Trabalho , Transplante Autólogo
11.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 29(3): 247-50, 2013 May.
Artigo em Chinês | MEDLINE | ID: mdl-23940960

RESUMO

OBJECTIVE: To investigate how transient low dose of hydroperoxide pretreatment prevents cardiac ischemia/reperfusion injury. METHODS: SD rats were divided into 4 groups: sham operation (Sham), standard ischemia/reperfusion (I/R), ischemic preconditioning (IPC) and IR preceded by low H2O2 treatment. Cardiac function and injury parameter were compared among groups. RESULTS: IPC protected reperfusion injury and improved cardiac function. Low H2O2 treatment played a role in cardioprotection similar to IPC. Low H2O2 was indeed generated in the early phase of simulated ischemia and attenuated cytochrome c release induced by high Ca2+ in isolated mitochondria. CONCLUSION: Low H2O2 plays a critical role in cardioprotection probably by inhibiting mitochondrial permeability transition.


Assuntos
Peróxido de Hidrogênio/administração & dosagem , Precondicionamento Isquêmico/métodos , Traumatismo por Reperfusão/prevenção & controle , Animais , Masculino , Ratos , Ratos Sprague-Dawley
12.
Cell Biol Int ; 32(6): 663-70, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18343694

RESUMO

Resistance to anoikis is a characteristic of malignant cells with increased tumorigenesis and metastasis. Altered FAK activity has been strongly implicated in the development, growth, progression, and metastasis of human cancers, but the mechanism of FAK in regulating anoikis is unknown. In this study, the resistance anoikis role of FAK and its downstream mediators was evaluated in the human lung cancer cell line A549. It has been shown that down regulation of FAK stimulates the apoptosis of cells and the down-regulation of p-ERK, p-PI3K, p-Src, and p-p38. Furthermore, in detached A549 cells, increased FAK phosphorylations (Tyr397, Tyr861, Tyr925) were detected in a time-dependent manner, and the specific inhibitors of MEK1, PI3K, and Src (PD98059, LY294002, and PP2) partly abolished the resistance to the anoikis characteristic of cancer cells. Altogether, our data suggested that Src is involved in the progress of detachment-induced FAK activation in lung tumor cells. PI3K/AKT, MAPK-ERK, and perhaps MAPK-p38 but not MAPK-JNK, appear to be the key downstream effectors of FAK in mediating cell survival. The increased FAK activity upon cell detachment may contribute to the metastasis potential of malignant tumors.


Assuntos
Anoikis , Proteína-Tirosina Quinases de Adesão Focal/fisiologia , Neoplasias Pulmonares/enzimologia , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA