Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Development ; 150(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36826401

RESUMO

Inhibitory interneurons regulate cortical circuit activity, and their dysfunction has been implicated in autism spectrum disorder (ASD). 16p11.2 microdeletions are genetically linked to 1% of ASD cases. However, few studies investigate the effects of this microdeletion on interneuron development. Using ventral telencephalic organoids derived from human induced pluripotent stem cells, we have investigated the effect of this microdeletion on organoid size, progenitor proliferation and organisation into neural rosettes, ganglionic eminence marker expression at early developmental timepoints, and expression of the neuronal marker NEUN at later stages. At early stages, deletion organoids exhibited greater variations in size with concomitant increases in relative neural rosette area and the expression of the ventral telencephalic marker COUPTFII, with increased variability in these properties. Cell cycle analysis revealed an increase in total cell cycle length caused primarily by an elongated G1 phase, the duration of which also varied more than normal. At later stages, deletion organoids increased their NEUN expression. We propose that 16p11.2 microdeletions increase developmental variability and may contribute to ASD aetiology by lengthening the cell cycle of ventral progenitors, promoting premature differentiation into interneurons.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Humanos , Transtorno do Espectro Autista/metabolismo , Telencéfalo , Neurônios/metabolismo , Interneurônios/metabolismo , Organoides
2.
Brain ; 146(8): 3347-3363, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36869767

RESUMO

Recurrent proximal 16p11.2 deletion (16p11.2del) is a risk factor for diverse neurodevelopmental disorders with incomplete penetrance and variable expressivity. Although investigation with human induced pluripotent stem cell models has confirmed disruption of neuronal development in 16p11.2del neuronal cells, which genes are responsible for abnormal cellular phenotypes and what determines the penetrance of neurodevelopmental abnormalities are unknown. We performed haplotype phasing of the 16p11.2 region in a 16p11.2del neurodevelopmental disorders cohort and generated human induced pluripotent stem cells for two 16p11.2del families with distinct residual haplotypes and variable neurodevelopmental disorder phenotypes. Using transcriptomic profiles and cellular phenotypes of the human induced pluripotent stem cell-differentiated cortex neuronal cells, we revealed MAPK3 to be a contributor to dysfunction in multiple pathways related to early neuronal development, with altered soma and electrophysiological properties in mature neuronal cells. Notably, MAPK3 expression in 16p11.2del neuronal cells varied on the basis of a 132 kb 58 single nucleotide polymorphism (SNP) residual haplotype, with the version composed entirely of minor alleles associated with reduced MAPK3 expression. Ten SNPs on the residual haplotype were mapped to enhancers of MAPK3. We functionally validated six of these SNPs by luciferase assay, implicating them in the residual haplotype-specific differences in MAPK3 expression via cis-regulation. Finally, the analysis of three different cohorts of 16p11.2del subjects showed that this minor residual haplotype is associated with neurodevelopmental disorder phenotypes in 16p11.2del carriers.


Assuntos
Deleção Cromossômica , Células-Tronco Pluripotentes Induzidas , Humanos , Haplótipos , Fenótipo , Diferenciação Celular
3.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33833053

RESUMO

Copy number variation (CNV) at the 16p11.2 locus is associated with neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. CNVs of the 16p gene can manifest in opposing head sizes. Carriers of 16p11.2 deletion tend to have macrocephaly (or brain enlargement), while those with 16p11.2 duplication frequently have microcephaly. Increases in both gray and white matter volume have been observed in brain imaging studies in 16p11.2 deletion carriers with macrocephaly. Here, we use human induced pluripotent stem cells (hiPSCs) derived from controls and subjects with 16p11.2 deletion and 16p11.2 duplication to understand the underlying mechanisms regulating brain overgrowth. To model both gray and white matter, we differentiated patient-derived iPSCs into neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). In both NPCs and OPCs, we show that CD47 (a "don't eat me" signal) is overexpressed in the 16p11.2 deletion carriers contributing to reduced phagocytosis both in vitro and in vivo. Furthermore, 16p11.2 deletion NPCs and OPCs up-regulate cell surface expression of calreticulin (a prophagocytic "eat me" signal) and its binding sites, indicating that these cells should be phagocytosed but fail to be eliminated due to elevations in CD47. Treatment of 16p11.2 deletion NPCs and OPCs with an anti-CD47 antibody to block CD47 restores phagocytosis to control levels. While the CD47 pathway is commonly implicated in cancer progression, we document a role for CD47 in psychiatric disorders associated with brain overgrowth.


Assuntos
Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Antígeno CD47/metabolismo , Transtornos Cromossômicos/metabolismo , Deficiência Intelectual/metabolismo , Adolescente , Adulto , Animais , Transtorno Autístico/patologia , Encéfalo/patologia , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/genética , Calreticulina/genética , Calreticulina/metabolismo , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 16/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Deficiência Intelectual/patologia , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo
4.
J Intellect Disabil Res ; 68(8): 969-984, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38657658

RESUMO

BACKGROUND: Despite the established knowledge that recurrent copy number variants (CNVs) at the 16p11.2 locus BP4-BP5 confer risk for behavioural and language difficulties, limited research has been conducted on the association between behavioural and social-communicative profiles. The current study aims to further delineate the prevalence, nature and severity of, and the association between, behavioural and social-communicative features of school-aged children with 16p11.2 deletion syndrome (16p11.2DS) and 16p11.2 duplication (16p11.2Dup). METHODS: A total of 68 individuals (n = 47 16p11.2DS and n = 21 16p11.2Dup) aged 6-17 years participated. Standardised intelligence tests were administered, and behavioural and social-communicative skills were assessed by standardised questionnaires. Scores of both groups were compared with population norms and across CNVs. The influence of confounding factors was investigated, and correlation analyses were performed. RESULTS: Compared with the normative sample, children with 16p11.2DS showed high rates of social responsiveness (67%) and communicative problems (69%), while approximately half (52%) of the patients displayed behavioural problems. Children with 16p11.2Dup demonstrated even higher rates of social-communicative problems (80-90%) with statistically significantly more externalising and overall behavioural challenges (89%). In both CNV groups, there was a strong positive correlation between behavioural and social-communicative skills. CONCLUSIONS: School-aged children with 16p11.2 CNVs show high rates of behavioural, social responsiveness and communicative problems compared with the normative sample. These findings point to the high prevalence of autistic traits and diagnoses in these CNV populations. Moreover, there is a high comorbidity between behavioural and social-communicative problems. Patients with difficulties in both domains are vulnerable and need closer clinical follow-up and care.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 16 , Deficiência Intelectual , Humanos , Criança , Masculino , Feminino , Adolescente , Cromossomos Humanos Par 16/genética , Deficiência Intelectual/genética , Variações do Número de Cópias de DNA , Habilidades Sociais , Síndrome de Smith-Magenis/genética , Comportamento Social , Duplicação Cromossômica , Transtorno Autístico , Transtornos Cromossômicos
5.
Int J Neuropsychopharmacol ; 25(10): 877-889, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35907244

RESUMO

BACKGROUND: Microdeletion of the human 16p11.2 gene locus confers risk for autism spectrum disorders and intellectual disability. How 16p11.2 deletion is linked to these neurodevelopmental disorders and whether there are treatment avenues for the manifested phenotypes remain to be elucidated. Emerging evidence suggests that epigenetic aberrations are strongly implicated in autism. METHODS: We performed behavioral and electrophysiological experiments to examine the therapeutic effects of epigenetic drugs in transgenic mice carrying 16p11.2 deletion (16p11del/+). RESULTS: We found that 16p11del/+ mice exhibited a significantly reduced level of histone acetylation in the prefrontal cortex (PFC). A short (3-day) treatment with class I histone deacetylase (HDAC) inhibitor MS-275 or Romidepsin led to the prolonged (3-4 weeks) rescue of social and cognitive deficits in 16p11del/+ mice. Concomitantly, MS-275 treatment reversed the hypoactivity of PFC pyramidal neurons and the hyperactivity of PFC fast-spiking interneurons. Moreover, the diminished N-methyl-D-aspartate (NMDA) receptor-mediated synaptic currents and the elevated GABAA receptor-mediated synaptic currents in PFC pyramidal neurons of 16p11del/+ mice were restored to control levels by MS-275 treatment. CONCLUSIONS: Our results suggest that HDAC inhibition provides a highly effective therapeutic strategy for behavioral deficits and excitation/inhibition imbalance in 16p11del/+ mice, likely via normalization of synaptic function in the PFC.


Assuntos
Histona Desacetilases , N-Metilaspartato , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Histonas , Camundongos Transgênicos , Córtex Pré-Frontal , Receptores de GABA-A , Deleção Cromossômica
6.
Kidney Int ; 98(4): 1020-1030, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32450157

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUTs) are the most common cause of chronic kidney disease in children. Human 16p11.2 deletions have been associated with CAKUT, but the responsible molecular mechanism remains to be illuminated. To explore this, we investigated 102 carriers of 16p11.2 deletion from multi-center cohorts, among which we retrospectively ascertained kidney morphologic and functional data from 37 individuals (12 Chinese and 25 Caucasian/Hispanic). Significantly higher CAKUT rates were observed in 16p11.2 deletion carriers (about 25% in Chinese and 16% in Caucasian/Hispanic) than those found in the non-clinically ascertained general populations (about 1/1000 found at autopsy). Furthermore, we identified seven additional individuals with heterozygous loss-of-function variants in TBX6, a gene that maps to the 16p11.2 region. Four of these seven cases showed obvious CAKUT. To further investigate the role of TBX6 in kidney development, we engineered mice with mutated Tbx6 alleles. The Tbx6 heterozygous null (i.e., loss-of-function) mutant (Tbx6+/‒) resulted in 13% solitary kidneys. Remarkably, this incidence increased to 29% in a compound heterozygous model (Tbx6mh/‒) that reduced Tbx6 gene dosage to below haploinsufficiency, by combining the null allele with a novel mild hypomorphic allele (mh). Renal hypoplasia was also frequently observed in these Tbx6-mutated mouse models. Thus, our findings in patients and mice establish TBX6 as a novel gene involved in CAKUT and its gene dosage insufficiency as a potential driver for kidney defects observed in the 16p11.2 microdeletion syndrome.


Assuntos
Escoliose , Animais , Humanos , Rim , Camundongos , Estudos Retrospectivos , Proteínas com Domínio T/genética , Anormalidades Urogenitais , Refluxo Vesicoureteral
7.
Am J Med Genet B Neuropsychiatr Genet ; 183(6): 380-391, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652891

RESUMO

Expressive language impairment is one of the most frequently associated clinical features of 16p11.2 copy number variations (CNV). However, our understanding of the language profiles of individuals with 16p11.2 CNVs is still limited. This study builds upon previous work in the Simons Variation in Individuals Project (VIP, now known as Simons Searchlight), to characterize language abilities in 16p11.2 deletion and duplication carriers using comprehensive assessments. Participants included 110 clinically ascertained children and family members (i.e., siblings and cousins) with 16p11.2 BP4-BP5 deletion and 58 with 16p11.2 BP4-BP5 duplication between the ages of 2-23 years, most of whom were verbal. Regression analyses were performed to quantify variation in language abilities in the presence of the 16p11.2 deletion and duplication, both with and without autism spectrum disorder (ASD) and cognitive deficit. Difficulties in pragmatic skills were equally prevalent in verbal individuals in both deletion and duplication groups. NVIQ had moderate quantifiable effects on language scores in syntax and semantics/pragmatics (a decrease of less than 1 SD) for both groups. Overall, language impairments persisted even after controlling for ASD diagnosis and cognitive deficit. Language impairment is one of the core clinical features of individuals with 16p11.2 CNVs even in the absence of ASD and cognitive deficit. Results highlight the need for more comprehensive and rigorous assessment of language impairments to maximize outcomes in carriers of 16p11.2 CNVs.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/fisiopatologia , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Comportamento Verbal/fisiologia , Adolescente , Adulto , Transtorno do Espectro Autista/genética , Criança , Pré-Escolar , Deleção Cromossômica , Duplicação Cromossômica/genética , Cromossomos Humanos Par 16/genética , Disfunção Cognitiva/genética , Variações do Número de Cópias de DNA/genética , Família , Feminino , Heterozigoto , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Irmãos , Fala/fisiologia , Adulto Jovem
8.
J Neurosci ; 38(26): 5939-5948, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29853627

RESUMO

Microdeletion of the human 16p11.2 gene locus has been linked to autism spectrum disorder (ASD) and intellectual disability and confers risk for a number of other neurodevelopmental deficits. Transgenic mice carrying 16p11.2 deletion (16p11+/-) display phenotypes reminiscent of those in human patients with 16p11.2 deletion syndrome, but the molecular mechanisms and treatment strategies for these phenotypes remain unknown. In this study, we have found that both male and female 16p11+/- mice exhibit deficient NMDA receptor (NMDAR) function in the medial prefrontal cortex (mPFC), a brain region critical for high-level "executive" functions. Elevating the activity of mPFC pyramidal neurons with a CaMKII-driven Gq-DREADD (Gq-coupled designer receptors exclusively activated by designer drugs) led to the significant increase of NR2B subunit phosphorylation and the restoration of NMDAR function, as well as the amelioration of cognitive and social impairments in 16p11+/- mice. These results suggest that NMDAR hypofunction in PFC may contribute to the pathophysiology of 16p11.2 deletion syndrome and that restoring PFC activity is sufficient to rescue the behavioral deficits.SIGNIFICANCE STATEMENT The 16p11.2 deletion syndrome is strongly associated with autism spectrum disorder and intellectual disability. Using a mouse model carrying the 16p11.2 deletion, 16p11+/-, we identified NMDA receptor hypofunction in the prefrontal cortex (PFC). Elevating the activity of PFC pyramidal neurons with a chemogenetic tool, Gq-DREADD, led to the restoration of NMDA receptor function and the amelioration of cognitive and social impairments in 16p11+/- mice. These results have revealed a novel route for potential therapeutic intervention of 16p11.2 deletion syndrome.


Assuntos
Transtorno Autístico/metabolismo , Transtornos Cromossômicos/metabolismo , Deficiência Intelectual/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Deleção Cromossômica , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 16/metabolismo , Modelos Animais de Doenças , Feminino , Deficiência Intelectual/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Córtex Pré-Frontal/fisiopatologia
9.
Genet Med ; 21(4): 816-825, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30190612

RESUMO

PURPOSE: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. METHODS: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. RESULTS: The number of rare likely deleterious variants in functionally intolerant genes ("other hits") correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with their carrier family members. Probands with 16p12.1 deletion and a strong family history presented more severe clinical features (p=0.04) and higher burden of other hits compared with those with mild/no family history (p=0.001). The number of other hits also correlated with severity of cognitive impairment in probands carrying pathogenic CNVs (n=53) or de novo pathogenic variants in disease genes (n=290), and negatively correlated with head size among 80 probands with 16p11.2 deletion. These co-occurring hits involved known disease-associated genes such as SETD5, AUTS2, and NRXN1, and were enriched for cellular and developmental processes. CONCLUSION: Accurate genetic diagnosis of complex disorders will require complete evaluation of the genetic background even after a candidate disease-associated variant is identified.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Triagem de Portadores Genéticos , Metiltransferases/genética , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Transtorno Autístico/fisiopatologia , Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 16/genética , Cognição/fisiologia , Proteínas do Citoesqueleto , Variações do Número de Cópias de DNA/genética , Feminino , Regulação da Expressão Gênica/genética , Patrimônio Genético , Humanos , Masculino , Moléculas de Adesão de Célula Nervosa , Pais , Linhagem , Fenótipo , Deleção de Sequência/genética , Irmãos , Fatores de Transcrição
10.
Clin Genet ; 94(3-4): 313-320, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851021

RESUMO

Developmental language disorder (DLD) is a common neurodevelopmental disorder with largely unknown etiology. Rare copy number variants (CNVs) have been implicated in the genetic architecture of other neurodevelopmental disorders (NDDs), which have led to clinical genetic testing recommendations for these disorders; however, the evidence is still lacking for DLD. We analyzed rare and de novo CNVs in 58 probands with severe DLD, their 159 family members and 76 Swedish typically developing children using high-resolution microarray. DLD probands had larger rare CNVs as measured by total length (P = .05), and average length (P = .04). In addition, the rate of rare CNVs overlapping coding genes was increased (P = .03 and P = .01) and in average more genes were affected (P = .006 and P = .03) in the probands and their siblings, respectively. De novo CNVs were found in 4.8% DLD probands (2/42) and 2.4% (1/42) siblings. Clinically significant CNVs or chromosomal anomalies were found in 6.9% (4/58) of the probands of which 2 carried 16p11.2 deletions. We provide further evidence that rare CNVs contribute to the etiology of DLD in loci that overlap with other NDDs. Based on our results and earlier literature, families with DLD should be offered molecular genetic testing as a routine in their clinical follow-up.


Assuntos
Variações do Número de Cópias de DNA , Transtornos do Desenvolvimento da Linguagem/genética , Estudos de Casos e Controles , Criança , Feminino , Genótipo , Humanos , Masculino , Linhagem
11.
Hum Mutat ; 38(3): 317-323, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28054739

RESUMO

Congenital scoliosis (CS) occurs as a result of vertebral malformations and has an incidence of 0.5-1/1,000 births. Recently, TBX6 on chromosome 16p11.2 was reported as a disease gene for CS; about 10% of Chinese CS patients were compound heterozygotes for rare null mutations and a common haplotype defined by three SNPs in TBX6. All patients had hemivertebrae. We recruited 94 Japanese CS patients, investigated the TBX6 locus for both mutations and the risk haplotype, examined transcriptional activities of mutant TBX6 in vitro, and evaluated clinical and radiographic features. We identified TBX6 null mutations in nine patients, including a missense mutation that had a loss of function in vitro. All had the risk haplotype in the opposite allele. One of the mutations showed dominant negative effect. Although all Chinese patients had one or more hemivertebrae, two Japanese patients did not have hemivertebra. The compound heterozygosity of null mutations and the common risk haplotype in TBX6 also causes CS in Japanese patients with similar incidence. Hemivertebra was not a specific type of spinal malformation in TBX6-associated CS (TACS). A heterozygous TBX6 loss-of-function mutation has been reported in a family with autosomal-dominant spondylocostal dysostosis, but it may represent a spectrum of the same disease with TACS.


Assuntos
Anormalidades Congênitas/genética , Haplótipos , Heterozigoto , Mutação com Perda de Função , Escoliose/genética , Proteínas com Domínio T/genética , Adolescente , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 16 , Anormalidades Congênitas/diagnóstico , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Radiografia , Escoliose/diagnóstico
12.
Am J Med Genet B Neuropsychiatr Genet ; 174(4): 367-380, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28349640

RESUMO

Copy number variation at 16p11.2 is associated with diverse phenotypes but little is known about the early developmental trajectories and emergence of the phenotype. This longitudinal study followed 56 children with the 16p11.2 BP4-BP5 deletion or duplication between the ages of 6 months and 8 years with diagnostic characterization and dimensional assessment across cognitive, adaptive, and behavioral domains. Linear mixed modeling revealed distinct developmental trajectories with deletions showing VIQ gains but declines in motor and social abilities while duplications showed VIQ gains and steady development across other domains. Nonparametric analyses suggest distinct trajectories and early cognitive abilities for deletion carriers who are ultimately diagnosed with intellectual disability and developmental coordination disorder as well as distinct trajectories and early social communication and cognitive abilities for duplication carriers diagnosed with ASD and intellectual disability. Findings provide predictions for patient developmental trajectories, insight into mean functioning of individuals with 16p11.2 at early ages, and highlight the need for ongoing monitoring of social and motor functioning and behavioral symptomatology to improve treatment planning. © 2017 Wiley Periodicals, Inc.


Assuntos
Transtornos Cromossômicos/genética , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Estudos Longitudinais , Masculino , Fenótipo , Prognóstico
13.
Am J Med Genet A ; 170(11): 2895-2904, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27411073

RESUMO

Chromosomal microarray is an increasingly utilized diagnostic test, particularly in the pediatric setting. However, the clinical significance of copy number variants detected by this technology is not always understood, creating uncertainties in interpreting and communicating results. The aim of this study was to explore parents' experiences of an uncertain microarray result for their child. This research utilized a qualitative approach with a phenomenological methodology. Semi-structured interviews were conducted with nine parents of eight children who received an uncertain microarray result for their child, either a 16p11.2 microdeletion or 15q13.3 microdeletion. Interviews were transcribed verbatim and thematic analysis was used to identify themes within the data. Participants were unprepared for the abnormal test result. They had a complex perception of the extent of their child's condition and a mixed understanding of the clinical relevance of the result, but were accepting of the limitations of medical knowledge, and appeared to have adapted to the result. The test result was empowering for parents in terms of access to medical and educational services; however, they articulated significant unmet support needs. Participants expressed hope for the future, in particular that more information would become available over time. This research has demonstrated that parents of children who have an uncertain microarray result appeared to adapt to uncertainty and limited availability of information and valued honesty and empathic ongoing support from health professionals. Genetic health professionals are well positioned to provide such support and aid patients' and families' adaptation to their situation as well as promote empowerment. © 2016 Wiley Periodicals, Inc.


Assuntos
Aberrações Cromossômicas , Testes Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Pais/psicologia , Incerteza , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Inquéritos e Questionários
14.
Am J Med Genet A ; 170(11): 2943-2955, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410714

RESUMO

Chromosome 16p11.2 deletions and duplications are among the most frequent genetic etiologies of autism spectrum disorder (ASD) and other neurodevelopmental disorders, but detailed descriptions of their neurologic phenotypes have not yet been completed. We utilized standardized examination and history methods to characterize a neurologic phenotype in 136 carriers of 16p11.2 deletion and 110 carriers of 16p11.2 duplication-the largest cohort to date of uniformly and comprehensively characterized individuals with the same 16p copy number variants (CNVs). The 16p11.2 deletion neurologic phenotype is characterized by highly prevalent speech articulation abnormalities, limb and trunk hypotonia with hyporeflexia, abnormalities of agility, sacral dimples, seizures/epilepsy, large head size/macrocephaly, and Chiari I/cerebellar tonsillar ectopia. Speech articulation abnormalities, hypotonia, abnormal agility, sacral dimples, and seizures/epilepsy are also seen in duplication carriers, along with more prominent hyperreflexia; less, though still prevalent, hyporeflexia; highly prevalent action tremor; small head size/microcephaly; and cerebral white matter/corpus callosum abnormalities and ventricular enlargement. The neurologic phenotypes of these reciprocal 16p11.2 CNVs include both shared and distinct features. Reciprocal phenotypic characteristics of predominant hypo- versus hyperreflexia and macro- versus microcephaly may reflect opposite neurobiological abnormalities with converging effects causing the functional impairments shared between 16p11.2 deletion and duplication carriers (i.e., abnormal motor agility and articulation). While the phenotypes exhibit overlap with other genetically-caused neurodevelopmental disorders, clinicians should be aware of the more striking features-such as the speech and motor impairments, growth abnormalities, tremor, and sacral dimples-when evaluating individuals with developmental delay, intellectual disability, ASD, and/or language disorders. © 2016 Wiley Periodicals, Inc.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Duplicação Cromossômica , Cromossomos Humanos Par 16 , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/genética , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Genes (Basel) ; 15(8)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39202413

RESUMO

The human 16p11.2 chromosomal region is rich in segmental duplications which mediate the formation of recurrent CNVs. CNVs affecting the 16p11.2 region are associated with an increased risk for developing neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia, and intellectual disability (ID), as well as abnormal body weight and head circumference and dysmorphic features, with marked phenotypic variability and reduced penetrance. CNVs affecting the 16p11.2 region mainly affect a distal interval of ~220 Kb, between Breakpoints 2 and 3 (BP2-BP3), and a proximal interval of ~593 Kb (BP4-BP5). Here, we report on 15 patients with recurrent 16p11.2 rearrangements that were identified among a cohort of 1600 patients (0.9%) with neurodevelopmental disorders. A total of 13 deletions and two duplications were identified, of which eight deletions included the proximal 16p11.2 region (BP4-BP5) and five included the distal 16p11.2 region (BP2-BP3). Of the two duplications that were identified, one affected the proximal and one the distal 16p11.2 region; however, both patients had additional CNVs contributing to phenotypic severity. The features observed and their severity varied greatly, even between patients within the same family. This article aims to further delineate the clinical spectrum of patients with 16p11.2 recurrent rearrangements in order to aid the counselling of patients and their families.


Assuntos
Cromossomos Humanos Par 16 , Deficiência Intelectual , Fenótipo , Humanos , Cromossomos Humanos Par 16/genética , Masculino , Feminino , Criança , Adolescente , Pré-Escolar , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Variações do Número de Cópias de DNA , Deleção Cromossômica , Adulto , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Aberrações Cromossômicas , Adulto Jovem
17.
Clin Chim Acta ; 552: 117671, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984529

RESUMO

BACKGROUND: The 16p11.2 deletion is one of the most common genetic aetiologies of neurodevelopmental disorders (NDDs). The prenatal phenotype of 16p11.2 deletion and the potential mechanism associated with postnatal clinical manifestations were largely unknow. We revealed the developmental trajectories of 16p11.2 deletion from the prenatal to postnatal periods and to identify key signaling pathways and candidate genes contributing to neurodevelopmental abnormalities. METHODS: In this 5-y retrospective cohort study, women with singleton pregnancies who underwent amniocentesis for chromosomal abnormalities were included. Test of copy-number variations (CNVs) involved single nucleotide polymorphism-array and CNV-seq was performed to detected 16p11.2 deletion. For infants born carrying the 16p11.2 deletion, neurological and intellectual evaluations using the Chinese version of the Gesell Development Scale. For patients observed to have vertebral malformations, Sanger sequencing for T-C-A haplotype of TBX6 was performed. For those infants with clinical manifestations, whole-exome sequencing was consecutively performed in trios to rule out single-gene diseases, and transcriptomics combined with untargeted metabolomics were performed. RESULTS: The prevalence of 16p11.2 deletion was 0.063% (55/86,035) in the prenatal period. Up to 80% (20/25) of the 16p11.2 deletions were proven de novo by parental confirmation. Approximately half of 16p11.2 deletions (28/55) were detected with prenatal abnormal ultrasound findings. Vertebral malformations were identified as the most distinctive structural malformations and were enriched in fetuses with 16p11.2 deletions compared with controls (90.9‰ [5/55] vs. 8.4‰ [72/85,980]; P < 0.001). All 5 fetuses with vertebral malformations were confirmed to have the TBX6 haplotype of T-C-A. Overall, 47.6% (10/21) infants birthed were diagnosed with NDDs of different degrees. Language impairment was the predominant manifestation (7/10; 70.0%), followed by motor delay (5/10; 50%). Multi-omics analysis indicated that MAPK3 was the central hub of the differentially expressed gene (DEG) network. We firstly reported that histidine-associated metabolism may be the core metabolic pathway related to the 16p11.2 deletion. CONCLUSION: We demonstrated the prenatal presentation, incomplete penetrance and variable expressivity of the 16p11.2 deletion. We identified vertebral malformations were the most distinctive prenatal phenotypes, and language impairment was the predominant postnatal manifestation. Most of the 16p11.2 deletion was de novo. Meanwhile, we suggested that MAPK3 and histidine-associated metabolism may contribute to neurodevelopmental abnormalities of 16p11.2 deletion.


Assuntos
Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Lactente , Gravidez , Humanos , Feminino , Deleção Cromossômica , Estudos Retrospectivos , Histidina , Multiômica , Prevalência , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Desenvolvimento da Linguagem/genética , Variações do Número de Cópias de DNA/genética , Cromossomos Humanos Par 16/genética , Proteínas com Domínio T/genética
18.
Mol Genet Genomic Med ; 12(1): e2280, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37789575

RESUMO

BACKGROUNDS: Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, a severe congenital malformation of the female genital tract, is a highly heterogeneous disease which has no clear etiology. Previous studies have suggested that copy number variations (CNVs) and single-gene mutations might contribute to the development of MRKH syndrome. In particular, deletions in 16p11.2, which are suggested to be involved in several congenital diseases, have been reported in Chinese type II MRKH patients and European MRKH patients. However, few CNVs including 16p11.2 microdeletions were identified in Chinese type I MRKH cases although it accounted for the majority of MRKH patients in China. Thus, we conducted a retrospective study to identify whether CNVs at human chromosome 16p11.2 are risk factors of type I MRKH syndrome in the Chinese Han population. METHODS: We recruited 143 patients diagnosed with type I MRKH between 2012 and 2014. Five hundred unrelated Chinese without congenital malformation were enrolled in control group, consisting of 197 from the 1000 Genomes Project and 303 from Fudan University. Quantitative PCR, array comparative genomic hybridization, and sanger sequencing were conducted to screen and verify candidate variant. RESULTS: Our study identified recurrent 16p11.2 microdeletions of approximately 600 kb in two out of the 143 type I MRKH syndrome patients using high-density array-based comparative genomic hybridization (aCGH), while no 16p11.2 deletion was found in the control group. We did not find any mutations in TBX6 gene in our samples. CONCLUSIONS: The results of the study identify 16p11.2 deletion in Chinese MRKH I patients for the first time, as well as support the contention that 16p11.2 microdeletions are associated with MRKH syndrome in both types across populations. It is suggested that 16p11.2 microdeletions should be included in molecular diagnosis and genetic counseling of female reproductive tract disorders.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Anormalidades Congênitas , Variações do Número de Cópias de DNA , Ductos Paramesonéfricos/anormalidades , Humanos , Feminino , Estudos Retrospectivos , Hibridização Genômica Comparativa , Transtornos 46, XX do Desenvolvimento Sexual/genética , Proteínas com Domínio T/genética
19.
Neurosci Lett ; 837: 137904, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39029613

RESUMO

Rho-associated protein kinase-2 (ROCK2) is a critical player in many cellular processes and was incriminated in cardiovascular and neurological disorders. Recent evidence has shown that non-selective pharmacological blockage of ROCKs ameliorates behavioral alterations in a mouse model of 16p11.2 haploinsufficiency. We had revealed that 16p11.2-deficient mice also display cerebrovascular abnormalities, including endothelial dysfunction. To investigate whether genetic blockage of ROCK2 also exerts beneficial effects on cognition and angiogenesis, we generated mice with both 16p11.2 and Rock2 haploinsufficiency (16p11.2df/+;Rock2+/-). We find that Rock2 heterozygosity on a 16p11.2df/+ background significantly improved recognition memory. Furthermore, brain endothelial cells from 16p11.2df/+;Rock2+/- mice display improved angiogenic capacity compared to cells from 16p11.2df/+ littermates. Overall, this study implicates Rock2 gene as a modulator of 16p11.2-associated alterations, highlighting its potential as a target for treatment of autism spectrum disorders.


Assuntos
Transtorno Autístico , Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 16 , Modelos Animais de Doenças , Quinases Associadas a rho , Animais , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Cromossomos Humanos Par 16/genética , Camundongos , Transtorno Autístico/genética , Transtornos Cromossômicos/genética , Heterozigoto , Reconhecimento Psicológico/fisiologia , Células Endoteliais/metabolismo , Haploinsuficiência , Masculino , Camundongos Endogâmicos C57BL , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética
20.
Leg Med (Tokyo) ; 67: 102387, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154310

RESUMO

Williams syndrome (WS) is a rare genetic disorder caused by a microdeletion of chromosome 7q11.23. Although the mortality rate of patients with WS is not very high, sudden cardiac death can occur, particularly in cases complicated by coronary artery stenosis. A 3-month-old female infant with supravalvular aortic stenosis and peripheral pulmonary stenosis was discovered unconscious in bed by her mother. She was immediately transferred to an emergency hospital but succumbed despite multiple attempts as resuscitation. DNA microarray analysis revealed microdeletions of 7q11.23 and 16p11.2, confirming WS and unexpectedly identifying 16p11.2 deletion syndrome which is known to be associated with neurodevelopmental disorders. Postmortem computed tomography revealed a severely enlarged heart, indicative of cardiac dysfunction. External examination revealed moderate-to-severe developmental delays in height and body weight. The heart, on internal examination, revealed whitish-discolored lesions; histologically severe fibrotic changes and thickening of the intima in the coronary arteries and aorta. In the brain, the dentate gyrus of the hippocampus appeared malformed. Taken together, these findings suggest that the cause of death was cardiac dysfunction due to WS. In addition, it could be possible that 16p11.2 deletion syndrome and dentate gyrus malformation contributed to her death. Future autopsy studies are warranted to clarify the precise role of microdeletion disorders in sudden death to reduce future preventable deaths in children.


Assuntos
Transtorno Autístico , Transtornos Cromossômicos , Estenose Coronária , Deficiência Intelectual , Síndrome de Williams , Humanos , Criança , Lactente , Feminino , Síndrome de Williams/complicações , Síndrome de Williams/genética , Deleção Cromossômica , Morte Súbita Cardíaca/etiologia , Cromossomos Humanos Par 16
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA