RESUMO
A model was developed to predict spatial glass transition temperature (T(g)) distributions in glassy maltodextrin particles during transient moisture sorption. The simulation employed a numerical mass transfer model with a concentration dependent apparent diffusion coefficient (D(app)) measured using Dynamic Vapor Sorption. The mass average moisture content increase and the associated decrease in T(g) were successfully modeled over time. Large spatial T(g) variations were predicted in the particle, resulting in a temporary broadening of the T(g) region. Temperature modulated differential scanning calorimetry confirmed that the variation in T(g) in nonequilibrated samples was larger than in equilibrated samples. This experimental broadening was characterized by an almost doubling of the T(g) breadth compared to the start of the experiment. Upon reaching equilibrium, both the experimental and predicted T(g) breadth contracted back to their initial value.
Assuntos
Vidro/química , Polímeros/química , Polissacarídeos/química , Temperatura de Transição , Água/química , Varredura Diferencial de Calorimetria , Modelos Químicos , Transição de FaseRESUMO
Glassy carbohydrate microcapsules are widely used for the encapsulation of flavors in food applications, and are made using various thermal processes (for example, extrusion). During manufacturing, these carbohydrate melts are held at elevated temperatures and color can form due to nonenzymatic browning reactions. These reactions can negatively or positively affect the color and flavor of microcapsules. The rate of color formation of maltodextrin and maltodextrin/sucrose melts at elevated temperatures was determined spectrophotometrically and was found to follow pseudo zero-order kinetics. The effect of temperature was adequately modeled by an Arrhenius relationship. Reaction rate constants and Arrhenius parameters were determined for individual wavelengths in the visible range (360 to 700 nm at 1 nm intervals). Transient processes (temperature changes with time) were modeled as a sequence of small isothermal events, and the equivalent thermal history at a reference temperature calculated using the Arrhenius relationship. Therefore, spectral transmittance curves could be predicted with knowledge of the time/temperature relationship. Validation was conducted by subjecting both melts to a transient thermal history. Experimental transmittance spectrum compared favorably against predicted values. These spectra were optionally converted to any desirable color space (for example, CIELAB, XYZ, RGB) or derived parameter (for example, Browning Index). The tool could be used to better control nonenzymatic browning reactions in industrial food processes.
Assuntos
Carboidratos/química , Manipulação de Alimentos/métodos , Cromatografia Líquida de Alta Pressão , Cor , Temperatura Alta , Reação de Maillard , Polissacarídeos/química , Reprodutibilidade dos Testes , Sacarose/análiseRESUMO
The oxidation stability of orange oil flavours encapsulated in carbohydrate based spray dry delivery systems is assessed through accelerated shelf life testing, compatible with the physical state of the delivery system. It is demonstrated here that the oxidative shelf life stability is limited by the diffusion of oxygen through the carbohydrate matrix. Determination of the evolution of orange oil oxidation products with time and correlations with simple but accurate sensory data allows for prediction of absolute shelf life. The oxidative shelf life appears to be dependent only on the number average molecular weight of carbohydrates in the matrix and is not affected by the substitution of small sugars (e.g., maltose for sucrose). A maximum of 2 years shelf life at 25 °C is predicted if sugar dimers are the predominant species in the matrix. The drawback to extended oxidative stability is a low physical stability under humid conditions promoting local softening in the sample. Maltose, having low hygroscopicity, improves the physical stability compared to sucrose. The best compromise between physical (caking) and chemical (oxidation) stability is obtained for carbohydrate compositions with number average molecular weight of 560 g mol(-1) that do not contain sucrose (stability against oxidation: 20 months at 25 °C and stability against humidity: 50% RH at 25 °C).