Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Genet Sel Evol ; 56(1): 4, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183016

RESUMO

BACKGROUND: There can be variation between animals in how stable their genetic merit is across different environments due to genotype-by-environment (G×E) interactions. This variation could be used in breeding programs to select robust genotypes that combine high overall performance with stable genetic ranking across environments. There have been few attempts to validate breeding values for robustness in livestock, although this is a necessary step towards their implementation in selection decisions. The objective of this study was to validate breeding values for the robustness of body weight across different growth environments that were estimated using reaction norm models in sheep data. RESULTS: Using threefold cross-validation for the progeny of 337 sires, the average correlation between single-step breeding values for the reaction norm slope and the realised robustness of progeny across different growth environments was 0.21. The correlation between breeding values for the reaction slope estimated independently in two different datasets linked by common sires was close to the expected correlation based on theory. CONCLUSIONS: Slope estimated breeding values (EBV) obtained using reaction norm models were predictive of the phenotypic robustness of progeny across different environments and were consistent for sires with progeny in two different datasets. Selection based on reaction norm EBV could be used to increase the robustness of a population to environmental variation.


Assuntos
Gado , Animais , Ovinos/genética , Austrália , Peso Corporal , Genótipo , Valores de Referência
2.
J Anim Breed Genet ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779724

RESUMO

The premise was tested that the additional genetic gain was achieved in the overall breeding objective in a pig breeding program using genomic selection (GS) compared to a conventional breeding program, however, some traits achieved larger gain than other traits. GS scenarios based on different reference population sizes were evaluated. The scenarios were compared using a deterministic simulation model to predict genetic gain in scenarios with and without using genomic information as an additional information source. All scenarios were compared based on selection accuracy and predicted genetic gain per round of selection for objective traits in both sire and dam lines. The results showed that GS scenarios increased overall response in the breeding objectives by 9% to 56% and 3.5% to 27% in the dam and sire lines, respectively. The difference in response resulted from differences in the size of the reference population. Although all traits achieved higher selection accuracy in GS, traits with limited phenotypic information at the time of selection or with low heritability, such as sow longevity, number of piglets born alive, pre- and post-weaning survival, as well as meat and carcass quality traits achieved the largest additional response. This additional response came at the expense of smaller responses for traits that are easy to measure, such as back fat and average daily gain in GS compared to the conventional breeding program. Sow longevity and drip loss percentage did not change in a favourable direction in GS with a reference population of 500 pigs. With a reference population of 1000 pigs or onwards, sow longevity and drip loss percentage began to change in a favourable direction. Despite the smaller responses for average daily gain and back fat thickness in GS, the overall breeding objective achieved additional gain in GS.

3.
J Anim Breed Genet ; 141(5): 531-549, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38520124

RESUMO

Maintaining genetic diversity and variation in livestock populations is critical for natural and artificial selection promoting genetic improvement while avoiding problems due to inbreeding. In Laos, there are concerns that there has been a decline in genetic diversity and a rise in inbreeding among native goats in their village-based smallholder system. In this study, we investigated the genetic diversity of Lao native goats in Phin, Songkhone and Sepon districts in Central Laos for the first time using Illumina's Goat SNP50 BeadChip. We also explored the genetic relationships between Lao goats with 163 global goat populations from 36 countries. Our results revealled a close genetic relationship between Lao native goats and Chinese, Mongolian and Pakistani goats, sharing ancestries with Guangfen, Jining Grey and Luoping Yellow breeds (China) and Teddi goats (Pakistan). The observed (Ho) and expected (He) heterozygosity were 0.292 and 0.303 (Laos), 0.288 and 0.288 (Sepon), 0.299 and 0.308 (Phin) and 0.289 and 0.305 (Songkhone), respectively. There was low to moderate genetic differentiation (FST: 0.011-0.043) and negligible inbreeding coefficients (FIS: -0.001 to 0.052) between goat districts. The runs of homozygosity (ROH) had an average length of 5.92-6.85 Mb, with short ROH segments (1-5 Mb length) being the most prevalent (66.34%). Longer ROH segments (20-40 and >40 Mb length categories) were less common, comprising only 4.81% and 1.01%, respectively. Lao goats exhibit moderate genetic diversity, low-inbreeding levels and adequate effective population size. Some genetic distinctions between Lao goats may be explained by geographic and cultural features.


Assuntos
Variação Genética , Cabras , Animais , Cabras/genética , Cabras/classificação , Laos , Genética Populacional , Endogamia , Polimorfismo de Nucleotídeo Único , Cruzamento
4.
Theor Appl Genet ; 136(5): 99, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027025

RESUMO

KEY MESSAGE: The reaction norm analysis of stability can be enhanced by partitioning the contribution of different types of G × E to the variation in slope. The slope of regression in a reaction norm model, where the performance of a genotype is regressed over an environmental covariable, is often used as a measure of stability of genotype performance. This method could be developed further by partitioning variation in the slope of regression into the two sources of genotype-by-environment interaction (G × E) which cause it: scale-type G × E (heterogeneity of variance) and rank-type G × E (heterogeneity of correlation). Because the two types of G × E have very different properties, separating their effect would enable a clearer understanding of stability. The aim of this paper was to demonstrate two methods which seek to achieve this in reaction norm models. Reaction norm models were fit to yield data from a multi-environment trial in Barley (Hordeum vulgare), with the adjusted mean yield from each environment used as the environmental covariable. Stability estimated from factor-analytic models, which can disentangle the two types of G × E and estimate stability based on rank-type G × E, was used for comparison. Adjusting the reaction norm slope to account for scale-type G × E using a genetic regression more than tripled the correlation with factor-analytic estimates of stability (0.24-0.26 to 0.80-0.85), indicating that it removed variation in the reaction norm slope that originated from scale-type G × E. A standardisation procedure had a more modest increase (055-0.59) but could be useful when curvilinear reaction norms are required. Analyses which use reaction norms to explore the stability of genotypes could gain additional insight into the mechanisms of stability by applying the methods outlined in this study.


Assuntos
Meio Ambiente , Interação Gene-Ambiente , Modelos Genéticos , Melhoramento Vegetal , Genótipo
5.
Genet Sel Evol ; 55(1): 85, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036958

RESUMO

BACKGROUND: Commercial poultry production systems follow a pyramidal structure with a nucleus of purebred animals under controlled conditions at the top and crossbred animals under commercial production conditions at the bottom. Genetic correlations between the same phenotypes on nucleus and production animals can therefore be influenced by differences both in purebred-crossbred genotypes and in genotype-by-environment interactions across the two environments, known as macro-genetic environmental sensitivity (GES). Within each environment, genotype-by-environment interactions can also occur due to so-called micro-GES. Micro-GES causes heritable variation in phenotypes and decreases uniformity. In this study, genetic variances of body weight (BW) and of micro-GES of BW and the impacts of purebred-crossbred differences and macro-environmental differences on micro-GES of BW were estimated. The dataset contained three subpopulations of slow-growing broiler chickens: purebred chickens (PB) reared in France, and crossbred chickens reared in France (FR) under the same conditions as PB or reared in Burkina Faso (BF) under local conditions. The crossbred chickens were offspring of the same dam line and had PB as their sire line. RESULTS: Estimates of heritability of BW and micro-GES of BW were 0.54 (SE of 0.02) and 0.06 (0.01), 0.67 (0.03) and 0.03 (0.01), and 0.68 (0.04) and 0.02 (0.01) for the BF, FR, and PB subpopulations, respectively. Estimates of the genetic correlations for BW between the three subpopulations were moderately positive (0.37 to 0.53) and those for micro-GES were weakly to moderately positive (0.01 to 0.44). CONCLUSIONS: The results show that the heritability of the micro-GES of BW varies with macro-environment, which indicates that responses to selection are expected to differ between macro-environments. The weak to moderate positive genetic correlations between subpopulations indicate that both macro-environmental differences and purebred-crossbred differences can cause re-ranking of sires based on their estimated breeding values for micro-GES of BW. Thus, the sire that produces the most variable progeny in one macro-environment may not be the one that produces the most variable offspring in another. Similarly, the sire that produces the most variable purebred progeny may not produce the most variable crossbred progeny. The results highlight the need for investigating micro-GES for all subpopulations included in the selection scheme, to ensure optimal genetic gain in all subpopulations.


Assuntos
Galinhas , Modelos Genéticos , Animais , Galinhas/genética , Burkina Faso , Fenótipo , Genótipo , França , Peso Corporal/genética
6.
BMC Genomics ; 23(1): 23, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983377

RESUMO

BACKGROUND: South Africa and Australia shares multiple important sheep breeds. For some of these breeds, genomic breeding values are provided to breeders in Australia, but not yet in South Africa. Combining genomic resources could facilitate development for across country selection, but the influence of population structures could be important to the compatability of genomic data from varying origins. The genetic structure within and across breeds, countries and strains was evaluated in this study by population genomic parameters derived from SNP-marker data. Populations were first analysed by breed and country of origin and then by subpopulations of South African and Australian Merinos. RESULTS: Mean estimated relatedness according to the genomic relationship matrix varied by breed (-0.11 to 0.16) and bloodline (-0.08 to 0.06) groups and depended on co-ancestry as well as recent genetic links. Measures of divergence across bloodlines (FST: 0.04-0.12) were sometimes more distant than across some breeds (FST: 0.05-0.24), but the divergence of common breeds from their across-country equivalents was weak (FST: 0.01-0.04). According to mean relatedness, FST, PCA and Admixture, the Australian Ultrafine line was better connected to the SA Cradock Fine Wool flock than with other AUS bloodlines. Levels of linkage disequilibrium (LD) between adjacent markers was generally low, but also varied across breeds (r2: 0.14-0.22) as well as bloodlines (r2: 0.15-0.19). Patterns of LD decay was also unique to breeds, but bloodlines differed only at the absolute level. Estimates of effective population size (Ne) showed genetic diversity to be high for the majority of breeds (Ne: 128-418) but also for bloodlines (Ne: 137-369). CONCLUSIONS: This study reinforced the genetic complexity and diversity of important sheep breeds, especially the Merino breed. The results also showed that implications of isolation can be highly variable and extended beyond breed structures. However, knowledge of useful links across these population substructures allows for a fine-tuned approach in the combination of genomic resources. Isolation across country rarely proved restricting compared to other structures considered. Consequently, research into the accuracy of across-country genomic prediction is recommended.


Assuntos
Genética Populacional , Genômica , Carneiro Doméstico/genética , Animais , Austrália , Cruzamento , Genótipo , Desequilíbrio de Ligação , Ovinos/genética , África do Sul
7.
Genet Sel Evol ; 54(1): 40, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659541

RESUMO

BACKGROUND: Selection of livestock based on their robustness or sensitivity to environmental variation could help improve the efficiency of production systems, particularly in the light of climate change. Genetic variation in robustness arises from genotype-by-environment (G × E) interactions, with genotypes performing differently when animals are raised in contrasted environments. Understanding the nature of this genetic variation is essential to implement strategies to improve robustness. In this study, our aim was to explore the genetics of robustness in Australian sheep to different growth environments using linear reaction norm models (RNM), with post-weaning weight records of 22,513 lambs and 60 k single nucleotide polymorphisms (SNPs). The use of scale-corrected genomic estimated breeding values (GEBV) for the slope to account for scale-type G × E interactions was also investigated. RESULTS: Additive genetic variance was observed for the slope of the RNM, with genetic correlations between low- and high-growth environments indicating substantial re-ranking of genotypes (0.44-0.49). The genetic variance increased from low- to high-growth environments. The heritability of post-weaning body weight ranged from 0.28 to 0.39. The genetic correlation between intercept and slope of the reaction norm for post-weaning body weight was low to moderate when based on the estimated (co)variance components but was much higher when based on back-solved SNP effects. An initial analysis suggested that a region on chromosome 11 affected both the intercept and the slope, but when the GEBV for the slope were conditioned on the GEBV for the intercept to remove the effect of scale-type G × E interactions on SNP effects for robustness, a single genomic region on chromosome 7 was found to be associated with robustness. This region included genes previously associated with growth traits and disease susceptibility in livestock. CONCLUSIONS: This study shows a significant genetic variation in the slope of RNM that could be used for selecting for increased robustness of sheep. Both scale-type and rank-type G × E interactions contributed to variation in the slope. The correction for scale effects of GEBV for the slope should be considered when analysing robustness using RNM. Overall, robustness appears to be a highly polygenic trait.


Assuntos
Genoma , Modelos Genéticos , Animais , Austrália , Peso Corporal/genética , Genômica , Genótipo , Ovinos/genética
8.
Anim Genet ; 53(6): 863-866, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35993261

RESUMO

The aim of this study was to find significant genomic regions associated with carcass traits in Hanwoo cattle and to compare the benefit of using additional information from non-genotyped animals. Imputed whole-genome sequence data were used along with phenotypic data on 13 715 genotyped animals as well as phenotypes of 440 284 non-genotyped animals that were offspring of 454 genotyped sires. For carcass weight, 15 083 SNPs in 33 QTL regions and 313 candidate genes were identified. We found 410 SNPs in 17 QTL regions containing 122 candidate genes for back fat thickness. In total, 656 SNPs in 19 QTLs with 137 candidate genes for eye muscle area and 79 SNPs in 12 QTL regions with 77 candidate genes were identified for marbling score. The most important candidate genes included ZFAT, TG, PLAG1, CHCHD7, and TOX for carcass weight and eye muscle area, NOG for back fat thickness, and EVOVL5 for marbling score. This study showed that the use of phenotypic records on non-genotyped progeny along with imputed whole-genome sequence data increased the power of detecting new significant genomic regions.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Bovinos/genética , Animais , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , Genômica , Polimorfismo de Nucleotídeo Único
9.
J Anim Breed Genet ; 139(3): 330-341, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35072970

RESUMO

Economic values for annual milk yield (MY, kg), annual fat yield (FY, kg), annual protein yield (PY, kg), age at first calving (AFC, days), number of services per conception (NSC), calving interval (CI, days) and mastitis episodes (MS) were derived for temperate dairy cattle breeds in tropical Sri Lanka using a bio-economic model. Economic values were calculated on a per cow per year basis. Derived economic values in rupees (LKR) for MY, FY and PY were 107, -162 and -15, while for AFC, NSC, CI and MS, economic values were -59, -270, -84 and -8,303. Economic values for FY and PY further decreased with higher feed prices, and a less negative economic value for FY was obtained with increased price for fat. Negative economic values for FY and PY show that genetic improvement for these traits is not economical due to the high feed costs and/or the insufficient payment for fat and protein. Therefore, revision of milk fat and protein payments is recommended. Furthermore, the breeding objective developed in this study was dominated by milk production and fertility traits. Adaptability and functional traits that are important in a temperate dairy cattle breeding programme in tropical Sri Lanka, such as longevity, feed efficiency, disease resistance and heat tolerance should be recorded to incorporate them in the breeding objective. Continued trait recording of all traits is recommended to ensure dairy cows can be selected more effectively in a tropical environment based on a breeding objective that also includes adaptability and functional traits.


Assuntos
Doenças dos Bovinos , Mastite , Animais , Bovinos/genética , Indústria de Laticínios , Feminino , Fertilidade/genética , Lactação/genética , Mastite/veterinária , Leite/metabolismo , Fenótipo , Sri Lanka
10.
J Anim Breed Genet ; 139(1): 71-83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34374454

RESUMO

The objective of this study was to investigate the accuracy of genomic prediction of body weight and eating quality traits in a numerically small sheep population (Dorper sheep). Prediction was based on a large multi-breed/admixed reference population and using (a) 50k or 500k single nucleotide polymorphism (SNP) genotypes, (b) imputed whole-genome sequencing data (~31 million), (c) selected SNPs from whole genome sequence data and (d) 50k SNP genotypes plus selected SNPs from whole-genome sequence data. Furthermore, the impact of using a breed-adjusted genomic relationship matrix on accuracy of genomic breeding value was assessed. The selection of genetic variants was based on an association study performed on imputed whole-genome sequence data in an independent population, which was chosen either randomly from the base population or according to higher genetic proximity to the target population. Genomic prediction was based on genomic best linear unbiased prediction (GBLUP), and the accuracy of genomic prediction was assessed according to the correlation between genomic breeding value and corrected phenotypes divided by the square root of trait heritability. The accuracy of genomic prediction was between 0.20 and 0.30 across different traits based on common 50k SNP genotypes, which improved on average by 0.06 (absolute value) on average based on using prioritized genetic markers from whole-genome sequence data. Using prioritized genetic markers from a genetically more related GWAS population resulted in slightly higher prediction accuracy (0.02 absolute value) compared to genetic markers derived from a random GWAS population. Using high-density SNP genotypes or imputed whole-genome sequence data in GBLUP showed almost no improvement in genomic prediction accuracy however, accounting for different marker allele frequencies in reference population according to a breed-adjusted GRM resulted to on average 0.024 (absolute value) increase in accuracy of genomic prediction.


Assuntos
Estudos de Associação Genética/veterinária , Genoma , Ovinos/genética , Animais , Marcadores Genéticos , Genômica , Genótipo , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único
11.
Genet Sel Evol ; 53(1): 58, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238208

RESUMO

BACKGROUND: Imputation to whole-genome sequence is now possible in large sheep populations. It is therefore of interest to use this data in genome-wide association studies (GWAS) to investigate putative causal variants and genes that underpin economically important traits. Merino wool is globally sought after for luxury fabrics, but some key wool quality attributes are unfavourably correlated with the characteristic skin wrinkle of Merinos. In turn, skin wrinkle is strongly linked to susceptibility to "fly strike" (Cutaneous myiasis), which is a major welfare issue. Here, we use whole-genome sequence data in a multi-trait GWAS to identify pleiotropic putative causal variants and genes associated with changes in key wool traits and skin wrinkle. RESULTS: A stepwise conditional multi-trait GWAS (CM-GWAS) identified putative causal variants and related genes from 178 independent quantitative trait loci (QTL) of 16 wool and skin wrinkle traits, measured on up to 7218 Merino sheep with 31 million imputed whole-genome sequence (WGS) genotypes. Novel candidate gene findings included the MAT1A gene that encodes an enzyme involved in the sulphur metabolism pathway critical to production of wool proteins, and the ESRP1 gene. We also discovered a significant wrinkle variant upstream of the HAS2 gene, which in dogs is associated with the exaggerated skin folds in the Shar-Pei breed. CONCLUSIONS: The wool and skin wrinkle traits studied here appear to be highly polygenic with many putative candidate variants showing considerable pleiotropy. Our CM-GWAS identified many highly plausible candidate genes for wool traits as well as breech wrinkle and breech area wool cover.


Assuntos
Pleiotropia Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Ovinos/genética , Animais , Hialuronan Sintases/genética , Metionina Adenosiltransferase/genética , Herança Multifatorial , Proteínas de Ligação a RNA/genética , Fenômenos Fisiológicos da Pele/genética , Fibra de Lã/normas
12.
Genet Sel Evol ; 52(1): 54, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993481

RESUMO

BACKGROUND: In this study, we assessed the accuracy of genomic prediction for carcass weight (CWT), marbling score (MS), eye muscle area (EMA) and back fat thickness (BFT) in Hanwoo cattle when using genomic best linear unbiased prediction (GBLUP), weighted GBLUP (wGBLUP), and a BayesR model. For these models, we investigated the potential gain from using pre-selected single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) on imputed sequence data and from gene expression information. We used data on 13,717 animals with carcass phenotypes and imputed sequence genotypes that were split in an independent GWAS discovery set of varying size and a remaining set for validation of prediction. Expression data were used from a Hanwoo gene expression experiment based on 45 animals. RESULTS: Using a larger number of animals in the reference set increased the accuracy of genomic prediction whereas a larger independent GWAS discovery dataset improved identification of predictive SNPs. Using pre-selected SNPs from GWAS in GBLUP improved accuracy of prediction by 0.02 for EMA and up to 0.05 for BFT, CWT, and MS, compared to a 50 k standard SNP array that gave accuracies of 0.50, 0.47, 0.58, and 0.47, respectively. Accuracy of prediction of BFT and CWT increased when BayesR was applied with the 50 k SNP array (0.02 and 0.03, respectively) and was further improved by combining the 50 k array with the top-SNPs (0.06 and 0.04, respectively). By contrast, using BayesR resulted in limited improvement for EMA and MS. wGBLUP did not improve accuracy but increased prediction bias. Based on the RNA-seq experiment, we identified informative expression quantitative trait loci, which, when used in GBLUP, improved the accuracy of prediction slightly, i.e. between 0.01 and 0.02. SNPs that were located in genes, the expression of which was associated with differences in trait phenotype, did not contribute to a higher prediction accuracy. CONCLUSIONS: Our results show that, in Hanwoo beef cattle, when SNPs are pre-selected from GWAS on imputed sequence data, the accuracy of prediction improves only slightly whereas the contribution of SNPs that are selected based on gene expression is not significant. The benefit of statistical models to prioritize selected SNPs for estimating genomic breeding values is trait-specific and depends on the genetic architecture of each trait.


Assuntos
Cruzamento/métodos , Bovinos/genética , Estudo de Associação Genômica Ampla/métodos , Carne/normas , Animais , Cruzamento/normas , Bovinos/fisiologia , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/normas , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/métodos
13.
J Anim Breed Genet ; 137(3): 281-291, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31535413

RESUMO

The objectives of this study were to compare different models for analysing body weight (BW) and average daily feed intake (ADFI) data collected during a 70-day feedlot test period and to explore whether genetic parameters change over time to evaluate the implications of selection response. (Co)variance components were estimated using repeatability and random regression models in 2,071 Angus steers. Models included fixed effects of contemporary group, defined as herd-year-observation_date-age, with additive genetic and permanent environmental components as random effects. Models were assessed based on the log likelihood, Akaike's information criterion and the Bayesian information criterion. For both traits, random regression models (RRMs) presented a better fit, indicating that genetic parameters change over the test period. Using a two-trait RRM, the heritability from day 1 up to day 70 for BW increased from 0.40 to 0.50, while for ADFI, it decreased from 0.44 to 0.33. The genetic correlation increased from 0.53 at day 1 up to 0.79 at day 70. Selection based on an index assuming no change in genetic parameters would yield a 2.78%-3.13% lower selection response compared to an index using parameters estimated with RRMs and assuming these genetic parameters are correct. Results imply that it may be beneficial to implement RRMs to account for the change of parameters across the feedlot period in feed efficiency traits.


Assuntos
Ração Animal/estatística & dados numéricos , Peso Corporal/genética , Cruzamento/estatística & dados numéricos , Ingestão de Alimentos/genética , Animais , Teorema de Bayes , Bovinos , Feminino , Masculino , Modelos Genéticos
14.
Asian-Australas J Anim Sci ; 33(11): 1741-1754, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32106654

RESUMO

OBJECTIVE: This study was conducted to estimate genetic parameters for milk yield traits using daily milk yield records from parlour data generated in an intensively managed commercial dairy farm with Jersey and Jersey-Friesian cows in Sri Lanka. METHODS: Genetic parameters were estimated for first and second lactation predicted and realized 305-day milk yield using univariate animal models. Genetic parameters were also estimated for total milk yield for each 30-day intervals of the first lactation using univariate animal models and for daily milk yield using random regression models fitting second-order Legendre polynomials and assuming heterogeneous residual variances. Breeding values for predicted 305-day milk yield were estimated using an animal model. RESULTS: For the first lactation, the heritability of predicted 305-day milk yield in Jersey cows (0.08±0.03) was higher than that of Jersey-Friesian cows (0.02±0.01). The second lactation heritability estimates were similar to that of first lactation. The repeatability of the daily milk records was 0.28±0.01 and the heritability ranged from 0.002±0.05 to 0.19±0.02 depending on day of milk. Pearson product-moment correlations between the bull estimated breeding values (EBVs) in Australia and bull EBVs in Sri Lanka for 305-day milk yield were 0.39 in Jersey cows and -0.35 in Jersey-Friesian cows. CONCLUSION: The heritabilities estimated for milk yield in Jersey and Jersey-Friesian cows in Sri Lanka were low, and were associated with low additive genetic variances for the traits. Sire differences in Australia were not expressed in the tropical low-country of Sri Lanka. Therefore, genetic progress achieved by importing genetic material from Australia can be expected to be slow. This emphasizes the need for a within-country evaluation of bulls to produce locally adapted dairy cows.

15.
BMC Genomics ; 20(1): 939, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810463

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) are extensively used to identify single nucleotide polymorphisms (SNP) underlying the genetic variation of complex traits. However, much uncertainly often still exists about the causal variants and genes at quantitative trait loci (QTL). The aim of this study was to identify QTL associated with residual feed intake (RFI) and genes in these regions whose expression is also associated with this trait. Angus cattle (2190 steers) with RFI records were genotyped and imputed to high density arrays (770 K) and used for a GWAS approach to identify QTL associated with RFI. RNA sequences from 126 Angus divergently selected for RFI were analyzed to identify the genes whose expression was significantly associated this trait with special attention to those genes residing in the QTL regions. RESULTS: The heritability for RFI estimated for this Angus population was 0.3. In a GWAS, we identified 78 SNPs associated with RFI on six QTL (on BTA1, BTA6, BTA14, BTA17, BTA20 and BTA26). The most significant SNP was found on chromosome BTA20 (rs42662073) and explained 4% of the genetic variance. The minor allele frequencies of significant SNPs ranged from 0.05 to 0.49. All regions, except on BTA17, showed a significant dominance effect. In 1 Mb windows surrounding the six significant QTL, we found 149 genes from which OAS2, STC2, SHOX, XKR4, and SGMS1 were the closest to the most significant QTL on BTA17, BTA20, BTA1, BTA14, and BTA26, respectively. In a 2 Mb windows around the six significant QTL, we identified 15 genes whose expression was significantly associated with RFI: BTA20) NEURL1B and CPEB4; BTA17) RITA1, CCDC42B, OAS2, RPL6, and ERP29; BTA26) A1CF, SGMS1, PAPSS2, and PTEN; BTA1) MFSD1 and RARRES1; BTA14) ATP6V1H and MRPL15. CONCLUSIONS: Our results showed six QTL regions associated with RFI in a beef Angus population where five of these QTL contained genes that have expression associated with this trait. Therefore, here we show that integrating information from gene expression and GWAS studies can help to better understand the genetic mechanisms that determine variation in complex traits.


Assuntos
Ingestão de Alimentos , Perfilação da Expressão Gênica/veterinária , Estudo de Associação Genômica Ampla/veterinária , Locos de Características Quantitativas , Animais , Bovinos , Mapeamento Cromossômico/veterinária , Feminino , Regulação da Expressão Gênica , Frequência do Gene , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA/veterinária
16.
Genet Sel Evol ; 51(1): 37, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31269896

RESUMO

BACKGROUND: This study aimed at identifying genomic regions that underlie genetic variation of worm egg count, as an indicator trait for parasite resistance in a large population of Australian sheep, which was genotyped with the high-density 600 K Ovine single nucleotide polymorphism array. This study included 7539 sheep from different locations across Australia that underwent a field challenge with mixed gastrointestinal parasite species. Faecal samples were collected and worm egg counts for three strongyle species, i.e. Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis were determined. Data were analysed using genome-wide association studies (GWAS) and regional heritability mapping (RHM). RESULTS: Both RHM and GWAS detected a region on Ovis aries (OAR) chromosome 2 that was highly significantly associated with parasite resistance at a genome-wise false discovery rate of 5%. RHM revealed additional significant regions on OAR6, 18, and 24. Pathway analysis revealed 13 genes within these significant regions (SH3RF1, HERC2, MAP3K, CYFIP1, PTPN1, BIN1, HERC3, HERC5, HERC6, IBSP, SPP1, ISG20, and DET1), which have various roles in innate and acquired immune response mechanisms, as well as cytokine signalling. Other genes involved in haemostasis regulation and mucosal defence were also detected, which are important for protection of sheep against invading parasites. CONCLUSIONS: This study identified significant genomic regions on OAR2, 6, 18, and 24 that are associated with parasite resistance in sheep. RHM was more powerful in detecting regions that affect parasite resistance than GWAS. Our results support the hypothesis that parasite resistance is a complex trait and is determined by a large number of genes with small effects, rather than by a few major genes with large effects.


Assuntos
Enteropatias Parasitárias/veterinária , Doenças dos Ovinos/genética , Doenças dos Ovinos/parasitologia , Animais , Austrália , Mapeamento Cromossômico/veterinária , Resistência à Doença/genética , Fezes/parasitologia , Estudo de Associação Genômica Ampla/veterinária , Hereditariedade , Enteropatias Parasitárias/genética , Ovinos/genética
18.
Genet Sel Evol ; 51(1): 72, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805849

RESUMO

BACKGROUND: Whole-genome sequence (WGS) data could contain information on genetic variants at or in high linkage disequilibrium with causative mutations that underlie the genetic variation of polygenic traits. Thus far, genomic prediction accuracy has shown limited increase when using such information in dairy cattle studies, in which one or few breeds with limited diversity predominate. The objective of our study was to evaluate the accuracy of genomic prediction in a multi-breed Australian sheep population of relatively less related target individuals, when using information on imputed WGS genotypes. METHODS: Between 9626 and 26,657 animals with phenotypes were available for nine economically important sheep production traits and all had WGS imputed genotypes. About 30% of the data were used to discover predictive single nucleotide polymorphism (SNPs) based on a genome-wide association study (GWAS) and the remaining data were used for training and validation of genomic prediction. Prediction accuracy using selected variants from imputed sequence data was compared to that using a standard array of 50k SNP genotypes, thereby comparing genomic best linear prediction (GBLUP) and Bayesian methods (BayesR/BayesRC). Accuracy of genomic prediction was evaluated in two independent populations that were each lowly related to the training set, one being purebred Merino and the other crossbred Border Leicester x Merino sheep. RESULTS: A substantial improvement in prediction accuracy was observed when selected sequence variants were fitted alongside 50k genotypes as a separate variance component in GBLUP (2GBLUP) or in Bayesian analysis as a separate category of SNPs (BayesRC). From an average accuracy of 0.27 in both validation sets for the 50k array, the average absolute increase in accuracy across traits with 2GBLUP was 0.083 and 0.073 for purebred and crossbred animals, respectively, whereas with BayesRC it was 0.102 and 0.087. The average gain in accuracy was smaller when selected sequence variants were treated in the same category as 50k SNPs. Very little improvement over 50k prediction was observed when using all WGS variants. CONCLUSIONS: Accuracy of genomic prediction in diverse sheep populations increased substantially by using variants selected from whole-genome sequence data based on an independent multi-breed GWAS, when compared to genomic prediction using standard 50K genotypes.


Assuntos
Genômica/métodos , Ovinos/genética , Sequenciamento Completo do Genoma , Animais , Austrália , Teorema de Bayes , Cruzamento , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
19.
Genet Sel Evol ; 51(1): 32, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31242855

RESUMO

BACKGROUND: This study aimed at (1) comparing the accuracies of genomic prediction for parasite resistance in sheep based on whole-genome sequence (WGS) data to those based on 50k and high-density (HD) single nucleotide polymorphism (SNP) panels; (2) investigating whether the use of variants within quantitative trait loci (QTL) regions that were selected from regional heritability mapping (RHM) in an independent dataset improved the accuracy more than variants selected from genome-wide association studies (GWAS); and (3) comparing the prediction accuracies between variants selected from WGS data to variants selected from the HD SNP panel. RESULTS: The accuracy of genomic prediction improved marginally from 0.16 ± 0.02 and 0.18 ± 0.01 when using all the variants from 50k and HD genotypes, respectively, to 0.19 ± 0.01 when using all the variants from WGS data. Fitting a GRM from the selected variants alongside a GRM from the 50k SNP genotypes improved the prediction accuracy substantially compared to fitting the 50k SNP genotypes alone. The gain in prediction accuracy was slightly more pronounced when variants were selected from WGS data compared to when variants were selected from the HD panel. When sequence variants that passed the GWAS [Formula: see text] threshold of 3 across the entire genome were selected, the prediction accuracy improved by 5% (up to 0.21 ± 0.01), whereas when selection was limited to sequence variants that passed the same GWAS [Formula: see text] threshold of 3 in regions identified by RHM, the accuracy improved by 9% (up to 0.25 ± 0.01). CONCLUSIONS: Our results show that through careful selection of sequence variants from the QTL regions, the accuracy of genomic prediction for parasite resistance in sheep can be improved. These findings have important implications for genomic prediction in sheep.


Assuntos
Doenças dos Ovinos/genética , Doenças dos Ovinos/parasitologia , Sequenciamento Completo do Genoma/veterinária , Animais , Austrália , Resistência à Doença/genética , Feminino , Marcadores Genéticos , Testes Genéticos/veterinária , Variação Genética , Estudo de Associação Genômica Ampla/veterinária , Masculino , Contagem de Ovos de Parasitas/veterinária , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Ovinos
20.
Genet Sel Evol ; 51(1): 1, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30654735

RESUMO

BACKGROUND: The use of whole-genome sequence (WGS) data for genomic prediction and association studies is highly desirable because the causal mutations should be present in the data. The sequencing of 935 sheep from a range of breeds provides the opportunity to impute sheep genotyped with single nucleotide polymorphism (SNP) arrays to WGS. This study evaluated the accuracy of imputation from SNP genotypes to WGS using this reference population of 935 sequenced sheep. RESULTS: The accuracy of imputation from the Ovine Infinium® HD BeadChip SNP (~ 500 k) to WGS was assessed for three target breeds: Merino, Poll Dorset and F1 Border Leicester × Merino. Imputation accuracy was highest for the Poll Dorset breed, although there were more Merino individuals in the sequenced reference population than Poll Dorset individuals. In addition, empirical imputation accuracies were higher (by up to 1.7%) when using larger multi-breed reference populations compared to using a smaller single-breed reference population. The mean accuracy of imputation across target breeds using the Minimac3 or the FImpute software was 0.94. The empirical imputation accuracy varied considerably across the genome; six chromosomes carried regions of one or more Mb with a mean imputation accuracy of < 0.7. Imputation accuracy in five variant annotation classes ranged from 0.87 (missense) up to 0.94 (intronic variants), where lower accuracy corresponded to higher proportions of rare alleles. The imputation quality statistic reported from Minimac3 (R2) had a clear positive relationship with the empirical imputation accuracy. Therefore, by first discarding imputed variants with an R2 below 0.4, the mean empirical accuracy across target breeds increased to 0.97. Although accuracy of genomic prediction was less affected by filtering on R2 in a multi-breed population of sheep with imputed WGS, the genomic heritability clearly tended to be lower when using variants with an R2 ≤ 0.4. CONCLUSIONS: The mean imputation accuracy was high for all target breeds and was increased by combining smaller breed sets into a multi-breed reference. We found that the Minimac3 software imputation quality statistic (R2) was a useful indicator of empirical imputation accuracy, enabling removal of very poorly imputed variants before downstream analyses.


Assuntos
Estudo de Associação Genômica Ampla/normas , Ovinos/genética , Software/normas , Sequenciamento Completo do Genoma/normas , Animais , Estudo de Associação Genômica Ampla/veterinária , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA