Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Rep Pract Oncol Radiother ; 27(2): 360-370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299381

RESUMO

Background: This study aimed to evaluate the target volume and dose accuracy in intrafraction cases using 4-dimensional imaging modalities and an in-house dynamic thorax phantom. Intrafraction motion can create errors in the definition of target volumes, which can significantly affect the accuracy of radiation delivery. Motion management using 4-dimensional modalities is required to reduce the risk. Materials and methods: Two variations in both breathing amplitude and target size were applied in this study. From these variations, internal target volume (ITVs) contoured in 10 phases of 4D-CT (ITV10), average intensity projection (AIP), and mid-ventilation (Mid-V) images were reconstructed from all 4D-CT datasets as reference images. Free-breathing (FB), augmentation free-breathing (Aug-FB), and static images were also acquired using the 3D-CT protocol for comparisons. In dose evaluations, the 4D-CBCT modality was applied before irradiation to obtain position correction. Then, the dose was evaluated with Gafchromic film EBT3. Results: The ITV10, AIP, and Mid-V provide GTVs that match the static GTV. The AIP and Mid-V reference images allowed reductions in ITVs and PTVs without reducing the range of target movement areas compared to FB and Aug-FB images with varying percentages in the range of 29.17% to 48.70%. In the dose evaluation, the largest discrepancies between the measured and planned doses were 10.39% for the FB images and 9.21% for the Aug-FB images. Conclusion: The 4D-CT modality can enable accurate definition of the target volume and reduce the PTV. Furthermore, 4D-CBCT provides localization images during registration to facilitate position correction and accurate dose delivery.

2.
J Appl Clin Med Phys ; 22(7): 198-207, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34085384

RESUMO

PURPOSE: For mobile lung tumors, four-dimensional computer tomography (4D CT) is often used for simulation and treatment planning. Localization accuracy remains a challenge in lung stereotactic body radiation therapy (SBRT) treatments. An attractive image guidance method to increase localization accuracy is 4D cone-beam CT (CBCT) as it allows for visualization of tumor motion with reduced motion artifacts. However, acquisition and reconstruction of 4D CBCT differ from that of 4D CT. This study evaluates the discrepancies between the reconstructed motion of 4D CBCT and 4D CT imaging over a wide range of sine target motion parameters and patient waveforms. METHODS: A thorax motion phantom was used to examine 24 sine motions with varying amplitudes and cycle times and seven patient waveforms. Each programmed motion was imaged using 4D CT and 4D CBCT. The images were processed to auto segment the target. For sine motion, the target centroid at each phase was fitted to a sinusoidal curve to evaluate equivalence in amplitude between the two imaging modalities. The patient waveform motion was evaluated based on the average 4D data sets. RESULTS: The mean difference and root-mean-square-error between the two modalities for sine motion were -0.35 ± 0.22 and 0.60 mm, respectively, with 4D CBCT slightly overestimating amplitude compared with 4D CT. The two imaging methods were determined to be significantly equivalent within ±1 mm based on two one-sided t tests (p < 0.001). For patient-specific motion, the mean difference was 1.5 ± 2.1 (0.8 ± 0.6 without outlier), 0.4 ± 0.3, and 0.8 ± 0.6 mm for superior/inferior (SI), anterior/posterior (AP), and left/right (LR), respectively. CONCLUSION: In cases where 4D CT is used to image mobile tumors, 4D CBCT is an attractive localization method due to its assessment of motion with respect to 4D CT, particularly for lung SBRT treatments where accuracy is paramount.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Computadores , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Imagens de Fantasmas
3.
J Appl Clin Med Phys ; 21(10): 170-178, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32996669

RESUMO

PURPOSE: To investigate the impact of respiratory motion in the treatment margins for lung SBRT frameless treatments and to validate our treatment margins using 4D CBCT data analysis. METHODS: Two hundred and twenty nine fractions with early stage NSCLC were retrospectively analyzed. All patients were treated in frameless and free breathing conditions. The treatment margins were calculated according to van Herk equation in Mid-Ventilation. For each fraction, three 4D CBCT scans, pre- and postcorrection, and posttreatment, were acquired to assess target baseline shift, target localization accuracy and intra-fraction motion errors. A bootstrap analysis was performed to assess the minimum number of patients required to define treatment margins. RESULTS: The retrospectively calculated target-baseline shift, target localization accuracy and intra-fraction motion errors agreed with the literature. The best tailored margins to our cohort of patients were retrospectively computed and resulted in agreement with already published data. The bootstrap analysis showed that fifteen patients were enough to assess treatment margins. CONCLUSIONS: The treatment margins applied to our patient's cohort resulted in good agreement with the retrospectively calculated margins based on 4D CBCT data. Moreover, the bootstrap analysis revealed to be a promising method to verify the reliability of the applied treatment margins for safe lung SBRT delivery.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Movimento , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Respiração , Estudos Retrospectivos
4.
J Digit Imaging ; 33(5): 1292-1300, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32583276

RESUMO

Four dimensional cone-beam computed tomography (4D-CBCT) images were widely used for patient positing and target localization in radiotherapy. As consisting of multiple CBCT sets, it needs more time and space for data transferring and storage. In this study the feasibility of applying video coding algorithms for 4D-CBCT image compression was investigated. Prior to compression 4D-CBCT images were arranged in an order based on breathing phase or slice location for input sequence of video encoder. Median filtering was applied to suppress noise and artifact of 4D-CBCT for improved image quality. Three popular video coding algorithms (Motion JPEG 2000, Motion JPEG AVI, and MPEG-4) were tested and their performances were evaluated on a publicly available 4D-CBCT database. The average compression ratio of MPEG-4 was 135, while the values of Motion JPEG AVI and Motion JPEG 2000 were 16 and 7, respectively. The compression rate of two ordering methods was comparable and the location-based ordering method was slightly higher. With pre-processing of median filtering, the inter-frame similarity of input sequence was improved and the resulting compression rate was increased. MPEG-4 provided extremely higher compression rate for 4D-CBCT images. The ordering method based on slice location resulted in higher compression rate than the ordering method based on breathing phase. The median filtering was effective in improving inter-frame similarity and resulted in higher compression rate. The video coding algorithms are not only applicable for 4D image modalities but also feasible for serial 3D image modalities.


Assuntos
Compressão de Dados , Algoritmos , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares , Imagens de Fantasmas
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(6): 834-838, 2020 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-33236609

RESUMO

OBJECTIVE: In order to provide guidance for clinical use of four-dimensional cone-beam CT (4D CBCT), the accuracy of image registration and its influencing factors were analyzed using the automatic registration method when 4D CBCT was used as an image guidance strategy for patients with chest tumors. METHODS: The respiratory motion model and two kinds of lung plug-ins were used to simulate two types of tumors and their movements in the chest. 4D CT was scanned for each kind of simulated tumor, and 4D CBCT was scanned under various artificial positioning errors. For the registration of 4D CBCT, the manual and automatic registration methods were used for each group. RESULTS: There were more obvious mismatches in the intrapulmonary adhesion tumor group. When the masks were created based on the size of the target area or expanding the target area by 0.5 cm, the results between the automatic registration and manual registration were statistically different. There were no significant mismatches in the isolated lung tumor group, and there was no statistical difference between the results of automatic registration and manual registration. CONCLUSIONS: When 4D CBCT is used as an image guidance strategy for patients with chest tumors, the automatic registration procedure should not be used for tumors adhering to chest wall and mediastinum. For solitary lung tumors, the automatic registration method and the manual registration method have similar registration accuracy, but significant mismatches need to be excluded.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada de Feixe Cônico Espiral , Algoritmos , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Pulmonares/diagnóstico por imagem
6.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 76(10): 1009-1016, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-33087646

RESUMO

PURPOSE: The purpose of this paper was to determine the optimal imaging conditions for four-dimensional cone-beam computed tomography (4D-CBCT) using an X-ray tube and a flat-panel detector mounted on a radiotherapy device. METHODS: The optimal imaging conditions were examined by changing the gantry speed (GS) parameter that affected the exposure time. Exposed dose during imaging and image quality of moving phantom were compared between examined conditions. RESULTS: The weighted computed tomography dose index (CTDIW) decreased linearly with increasing GS. However, when GS was 180°/min or faster, the image quality degraded, and errors of 1 mm or more were observed regarding the size of mock tumor in the moving phantom. The accuracy of automatic image matching was within 0.1 mm when GS of 120°/min or slower was chosen. CONCLUSION: From the results of this study, we concluded that GS of 120°/min is the optimum imaging condition. Under this imaging condition, the exposure time and CTDIW can be reduced by about 50% without compromising the accuracy of image registration, compared to the conventional GS of 70°/min. In addition, it has been clarified that there is an event that image reconstruction is not performed correctly due to the influence of phantom artifacts without depending on GS.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Artefatos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
7.
J Appl Clin Med Phys ; 20(12): 10-24, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31675150

RESUMO

PURPOSE: Elekta XVI 5.0 allows for four-dimensional cone beam computed tomography (4D CBCT) image acquisition during treatment delivery to monitor intrafraction motion. These images can have poorer image quality due to undersampling of kV projections and treatment beam MV scatter effects. We determine if a universal intrafraction preset can be used for stereotactic body radiotherapy (SBRT) lung patients and validate the accuracy of target motion characterized by XVI intrafraction 4D CBCT. METHODS: The most critical parameter within the intrafraction preset is the nominal AcquisitionInterval, which controls kV imaging acquisition frequency. An optimal value was determined by maximizing the kV frame number acquired up to 1000 frames, typical of pretreatment 4D CBCT. CIRS motion phantom intrafraction phase images for 16 SBRT beams were obtained. Mean target position, time-weighted standard deviation, and amplitude for these images as well as target motion for three SBRT lung patients were compared to respective pretreatment 4D CBCTs. Evaluation of intrafraction 4D CBCT reconstruction revealed inclusion of MV only images acquired to remove MV scatter effects. A workaround to remove these images was developed. RESULTS: AcquisitionInterval of 0.1°/frame was optimal. The number of kV frames acquired was 567-1116 and showed strong linear correlation with beam monitor unit (MUs). Phantom target motion accuracy was excellent with average differences in target position, standard deviation and amplitude range of ≤0.5 mm. Target tracking for SBRT patients also showed good agreement. Evaluation of phase sorting wave forms showed that inclusion of MV only images significantly impacts intrafraction image reconstruction for patients and use of workaround is necessary. CONCLUSIONS: A universal intrafraction imaging preset can be used safely for SBRT lung patients. The number of kV projections with MV delivery parameters varies; however images with fewer kV projections still provided accurate target position information. Impact of the reconstruction workaround was significant and is mandated for all 4D CBCT intrafraction imaging performed at our institution.


Assuntos
Tomografia Computadorizada de Feixe Cônico/normas , Tomografia Computadorizada Quadridimensional/normas , Neoplasias Pulmonares/cirurgia , Imagens de Fantasmas , Radiocirurgia/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Estudos de Coortes , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Neoplasias Pulmonares/patologia , Movimento , Prognóstico , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Respiração
8.
J Appl Clin Med Phys ; 19(5): 525-531, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29971918

RESUMO

PURPOSE: To investigate the intrafractional stability of the motion relationship between the diaphragm and tumor, as well as the feasibility of using diaphragm motion to estimate lung tumor motion. METHODS: Eighty-five paired (pre and posttreatment) daily 4D-CBCT images were obtained from 20 lung cancer patients who underwent SBRT. Bony registration was performed between the pre- and post-CBCT images to exclude patient body movement. The end-exhalation phase image of the pre-CBCT image was selected as the reference image. Tumor positions were obtained for each phase image using contour-based translational alignments. Diaphragm positions were obtained by translational alignment of its apex position. A linear intrafraction model was constructed using regression analysis performed between the diaphragm and tumor positions manifested on the pretreatment 4D-CBCT images. By applying this model to posttreatment 4D-CBCT images, the tumor positions were estimated from posttreatment 4D-CBCT diaphragm positions and compared with measured values. A receiver operating characteristic (ROC) test was performed to determine a suitable indicator for predicting the estimate accuracy of the linear model. RESULTS: Using the linear model, per-phase position, mean position, and excursion estimation errors were 1.12 ± 0.99 mm, 0.97 ± 0.88 mm, and 0.79 ± 0.67 mm, respectively. Intrafractional per-phase tumor position estimation error, mean position error, and excursion error were within 3 mm 95%, 96%, and 99% of the time, respectively. The residual sum of squares (RSS) determined from pretreatment images achieved the largest prediction power for the tumor position estimation error (discrepancy < 3 mm) with an Area Under ROC Curve (AUC) of 0.92 (P < 0.05). CONCLUSION: Utilizing the relationship between diaphragm and tumor positions on the pretreatment 4D-CBCT image, intrafractional tumor positions were estimated from intrafractional diaphragm positions. The estimation accuracy can be predicted using the RSS obtained from the pretreatment 4D-CBCT image.


Assuntos
Diafragma , Idoso , Idoso de 80 Anos ou mais , Tomografia Computadorizada de Feixe Cônico , Estudos de Viabilidade , Feminino , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Pulmonares , Masculino , Pessoa de Meia-Idade , Movimento , Respiração , Estudos Retrospectivos
9.
J Appl Clin Med Phys ; 19(6): 166-176, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30306710

RESUMO

To monitor delivered dose and trigger plan adaptation when deviation becomes unacceptable, a clinical treatment dose (Tx-Dose) reconstruction system based on three-dimensional (3D)/four-dimensional (4D)-cone beam computed tomograpy (CBCT) images was developed and evaluated on various treatment sites, particularly for lung cancer patient treated by stereotactic body radiation therapy (SBRT). This system integrates with our treatment planning system (TPS), Linacs recording and verification system (R&V), and CBCT imaging system, consisting of three modules: Treatment Schedule Monitoring module (TSM), pseudo-CT Generating module (PCG), and Treatment Dose Reconstruction/evaluation module (TDR). TSM watches the treatment progress in the R&V system and triggers the PCG module when new CBCT is available. PCG retrieves the CBCTs and performs planning CT to CBCT deformable registration (DIR) to generate pseudo-CT. The 4D-CBCT images are taken for target localization and correction in lung cancer patient before treatment. To take full advantage of the valuable information carried by 4D-CBCT, a novel phase-matching DIR scheme was developed to generate 4D pseudo-CT images for 4D dose reconstruction. Finally, TDR module creates TPS scripts to automate Tx-Dose calculation on the pseudo-CT images. Both initial quantitative commissioning and patient-specific qualitative quality assurance of the DIR tool were utilized to ensure the DIR quality. The treatment doses of ten patients (six SBRT-lung, two head and neck (HN), one breast and one prostate cancer patients) were retrospectively constructed and evaluated. The target registration error (mean ± STD: 1.05 ± 1.13 mm) of the DIR tool is comparable to the interobserver uncertainty (0.88 ± 1.31 mm) evaluated by a publically available lung-landmarks dataset. For lung SBRT patients, the D99 of the final cumulative Tx-Dose of GTV is 93.8 ± 5.5% (83.7-100.1%) of the originally planned D99 . CTV D99 decreases by 3% and mean ipsilateral parotid dose increases by 11.5% for one of the two HN patients. In conclusion, we have demonstrated the feasibility and effectiveness of a treatment dose verification system in our clinical setting.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Neoplasias de Cabeça e Pescoço/cirurgia , Neoplasias Pulmonares/cirurgia , Neoplasias da Próstata/cirurgia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Seguimentos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Prognóstico , Neoplasias da Próstata/diagnóstico por imagem , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
10.
J Xray Sci Technol ; 26(2): 189-208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29562567

RESUMO

BACKGROUND: Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. OBJECTIVE: The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). METHODS: Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. RESULTS: All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. CONCLUSION: The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Simulação por Computador , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Imagens de Fantasmas , Respiração
11.
J Xray Sci Technol ; 23(1): 11-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25567403

RESUMO

BACKGROUND: High quality 4D-CBCT can be obtained by deforming a planning CT (pCT), where the deformation vector fields (DVF) are estimated by matching the forward projections of pCT and 4D-CBCT projections. The matching metric used in the previous study is the sum of squared intensity differences (SSID). The scatter signal level in CBCT projections is much higher than pCT, the SSID metric may not lead to optimal DVF. OBJECTIVE: To improve the DVF estimation accuracy, we develop a new matching metric that is less sensitive to the intensity level difference caused by the scatter signal. METHODS: The negative logarithm of correlation coefficient (NLCC) is used as the matching metric. A non-linear conjugate gradient optimization algorithm is used to estimate the DVF. A 4D NCAT phantom and an anthropomorphic thoracic phantom were used to evaluate the NLCC-based algorithm. RESULTS: In the NCAT phantom study, the relative reconstruction error is reduced from 18.0% in SSID to 14.13% in NLCC. In the thoracic phantom study, the root mean square error of the tumor motion is reduced from 1.16 mm in SSID to 0.43 mm in NLCC. CONCLUSION: NLCC metric can improve the image reconstruction and motion estimation accuracy of DVF-driven image reconstruction for 4D-CBCT.


Assuntos
Algoritmos , Tomografia Computadorizada Quadridimensional/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Neoplasias Torácicas/diagnóstico por imagem , Tomografia Computadorizada Quadridimensional/instrumentação , Humanos , Análise Numérica Assistida por Computador , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Med Phys ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922912

RESUMO

Cone-beam CT (CBCT) is the most commonly used onboard imaging technique for target localization in radiation therapy. Conventional 3D CBCT acquires x-ray cone-beam projections at multiple angles around the patient to reconstruct 3D images of the patient in the treatment room. However, despite its wide usage, 3D CBCT is limited in imaging disease sites affected by respiratory motions or other dynamic changes within the body, as it lacks time-resolved information. To overcome this limitation, 4D-CBCT was developed to incorporate a time dimension in the imaging to account for the patient's motion during the acquisitions. For example, respiration-correlated 4D-CBCT divides the breathing cycles into different phase bins and reconstructs 3D images for each phase bin, ultimately generating a complete set of 4D images. 4D-CBCT is valuable for localizing tumors in the thoracic and abdominal regions where the localization accuracy is affected by respiratory motions. This is especially important for hypofractionated stereotactic body radiation therapy (SBRT), which delivers much higher fractional doses in fewer fractions than conventional fractionated treatments. Nonetheless, 4D-CBCT does face certain limitations, including long scanning times, high imaging doses, and compromised image quality due to the necessity of acquiring sufficient x-ray projections for each respiratory phase. In order to address these challenges, numerous methods have been developed to achieve fast, low-dose, and high-quality 4D-CBCT. This paper aims to review the technical developments surrounding 4D-CBCT comprehensively. It will explore conventional algorithms and recent deep learning-based approaches, delving into their capabilities and limitations. Additionally, the paper will discuss the potential clinical applications of 4D-CBCT and outline a future roadmap, highlighting areas for further research and development. Through this exploration, the readers will better understand 4D-CBCT's capabilities and potential to enhance radiation therapy.

13.
Radiat Oncol ; 19(1): 20, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336759

RESUMO

OBJECTIVE: This study aimed to present a deep-learning network called contrastive learning-based cycle generative adversarial networks (CLCGAN) to mitigate streak artifacts and correct the CT value in four-dimensional cone beam computed tomography (4D-CBCT) for dose calculation in lung cancer patients. METHODS: 4D-CBCT and 4D computed tomography (CT) of 20 patients with locally advanced non-small cell lung cancer were used to paired train the deep-learning model. The lung tumors were located in the right upper lobe, right lower lobe, left upper lobe, and left lower lobe, or in the mediastinum. Additionally, five patients to create 4D synthetic computed tomography (sCT) for test. Using the 4D-CT as the ground truth, the quality of the 4D-sCT images was evaluated by quantitative and qualitative assessment methods. The correction of CT values was evaluated holistically and locally. To further validate the accuracy of the dose calculations, we compared the dose distributions and calculations of 4D-CBCT and 4D-sCT with those of 4D-CT. RESULTS: The structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) of the 4D-sCT increased from 87% and 22.31 dB to 98% and 29.15 dB, respectively. Compared with cycle consistent generative adversarial networks, CLCGAN enhanced SSIM and PSNR by 1.1% (p < 0.01) and 0.42% (p < 0.01). Furthermore, CLCGAN significantly decreased the absolute mean differences of CT value in lungs, bones, and soft tissues. The dose calculation results revealed a significant improvement in 4D-sCT compared to 4D-CBCT. CLCGAN was the most accurate in dose calculations for left lung (V5Gy), right lung (V5Gy), right lung (V20Gy), PTV (D98%), and spinal cord (D2%), with the relative dose difference were reduced by 6.84%, 3.84%, 1.46%, 0.86%, 3.32% compared to 4D-CBCT. CONCLUSIONS: Based on the satisfactory results obtained in terms of image quality, CT value measurement, it can be concluded that CLCGAN-based corrected 4D-CBCT can be utilized for dose calculation in lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada Quadridimensional , Planejamento da Radioterapia Assistida por Computador/métodos
14.
Technol Cancer Res Treat ; 22: 15330338231181284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608564

RESUMO

Tumor ablation is included in several major cancer therapy guidelines. One technical challenge of percutaneous ablation is targeting and verification of complete treatment, which is prone to operator variabilities and human imperfections and are directly related to successful outcomes, risk for residual unablated tumor and local progression. The use of "Prediction Ablation Volume Software" may help the operating Interventional Radiologist to better plan, deliver, and verify before the ablation, via virtual treatment zones fused to target tumor. Fused and superimposed images provide 3-dimensional information from different timepoints, just when that information is most useful. The aim of this study is to evaluate the technical success and efficacy of an ablation treatment flowchart provided by a cone beam computed tomography (CBCT) "Prediction Ablation Volume Software." This is a single-center retrospective study. From April 2021 to January 2022, 29 nonconsecutive evaluable patients with 32 lesions underwent liver ablation with Prediction Ablation Volume Software. Each patient was discussed in a multidisciplinary tumor board and underwent an enhanced computed tomography or magnetic resonance imaging approximately 1 month before the procedure, as well as ∼1 month after. Technical success was defined as treatment of the tumor according to the protocol, covered completely by the Prediction Ablation Volume. Technical efficacy was defined as assessment of complete ablation of the target tumor at imaging follow up (∼1 month). Technical success, technical efficacy, and procedural factors were studied. Technical success was achieved in 30 of 32 liver lesions (94%), measuring 20 mm mean maximum diameter. The antenna was repositioned in 16 of 30 (53%) evaluable target lesions. Residual tumor was detected at 1 month imaging follow up in only 4 of 30 (13%) of the treated lesion. Technical efficacy was of 87% in this retrospective description of our process. The implementation of a CBCT Prediction Ablation Volume Software and flowchart for the treatment of liver malignancies altered the procedure, and demonstrated high technical success and efficacy. Such tools are potentially useful for procedural prediction and verification of ablation.


Assuntos
Ablação por Cateter , Neoplasias Hepáticas , Humanos , Estudos Retrospectivos , Micro-Ondas/uso terapêutico , Resultado do Tratamento , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirurgia , Tomografia Computadorizada de Feixe Cônico/métodos , Ablação por Cateter/métodos
15.
Med Phys ; 50(2): 808-820, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36412165

RESUMO

BACKGROUND: Motion-compensated (MoCo) reconstruction shows great promise in improving four-dimensional cone-beam computed tomography (4D-CBCT) image quality. MoCo reconstruction for a 4D-CBCT could be more accurate using motion information at the CBCT imaging time than that obtained from previous 4D-CT scans. However, such data-driven approaches are hampered by the quality of initial 4D-CBCT images used for motion modeling. PURPOSE: This study aims to develop a deep-learning method to generate high-quality motion models for MoCo reconstruction to improve the quality of final 4D-CBCT images. METHODS: A 3D artifact-reduction convolutional neural network (CNN) was proposed to improve conventional phase-correlated Feldkamp-Davis-Kress (PCF) reconstructions by reducing undersampling-induced streaking artifacts while maintaining motion information. The CNN-generated artifact-mitigated 4D-CBCT images (CNN enhanced) were then used to build a motion model which was used by MoCo reconstruction (CNN+MoCo). The proposed procedure was evaluated using in-vivo patient datasets, an extended cardiac-torso (XCAT) phantom, and the public SPARE challenge datasets. The quality of reconstructed images for XCAT phantom and SPARE datasets was quantitatively assessed using root-mean-square-error (RMSE) and normalized cross-correlation (NCC). RESULTS: The trained CNN effectively reduced the streaking artifacts of PCF CBCT images for all datasets. More detailed structures can be recovered using the proposed CNN+MoCo reconstruction procedure. XCAT phantom experiments showed that the accuracy of estimated motion model using CNN enhanced images was greatly improved over PCF. CNN+MoCo showed lower RMSE and higher NCC compared to PCF, CNN enhanced and conventional MoCo. For the SPARE datasets, the average (± standard deviation) RMSE in mm-1 for body region of PCF, CNN enhanced, conventional MoCo and CNN+MoCo were 0.0040 ± 0.0009, 0.0029 ± 0.0002, 0.0024 ± 0.0003 and 0.0021 ± 0.0003. Corresponding NCC were 0.84 ± 0.05, 0.91 ± 0.05, 0.91 ± 0.05 and 0.93 ± 0.04. CONCLUSIONS: CNN-based artifact reduction can substantially reduce the artifacts in the initial 4D-CBCT images. The improved images could be used to enhance the motion modeling and ultimately improve the quality of the final 4D-CBCT images reconstructed using MoCo.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Tomografia Computadorizada Quadridimensional/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Movimento (Física) , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
16.
Radiat Oncol ; 17(1): 69, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392947

RESUMO

BACKGROUND: Four-dimensional cone-beam computed tomography (4D-CBCT) can visualize moving tumors, thus adaptive radiation therapy (ART) could be improved if 4D-CBCT were used. However, 4D-CBCT images suffer from severe imaging artifacts. The aim of this study is to investigate the use of synthetic 4D-CBCT (sCT) images created by a cycle generative adversarial network (CycleGAN) for ART for lung cancer. METHODS: Unpaired thoracic 4D-CBCT images and four-dimensional multislice computed tomography (4D-MSCT) images of 20 lung-cancer patients were used for training. High-quality sCT lung images generated by the CycleGAN model were tested on another 10 cases. The mean and mean absolute errors were calculated to assess changes in the computed tomography number. The structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) were used to compare the sCT and original 4D-CBCT images. Moreover, a volumetric modulation arc therapy plan with a dose of 48 Gy in four fractions was recalculated using the sCT images and compared with ideal dose distributions observed in 4D-MSCT images. RESULTS: The generated sCT images had fewer artifacts, and lung tumor regions were clearly observed in the sCT images. The mean and mean absolute errors were near 0 Hounsfield units in all organ regions. The SSIM and PSNR results were significantly improved in the sCT images by approximately 51% and 18%, respectively. Moreover, the results of gamma analysis were significantly improved; the pass rate reached over 90% in the doses recalculated using the sCT images. Moreover, each organ dose index of the sCT images agreed well with those of the 4D-MSCT images and were within approximately 5%. CONCLUSIONS: The proposed CycleGAN enhances the quality of 4D-CBCT images, making them comparable to 4D-MSCT images. Thus, clinical implementation of sCT-based ART for lung cancer is feasible.


Assuntos
Neoplasias Pulmonares , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos
17.
Front Oncol ; 12: 889266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586492

RESUMO

Purpose: The current algorithms for measuring ventilation images from 4D cone-beam computed tomography (CBCT) are affected by the accuracy of deformable image registration (DIR). This study proposes a new deep learning (DL) method that does not rely on DIR to derive ventilation images from 4D-CBCT (CBCT-VI), which was validated with the gold-standard single-photon emission-computed tomography ventilation image (SPECT-VI). Materials and Methods: This study consists of 4D-CBCT and 99mTc-Technegas SPECT/CT scans of 28 esophagus or lung cancer patients. The scans were rigidly registered for each patient. Using these data, CBCT-VI was derived using a deep learning-based model. Two types of model input data are studied, namely, (a) 10 phases of 4D-CBCT and (b) two phases of peak-exhalation and peak-inhalation of 4D-CBCT. A sevenfold cross-validation was applied to train and evaluate the model. The DIR-dependent methods (density-change-based and Jacobian-based methods) were used to measure the CBCT-VIs for comparison. The correlation was calculated between each CBCT-VI and SPECT-VI using voxel-wise Spearman's correlation. The ventilation images were divided into high, medium, and low functional lung regions. The similarity of different functional lung regions between SPECT-VI and each CBCT-VI was evaluated using the dice similarity coefficient (DSC). One-factor ANONA model was used for statistical analysis of the averaged DSC for the different methods of generating ventilation images. Results: The correlation values were 0.02 ± 0.10, 0.02 ± 0.09, and 0.65 ± 0.13/0.65 ± 0.15, and the averaged DSC values were 0.34 ± 0.04, 0.34 ± 0.03, and 0.59 ± 0.08/0.58 ± 0.09 for the density change, Jacobian, and deep learning methods, respectively. The strongest correlation and the highest similarity with SPECT-VI were observed for the deep learning method compared to the density change and Jacobian methods. Conclusion: The results showed that the deep learning method improved the accuracy of correlation and similarity significantly, and the derived CBCT-VIs have the potential to monitor the lung function dynamic changes during radiotherapy.

18.
Med Phys ; 49(10): 6461-6476, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35713411

RESUMO

BACKGROUND: Although four-dimensional cone-beam computed tomography (4D-CBCT) is valuable to provide onboard image guidance for radiotherapy of moving targets, it requires a long acquisition time to achieve sufficient image quality for target localization. To improve the utility, it is highly desirable to reduce the 4D-CBCT scanning time while maintaining high-quality images. Current motion-compensated methods are limited by slow speed and compensation errors due to the severe intraphase undersampling. PURPOSE: In this work, we aim to propose an alternative feature-compensated method to realize the fast 4D-CBCT with high-quality images. METHODS: We proposed a feature-compensated deformable convolutional network (FeaCo-DCN) to perform interphase compensation in the latent feature space, which has not been explored by previous studies. In FeaCo-DCN, encoding networks extract features from each phase, and then, features of other phases are deformed to those of the target phase via deformable convolutional networks. Finally, a decoding network combines and decodes features from all phases to yield high-quality images of the target phase. The proposed FeaCo-DCN was evaluated using lung cancer patient data. RESULTS: (1) FeaCo-DCN generated high-quality images with accurate and clear structures for a fast 4D-CBCT scan; (2) 4D-CBCT images reconstructed by FeaCo-DCN achieved 3D tumor localization accuracy within 2.5 mm; (3) image reconstruction is nearly real time; and (4) FeaCo-DCN achieved superior performance by all metrics compared to the top-ranked techniques in the AAPM SPARE Challenge. CONCLUSION: The proposed FeaCo-DCN is effective and efficient in reconstructing 4D-CBCT while reducing about 90% of the scanning time, which can be highly valuable for moving target localization in image-guided radiotherapy.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Neoplasias Pulmonares , Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas
19.
Phys Med Biol ; 67(5)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35172290

RESUMO

Objective.Four-dimensional cone-beam computed tomography (4D CBCT) has unique advantages in moving target localization, tracking and therapeutic dose accumulation in adaptive radiotherapy. However, the severe fringe artifacts and noise degradation caused by 4D CBCT reconstruction restrict its clinical application. We propose a novel deep unsupervised learning model to generate the high-quality 4D CBCT from the poor-quality 4D CBCT.Approach.The proposed model uses a contrastive loss function to preserve the anatomical structure in the corrected image. To preserve the relationship between the input and output image, we use a multilayer, patch-based method rather than operate on entire images. Furthermore, we draw negatives from within the input 4D CBCT rather than from the rest of the dataset.Main results.The results showed that the streak and motion artifacts were significantly suppressed. The spatial resolution of the pulmonary vessels and microstructure were also improved. To demonstrate the results in the different directions, we make the animation to show the different views of the predicted correction image in the supplementary animation.Significance.The proposed method can be integrated into any 4D CBCT reconstruction method and maybe a practical way to enhance the image quality of the 4D CBCT.


Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada Quadridimensional , Movimento (Física) , Aprendizado de Máquina não Supervisionado
20.
IEEE Trans Radiat Plasma Med Sci ; 6(2): 222-230, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35386935

RESUMO

4D-CBCT is a powerful tool to provide respiration-resolved images for the moving target localization. However, projections in each respiratory phase are intrinsically under-sampled under the clinical scanning time and imaging dose constraints. Images reconstructed by compressed sensing (CS)-based methods suffer from blurred edges. Introducing the average-4D-image constraint to the CS-based reconstruction, such as prior-image-constrained CS (PICCS), can improve the edge sharpness of the stable structures. However, PICCS can lead to motion artifacts in the moving regions. In this study, we proposed a dual-encoder convolutional neural network (DeCNN) to realize the average-image-constrained 4D-CBCT reconstruction. The proposed DeCNN has two parallel encoders to extract features from both the under-sampled target phase images and the average images. The features are then concatenated and fed into the decoder for the high-quality target phase image reconstruction. The reconstructed 4D-CBCT using of the proposed DeCNN from the real lung cancer patient data showed (1) qualitatively, clear and accurate edges for both stable and moving structures; (2) quantitatively, low-intensity errors, high peak signal-to-noise ratio, and high structural similarity compared to the ground truth images; and (3) superior quality to those reconstructed by several other state-of-the-art methods including the back-projection, CS total-variation, PICCS, and the single-encoder CNN. Overall, the proposed DeCNN is effective in exploiting the average-image constraint to improve the 4D-CBCT image quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA