Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Radiother Oncol ; 192: 110090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224916

RESUMO

BACKGROUND AND PURPOSE: The SOFT trial is a prospective, multicenter, phase 2 trial investigating magnetic resonance (MR)-guided stereotactic ablative radiotherapy (SABR) for abdominal, soft tissue metastases in patients with oligometastatic disease (OMD) (clinicaltrials.gov ID NCT04407897). We present the primary endpoint analysis of 1-year treatment-related toxicity (TRAE). MATERIALS AND METHODS: Patients with up to five oligometastases from non-hematological cancers were eligible for inclusion. A risk-adapted strategy prioritized fixed organs at risk (OAR) constraints over target coverage. Fractionation schemes were 45-67.5 Gy in 3-8 fractions. The primary endpoint was grade ≥ 4 TRAE within 12 months post-SABR. The association between the risk of gastrointestinal (GI) toxicity and clinical and dosimetric parameters was tested using a normal tissue complication probability model. RESULTS: We included 121 patients with 147 oligometastatic targets, mainly located in the liver (41 %), lymph nodes (35 %), or adrenal glands (14 %). Nearly half of all targets (48 %, n = 71) were within 10 mm of a radiosensitive OAR. No grade 4 or 5 TRAEs, 3.5 % grade 3 TRAEs, and 43.7 % grade 2 TRAEs were reported within the first year of follow-up. We found a significant association between grade ≥ 2 GI toxicity and the parameters GI OAR D0.1cc, D1cc, and D20cc. CONCLUSION: In this phase II study of MR-guided SABR of oligometastases in the infra-diaphragmatic region, we found a low incidence of toxicity despite half of the lesions being within 10 mm of a radiosensitive OAR. GI OAR D0.1cc, D1cc, and D20cc were associated with grade ≥ 2 GI toxicity.


Assuntos
Neoplasias , Radiocirurgia , Humanos , Estudos Prospectivos , Fracionamento da Dose de Radiação , Radiocirurgia/efeitos adversos
2.
Phys Imaging Radiat Oncol ; 28: 100495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876826

RESUMO

Background and purpose: Dual-energy computed tomography (DECT) is an emerging technology in radiotherapy (RT). Here, we investigate split-filter DECT throughout the RT treatment chain as compared to single-energy CT (SECT). Materials and methods: DECT scans were acquired with a tin-gold split-filter at 140 kV resulting in a low- and high-energy CT reconstruction (recon). Ten cancer patients (four head-and-neck (HN)​, three rectum​, two anal/pelvis and one abdomen) were DECT scanned without and with iodine administered. A cylindrical and an anthropomorphic HN phantom were scanned with DECT and 120 kV SECT. The DECT images generated were: 120 kV SECT-equivalent (CTmix), virtual monoenergetic images (VMIs), iodine map, virtual non-contrast (VNC), effective atomic number (Zeff), and relative electron density (ρe,w). The clinical utility of these recons was investigated for calibration, delineation, dose calculation and image-guided RT (IGRT). Results: A calibration curve for 75 keV VMI had a root-mean-square-error (RMSE) of 34 HU in closest agreement with the RSME of SECT calibration. This correlated with a phantom-based dosimetric agreement to SECT of γ1%1mm > 98%. A 40 keV VMI recon was most promising to improve tumor delineation accuracy with an average evaluation score of 1.6 corresponding to "partial improvement". The dosimetric impact of iodine was in general < 2%. For this setup, VNC vs. non-contrast CTmix based dose calculations are considered equivalent. SECT- and DECT-based IGRT was in agreement within the setup uncertainty. Conclusions: DECT-based RT could be a feasible alternative to SECT providing additional recons to support the different steps of the RT workflow.

3.
Radiother Oncol ; 182: 109448, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36566988

RESUMO

BACKGROUND AND PURPOSE: Daily plan adaptations could take the dose delivered in previous fractions into account. Due to high dose delivered per fraction, low number of fractions, steep dose gradients, and large interfractional organ deformations, this might be particularly important for liver SBRT. This study investigates inter-algorithm variation of interfractional dose accumulation for MR-guided liver SBRT. MATERIALS AND METHODS: We assessed 27 consecutive MR-guided liver SBRT treatments of 67.5 Gy in three (n = 15) or 50 Gy in five fractions (n = 12), both prescribed to the GTV. We calculated fraction doses on daily patient anatomy, warped these doses to the simulation MRI using seven different algorithms, and accumulated the warped doses. Thus, we obtained differences in planned doses and warped or accumulated doses for each algorithm. This enabled us to calculate the inter-algorithm variations in warped doses per fraction and in accumulated doses per treatment course. RESULTS: The four intensity-based algorithms were more consistent with planned PTV dose than affine or contour-based algorithms. The mean (range) variation of the dose difference for PTV D95% due to dose warping by these intensity-based algorithms was 10.4 percentage points (0.3 to 43.7) between fractions and 8.6 (0.3 to 24.9) between accumulated treatment doses. As seen by these ranges, the variation was very dependent on the patient and the fraction being analyzed. Nevertheless, no correlations between patient or plan characteristics on the one hand and inter-algorithm dose warping variation on the other hand was found. CONCLUSION: Inter-algorithm dose accumulation variation is highly patient- and fraction-dependent for MR-guided liver SBRT. We advise against trusting a single algorithm for dose accumulation in liver SBRT.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Fígado/diagnóstico por imagem , Algoritmos
4.
Radiat Oncol ; 17(1): 146, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996192

RESUMO

BACKGROUND: Magnetic resonance-guided radiotherapy (MRgRT) utilization is rapidly expanding, driven by advanced capabilities including better soft tissue imaging, continuous intrafraction target visualization, automatic triggered beam delivery, and the availability of on-table adaptive replanning. Our objective was to describe patterns of 0.35 Tesla (T)-MRgRT utilization in Europe and Asia among early adopters of this novel technology. METHODS: Anonymized administrative data from all 0.35T-MRgRT treatment systems in Europe and Asia were extracted for patients who completed treatment from 2015 to 2020. Detailed treatment information was analyzed for all MR-linear accelerators (linac) and -cobalt systems. RESULTS: From 2015 through the end of 2020, there were 5796 completed treatment courses delivered in 46,389 individual fractions. 23.5% of fractions were adapted. Ultra-hypofractionated (UHfx) dose schedules (1-5 fractions) were delivered for 63.5% of courses, with 57.8% of UHfx fractions adapted on-table. The most commonly treated tumor types were prostate (23.5%), liver (14.5%), lung (12.3%), pancreas (11.2%), and breast (8.0%), with increasing compound annual growth rates (CAGRs) in numbers of courses from 2015 through 2020 (pancreas: 157.1%; prostate: 120.9%; lung: 136.0%; liver: 134.2%). CONCLUSIONS: This is the first comprehensive study reporting patterns of utilization among early adopters of a 0.35T-MRgRT system in Europe and Asia. Intrafraction MR image-guidance, advanced motion management, and increasing adoption of on-table adaptive RT have accelerated a transition to UHfx regimens. MRgRT has been predominantly used to treat tumors in the upper abdomen, pelvis and lungs, and increasingly with adaptive replanning, which is a radical departure from legacy radiotherapy practices.


Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Aceleradores de Partículas , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA