Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int Immunol ; 32(1): 57-68, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31633754

RESUMO

Increased T helper (Th)1/Th17 immune responses are a hallmark of Crohn's disease (CD) immunopathogenesis. CD90+ (myo-)fibroblasts (MFs) are abundant cells in the normal (N) intestinal mucosa contributing to mucosal tolerance via suppression of Th1 cell activity through cell surface membrane-bound PD-L1 (mPD-L1). CD-MFs have a decreased level of mPD-L1. Consequently, mPD-L1-mediated suppression of Th1 cells by CD-MFs is decreased, yet the mechanism responsible for the reduction in mPDL-1 is unknown. Increased expression of matrix metalloproteinases (MMPs) has been reported in CD. Herein we observed that when compared to N- and ulcerative colitis (UC)-MFs, CD-MFs increase in LPS-inducible levels of MMP-7 and -9 with a significant increase in both basal and inducible MMP-10. A similar pattern of MMP expression was observed in the CD-inflamed mucosa. Treatment of N-MFs with a combination of recombinant human MMP-7, -9 and -10 significantly decreased mPD-L1. In contrast, inhibition of MMP activity with MMP inhibitors or anti-MMP-10 neutralizing antibodies restores mPD-L1 on CD-MFs. CD-MFs demonstrated reduced capacity to suppress Th1 and Th17 responses from activated CD4+ T cells. By contrast, supplementation of the CD-MF:T-cell co-cultures with MMP inhibitors or anti-MMP neutralizing antibodies restored the CD-MF-mediated suppression. Our data suggest that (i) increased MMP-10 expression by CD-MFs and concomitant cleavage of PD-L1 from the surface of CD-MFs are likely to be one of the factors contributing to the decrease of mPD-L1-mediated suppression of Th1/Th17 cells in CD; and (ii) MMPs are likely to have a significant role in the intestinal mucosal immune responses.


Assuntos
Antígeno B7-H1/metabolismo , Membrana Celular/metabolismo , Doença de Crohn/metabolismo , Fibroblastos/metabolismo , Metaloproteinases da Matriz/metabolismo , Antígenos Thy-1/metabolismo , Antígeno B7-H1/imunologia , Membrana Celular/imunologia , Doença de Crohn/imunologia , Doença de Crohn/patologia , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Humanos , Metaloproteinases da Matriz/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Antígenos Thy-1/imunologia
2.
Am J Respir Crit Care Med ; 198(7): 914-927, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29727583

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic interstitial lung disease characterized by (myo)fibroblast accumulation and collagen deposition. Resistance to Fas-induced apoptosis is thought to facilitate (myo)fibroblast persistence in fibrotic lung tissues by poorly understood mechanisms. OBJECTIVES: To test the hypothesis that PTPN13 (protein tyrosine phosphatase-N13) is expressed by IPF lung (myo)fibroblasts, promotes their resistance to Fas-induced apoptosis, and contributes to the development of pulmonary fibrosis. METHODS: PTPN13 was localized in lung tissues from patients with IPF and control subjects by immunohistochemical staining. Inhibition of PTPN13 function in primary IPF and normal lung (myo)fibroblasts was accomplished by: 1) downregulation with TNF-α (tumor necrosis factor-α)/IFN-γ, 2) siRNA knockdown, or 3) a cell-permeable Fas/PTPN13 interaction inhibitory peptide. The role of PTPN13 in the development of pulmonary fibrosis was assessed in mice with genetic deficiency of PTP-BL, the murine ortholog of PTPN13. MEASUREMENTS AND MAIN RESULTS: PTPN13 was constitutively expressed by (myo)fibroblasts in the fibroblastic foci of patients with IPF. Human lung (myo)fibroblasts, which are resistant to Fas-induced apoptosis, basally expressed PTPN13 in vitro. TNF-α/IFN-γ or siRNA-mediated PTPN13 downregulation and peptide-mediated inhibition of the Fas/PTPN13 interaction in human lung (myo)fibroblasts promoted Fas-induced apoptosis. Bleomycin-challenged PTP-BL-/- mice, while developing inflammatory lung injury, exhibited reduced pulmonary fibrosis compared with wild-type mice. CONCLUSIONS: These findings suggest that PTPN13 mediates the resistance of human lung (myo)fibroblasts to Fas-induced apoptosis and promotes pulmonary fibrosis in mice. Our results suggest that strategies aimed at interfering with PTPN13 expression or function may represent a novel strategy to reduce fibrosis in IPF.


Assuntos
Apoptose/genética , Bleomicina/farmacologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Miofibroblastos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Animais , Biópsia por Agulha , Estudos de Casos e Controles , Regulação para Baixo , Resistência Microbiana a Medicamentos , Feminino , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , Valores de Referência , Técnicas de Cultura de Tecidos , Receptor fas/efeitos dos fármacos
3.
Pathol Biol (Paris) ; 62(2): 108-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24661975

RESUMO

Human mesenchymal stem cells (MSCs) are a heterogeneous population of fibroblast-like cells, which are present in different locations, including bone marrow, adipose tissue, extra-foetal tissues, gingiva and dermis. MSCs, which present multipotency capacities, important expansive potential and immunotolerance properties, remain an attractive tool for tissue repair and regenerative medicine. Currently, several studies and clinical trials highlight the use of MSCs in cutaneous repair underlining that their effects are essentially due to the numerous factors that they release. MSCs are also used in skin substitute development. In this study, we will first discuss the different sources of MSCs actually available. We will then present results showing that bone marrow-derived MSCs prepared according to Good Manufacturing Practices and included in a dermal equivalent are able to promote appropriate epidermis growth and differentiation. These data demonstrate that bone marrow-derived MSCs represent a satisfactory alternative to dermal fibroblasts in order to develop skin substitute. In addition, MSCs could provide a useful alternative to sustain epidermis development and to promote wound healing.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Pele Artificial , Técnicas de Fechamento de Ferimentos , Diferenciação Celular , Células Cultivadas , Derme/citologia , Células Epidérmicas , Fibroblastos/transplante , Humanos , Metaloproteinases da Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Especificidade de Órgãos , Pele/lesões , Engenharia Tecidual , Alicerces Teciduais , Cicatrização
4.
BMC Mol Cell Biol ; 22(1): 19, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711932

RESUMO

BACKGROUND: The asthma-related airway wall remodeling is associated i.a. with a damage of bronchial epithelium and subepithelial fibrosis. Functional interactions between human bronchial epithelial cells and human bronchial fibroblasts are known as the epithelial-mesenchymal trophic unit (EMTU) and are necessary for a proper functioning of lung tissue. However, a high concentration of the transforming growth factor-ß1 (TGF-ß1) in the asthmatic bronchi drives the structural disintegrity of epithelium with the epithelial-to-mesenchymal transition (EMT) of the bronchial epithelial cells, and of subepithelial fibrosis with the fibroblast-to-myofibroblast transition (FMT) of the bronchial fibroblasts. Since previous reports indicate different intrinsic properties of the human bronchial epithelial cells and human bronchial fibroblasts which affect their EMT/FMT potential beetween cells derived from asthmatic and non-asthmatic patients, cultured separatelly in vitro, we were interested to see whether corresponding effects could be obtained in a co-culture of the bronchial epithelial cells and bronchial fibroblasts. In this study, we investigate the effects of the TGF-ß1 on the EMT markers of the bronchial epithelial cells cultured in the air-liquid-interface and effectiveness of FMT in the bronchial fibroblast populations in the EMTU models. RESULTS: Our results show that the asthmatic co-cultures are more sensitive to the TGF-ß1 than the non-asthmatic ones, which is associated with a higher potential of the asthmatic bronchial cells for a profibrotic response, analogously to be observed in '2D' cultures. They also indicate a noticeable impact of human bronchial epithelial cells on the TGF-ß1-induced FMT, stronger in the asthmatic bronchial fibroblast populations in comparison to the non-asthmatic ones. Moreover, our results suggest the protective effects of fibroblasts on the structure of the TGF-ß1-exposed mucociliary differentiated bronchial epithelial cells and their EMT potential. CONCLUSIONS: Our data are the first to demonstrate a protective effect of the human bronchial fibroblasts on the properties of the human bronchial epithelial cells, which suggests that intrinsic properties of not only epithelium but also subepithelial fibroblasts affect a proper condition and function of the EMTU in both normal and asthmatic individuals.


Assuntos
Asma/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Fibroblastos/metabolismo , Adulto , Idoso , Brônquios/metabolismo , Estudos de Casos e Controles , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Pessoa de Meia-Idade , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Adulto Jovem
5.
J Crohns Colitis ; 15(8): 1362-1375, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33506258

RESUMO

BACKGROUND AND AIMS: Little is known about the presence and function of tissue-resident mesenchymal stem cells [MtSCs] within the gastrointestinal mucosa in health and inflammatory bowel disease [IBD]. The contribution of MtSCs to the generation of inflammatory fibroblasts during IBD is also poorly understood. We hypothesized that IBD-MtSCs are impaired and contribute to the generation of the pathological myofibroblasts in IBD. METHODS: In a cohort of clinically and endoscopically active IBD patients and normal controls, we used quantitative RT-PCR and stem cell differentiation assays, as well as confocal microscopy, to characterize MtSCs. RESULTS: Expression of two stem cell markers, Oct4 and ALDH1A, was increased in the inflamed IBD colonic mucosa and correlated with an increase of the mesenchymal lineage marker Grem1 in ulcerative colitis [UC], but not Crohn's disease [CD]. Increased proliferation and aberrant differentiation of Oct4+Grem1+ MtSC-like cells was observed in UC, but not in CD colonic mucosa. In contrast to normal and UC-derived MtSCs, CD-MtSCs lose their clonogenic and most of their differentiation capacities. Our data also suggest that severe damage to these cells in CD may account for the pathological PD-L1low phenotype of CD myofibroblasts. In contrast, aberrant differentiation of MtSCs appears to be involved in the appearance of pathological partially differentiated PD-L1high myofibroblasts within the inflammed colonic mucosa in UC. CONCLUSION: Our data show, for the first time, that the progenitor functions of MtSCs are differentially impaired in CD vs UC, providing a scientific rationale for the use of allogeneic MSC therapy in IBD, and particularly in CD.


Assuntos
Colite Ulcerativa/patologia , Doença de Crohn/patologia , Células-Tronco Mesenquimais/patologia , Adolescente , Adulto , Família Aldeído Desidrogenase 1/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Estudos de Coortes , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/patologia , Masculino , Microscopia Confocal , Miofibroblastos/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Retinal Desidrogenase/metabolismo , Adulto Jovem
6.
Cells ; 9(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003290

RESUMO

The present Special Issue on "Cells in Cardiovascular Disease" wants to offer a general overview of current cardiovascular research and illustrate how advances in the molecular characterization at the cellular level are providing unique insights into pathologies of the circulatory system [...].


Assuntos
Doenças Cardiovasculares/terapia , Insuficiência Cardíaca/terapia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Proteína Desacopladora 2/genética , Remodelação Ventricular/genética
7.
Scars Burn Heal ; 6: 2059513120908857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528734

RESUMO

BACKGROUND: In burn patients, wound healing is often accompanied by hypertrophic scar (HS) development, resulting in both functional and aesthetic problems. HSs are characterised by abundant presence of myofibroblasts that contribute to overproduction of extracellular matrix (ECM) that is regulated by the TGF-ß signalling pathway. Studies have shown that inhibition of TGF-ß receptors in fibrotic diseases reduces the fibrotic load. In the present study, we aim to inactivate ALK5, also known as TGF-ß receptor I, in human HS fibroblasts by exon skipping using antisense oligonucleotides (AONs). METHODS: HS biopsies were used to isolate and set up fibroblast monocultures. AONs targeting ALK5 were supplemented to the fibroblast cultures to induce exon skipping, while pharmacological ALK5 inhibition was induced using SB431542. AON delivery in HS fibroblasts was examined using immunofluorescence (IF), while TGF-ß signalling downstream targets, such as Smad2/3, PAI-1, ACTA2, COL1A1 and COL3A1, were analysed using touchdown polymerase chain reaction (PCR), quantitative PCR (qPCR), IF or western blotting. RESULTS: Our data clearly demonstrate that AONs were successfully delivered in the nuclei of HS fibroblasts and that functional exon skipping of ALK5 took place as confirmed with touchdown PCR and qPCR. In addition, exon skipping affected the expression of ECM-related genes, such as type I/III collagens, PAI-1 and CCN2. Moreover, AON treatment did not affect the migration of HS fibroblasts in a model for wound healing. CONCLUSION: Exon skipping is a promising tool to modulate the TGF-ß signalling pathway in HS. This would open a therapeutic window for the treatment of patients suffering from HSs.

8.
Adv Wound Care (New Rochelle) ; 8(12): 703-714, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31750017

RESUMO

Objective: Improving the treatment of deep tissue injuries, such as burns, by the use of computational modeling, instead of by animal experiments. Approach: Development of mathematical relations between various parameters and processes. Furthermore, solving the resulting problems through the use of numerical methods, such as finite-element methods. Results: Using our framework, we are able to simulate wound contraction in two dimensions, in which the wound area is followed over time. Our studies indicate that the degree of contraction can be reduced if the appearance of myofibroblasts is inhibited and if their apoptosis is enhanced. Furthermore, after skin grafting, splinting procedures are to be continued as long as TG-beta like growth factor levels are significant. Innovation: A morphoelasticity-based and computational-probabilistic framework for studying the evolution of burn injuries. Conclusion: The current framework is able to reproduce the time evolution of the wound area as observed in clinical results for skin grafts.

9.
J Dermatol Sci ; 78(1): 26-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25703057

RESUMO

BACKGROUND: Granulomatous reactions to poly-L-lactic acid (PLLA)-based filler have been described previously. Neither the biological background of these partly late-onset reactions or the desired augmenting effect of PLLA has been studied to date. Histological studies have revealed foreign body reactions and foreign body giant cell formation. OBJECTIVE: The aim of this study was to increase our knowledge about the biological mechanisms behind the augmenting effect of PLLA-based filler. METHODS: We characterised the cell infiltrate and collagen type of PLLA-treated tissue by immunofluorescence staining. The expression of genes related to collagen metabolism was determined. RESULTS: CD68(+) macrophages were found next to PLLA. CD90(+) fibroblasts were found alongside. αSMA-positive structures indicated myofibroblasts and neovascularisation. Substantial collagen type III deposition was detected next to PLLA particles and collagen type I was found at the periphery of PLLA encapsulations. mRNA expression for collagen type I and III transcripts, as well as for TGFß1 and TIMP1, was upregulated significantly. CONCLUSION: PLLA-induced augmentation is most likely based on capsule formation orchestrating macrophages, (myo-)fibroblasts, and collagen type I and III fibres. We observed considerably slower degradation of PLLA particles than described previously. Thus PLLA particles were still retrievable 28 months after subcutaneous application.


Assuntos
Técnicas Cosméticas , Preenchedores Dérmicos/administração & dosagem , Fibroblastos/efeitos dos fármacos , Ácido Láctico/administração & dosagem , Macrófagos/efeitos dos fármacos , Polímeros/administração & dosagem , Tela Subcutânea/efeitos dos fármacos , Biópsia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Preenchedores Dérmicos/efeitos adversos , Preenchedores Dérmicos/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Alemanha , Humanos , Imuno-Histoquímica , Injeções Subcutâneas , Ácido Láctico/efeitos adversos , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Pessoa de Meia-Idade , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Poliésteres , Polímeros/efeitos adversos , Polímeros/metabolismo , Estudos Prospectivos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tela Subcutânea/metabolismo , Tela Subcutânea/patologia , Fatores de Tempo , Inibidor Tecidual de Metaloproteinase-1/genética , Fator de Crescimento Transformador beta1/genética , Regulação para Cima
10.
Brain Pathol ; 24(4): 404-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24946078

RESUMO

Tissue fibrosis, or scar formation, is a common response to damage in most organs of the body. The central nervous system (CNS) is special in that fibrogenic cells are restricted to vascular and meningeal niches. However, disruption of the blood-brain barrier and inflammation can unleash stromal cells and trigger scar formation. Astroglia segregate from the inflammatory lesion core, and the so-called "glial scar" composed of hypertrophic astrocytes seals off the intact neural tissue from damage. In the lesion core, a second type of "fibrotic scar" develops, which is sensitive to inflammatory mediators. Genetic fate mapping studies suggest that pericytes and perivascular fibroblasts are activated, but other precursor cells may also be involved in generating a transient fibrous extracellular matrix in the CNS. The stromal cells sense inflammation and attract immune cells, which in turn drive myofibroblast transdifferentiation. We believe that the fibrotic scar represents a major barrier to CNS regeneration. Targeting of fibrosis may therefore prove to be a valuable therapeutic strategy for neurological disorders such as stroke, spinal cord injury and multiple sclerosis.


Assuntos
Doenças do Sistema Nervoso Central/fisiopatologia , Sistema Nervoso Central/fisiopatologia , Cicatriz/fisiopatologia , Animais , Astrócitos/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Humanos , Neuroimunomodulação/fisiologia , Pericitos/fisiologia , Células Estromais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA