Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
BMC Plant Biol ; 24(1): 766, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39123119

RESUMO

BACKGROUND: Legumes utilize a long-distance signaling feedback pathway, termed Autoregulation of Nodulation (AON), to regulate the establishment and maintenance of their symbiosis with rhizobia. Several proteins key to this pathway have been discovered, but the AON pathway is not completely understood. RESULTS: We report a new hypernodulating mutant, defective in autoregulation, with disruption of a gene, DAR (Medtr2g450550/MtrunA17_Chr2g0304631), previously unknown to play a role in AON. The dar-1 mutant produces ten-fold more nodules than wild type, similar to AON mutants with disrupted SUNN gene function. As in sunn mutants, suppression of nodulation by CLE peptides MtCLE12 and MtCLE13 is abolished in dar. Furthermore, dar-1 also shows increased root length colonization by an arbuscular mycorrhizal fungus, suggesting a role for DAR in autoregulation of mycorrhizal symbiosis (AOM). However, unlike SUNN which functions in the shoot to control nodulation, DAR functions in the root. CONCLUSIONS: DAR encodes a membrane protein that is a member of a small protein family in M. truncatula. Our results suggest that DAR could be involved in the subcellular transport of signals involved in symbiosis regulation, but it is not upregulated during symbiosis. DAR gene family members are also present in Arabidopsis, lycophytes, mosses, and microalgae, suggesting the AON and AOM may use pathway components common to other plants, even those that do not undergo either symbiosis.


Assuntos
Medicago truncatula , Micorrizas , Proteínas de Plantas , Nodulação , Simbiose , Medicago truncatula/genética , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Micorrizas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Mutação , Genes de Plantas , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Homeostase , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo
2.
RNA Biol ; 20(1): 693-702, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37667454

RESUMO

Mutations in the DMD gene are causative for Duchenne muscular dystrophy (DMD). Antisense oligonucleotide (AON) mediated exon skipping to restore disrupted dystrophin reading frame is a therapeutic approach that allows production of a shorter but functional protein. As DMD causing mutations can affect most of the 79 exons encoding dystrophin, a wide variety of AONs are needed to treat the patient population. Design of AONs is largely guided by trial-and-error, and it is yet unclear what defines the skippability of an exon. Here, we use a library of phosphorodiamidate morpholino oligomer (PMOs) AONs of similar physical properties to test the skippability of a large number of DMD exons. The DMD transcript is non-sequentially spliced, meaning that certain introns are retained longer in the transcript than downstream introns. We tested whether the relative intron retention time has a significant effect on AON efficiency, and found that targeting an out-of-frame exon flanked at its 5'-end by an intron that is retained in the transcript longer ('slow' intron) leads to overall higher exon skipping efficiency than when the 5'-end flanking intron is 'fast'. Regardless of splicing speed of flanking introns, we find that positioning an AON closer to the 5'-end of the target exon leads to higher exon skipping efficiency opposed to targeting an exons 3'-end. The data enclosed herein can be of use to guide future target selection and preferential AON binding sites for both DMD and other disease amenable by exon skipping therapies.


Assuntos
Distrofia Muscular de Duchenne , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/genética , Íntrons , Distrofina/genética , Éxons , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
3.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069142

RESUMO

Legume plants have the ability to establish a symbiotic relationship with soil bacteria known as rhizobia. The legume-rhizobium symbiosis results in the formation of symbiotic root nodules, where rhizobia fix atmospheric nitrogen. A host plant controls the number of symbiotic nodules to meet its nitrogen demands. CLE (CLAVATA3/EMBRYO SURROUNDING REGION) peptides produced in the root in response to rhizobial inoculation and/or nitrate have been shown to control the number of symbiotic nodules. Previously, the MtCLE35 gene was found to be upregulated by rhizobia and nitrate treatment in Medicago truncatula, which systemically inhibited nodulation when overexpressed. In this study, we obtained several knock-out lines in which the MtCLE35 gene was mutated using the CRISPR/Cas9-mediated system. M. truncatula lines with the MtCLE35 gene knocked out produced increased numbers of nodules in the presence of nitrate in comparison to wild-type plants. Moreover, in the presence of nitrate, the expression levels of two other nodulation-related MtCLE genes, MtCLE12 and MtCLE13, were reduced in rhizobia-inoculated roots, whereas no significant difference in MtCLE35 gene expression was observed between nitrate-treated and rhizobia-inoculated control roots. Together, these findings suggest the key role of MtCLE35 in the number of nodule numbers under high-nitrate conditions, under which the expression levels of other nodulation-related MtCLE genes are reduced.


Assuntos
Medicago truncatula , Rhizobium , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Nitratos/metabolismo , Simbiose/genética , Sistemas CRISPR-Cas/genética , Medicago truncatula/metabolismo , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/metabolismo , Raízes de Plantas/metabolismo
4.
Genomics ; 113(6): 4313-4326, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34801685

RESUMO

Chickpea shoot exogenously treated with cytokinin showed stunted phenotype of root, shoot and significantly reduced nodule numbers. Genome-wide identification of LRR-RLKs in chickpea and Medicago resulted in 200 and 371 genes respectively. Gene duplication analysis revealed that LRR-RLKs family expanded through segmental duplications in chickpea and tandem duplications in Medicago. Expression profiling of LRR-RLKs revealed their involvement in cytokinin signaling and plant organ development. Overexpression of KLAVIER ortholog of chickpea, Ca_LRR-RLK147, in roots revealed its localization in the membrane but showed no effect on root nodulation despite increased cle peptide levels. Two findings (i) drastic effect on nodule number by exogenous cytokinin treatment to only shoot and restoration to normal nodulation by treatment to both root and shoot tissue and (ii) no effect on nodule number by overexpression of Ca_LRR-RLK147 establishes the fact that despite presence of cle peptides in root, the function of Ca_LRR-RLK147 was shoot mediated during AON.


Assuntos
Cicer , Cicer/genética , Cicer/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Simbiose/genética
5.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743118

RESUMO

The formation and development of legumes nodules requires a lot of energy. Legumes must strictly control the number and activity of nodules to ensure efficient energy distribution. The AON system can limit the number of rhizobia infections and nodule numbers through the systemic signal pathway network that the aboveground and belowground parts participate in together. It can also promote the formation of nodules when plants are deficient in nitrogen. The currently known AON pathway includes four parts: soil NO3- signal and Rhizobium signal recognition and transmission, CLE-SUNN is the negative regulation pathway, CEP-CRA2 is the positive regulation pathway and the miR2111/TML module regulates nodule formation and development. In order to ensure the biological function of this important approach, plants use a variety of plant hormones, polypeptides, receptor kinases, transcription factors and miRNAs for signal transmission and transcriptional regulation. This review summarizes and discusses the research progress of the AON pathway in Legume nodule development.


Assuntos
Fabaceae , Rhizobium , Autocontrole , Fabaceae/genética , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose/fisiologia
6.
Appl Environ Microbiol ; 87(15): e0300420, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33990306

RESUMO

Some soil bacteria, called rhizobia, can interact symbiotically with legumes, in which they form nodules on the plant roots, where they can reduce atmospheric dinitrogen to ammonia, a form of nitrogen that can be used by growing plants. Rhizobium-plant combinations can differ in how successful this symbiosis is: for example, Sinorhizobium meliloti Rm1021 forms a relatively ineffective symbiosis with Medicago truncatula Jemalong A17, but Sinorhizobium medicae WSM419 is able to support more vigorous plant growth. Using proteomic data from free-living and symbiotic S. medicae WSM419, we previously identified a subset of proteins that were not closely related to any S. meliloti Rm1021 proteins and speculated that adding one or more of these proteins to S. meliloti Rm1021 would increase its effectiveness on M. truncatula A17. Three genes, Smed_3503, Smed_5985, and Smed_6456, were cloned into S. meliloti Rm1021 downstream of the E. coli lacZ promoter. Strains with these genes increased nodulation and improved plant growth, individually and in combination with one another. Smed_3503, renamed iseA (increased symbiotic effectiveness), had the largest impact, increasing M. truncatula biomass by 61%. iseA homologs were present in all currently sequenced S. medicae strains but were infrequent in other Sinorhizobium isolates. Rhizobium leguminosarum bv. viciae 3841 containing iseA led to more nodules on pea and lentil. Split-root experiments with M. truncatula A17 indicated that S. meliloti Rm1021 carrying the S. medicae iseA is less sensitive to plant-induced resistance to rhizobial infection, suggesting an interaction with the plant's regulation of nodule formation. IMPORTANCE Legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix nitrogen on one legume species are often unable to associate with a different species. The interaction can be more subtle. Symbiotically enhanced growth of the host plant can differ substantially when nodules are formed by different rhizobial isolates of a species, much like disease severity can differ when conspecific isolates of pathogenic bacteria infect different cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is understood about genes that marginally improve performance. We used a proteomic strategy to identify Sinorhizobium genes that contribute to plant growth differences that are seen when two different strains nodulate M. truncatula A17. These genes could also alter the symbiosis between R. leguminosarum bv. viciae 3841 and pea or lentil, suggesting that this approach identifies new genes that may more generally contribute to symbiotic productivity.


Assuntos
Genes Bacterianos , Medicago truncatula/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium/genética , Simbiose/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Lens (Planta)/crescimento & desenvolvimento , Lens (Planta)/microbiologia , Medicago truncatula/crescimento & desenvolvimento , Fixação de Nitrogênio , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/microbiologia , Proteômica , Rhizobium/genética
7.
Plant Cell Environ ; 44(5): 1627-1641, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33386621

RESUMO

Legumes control their nodule numbers through the autoregulation of nodulation (AON). Rhizobia infection stimulates the production of root-derived CLE peptide hormones that are translocated to the shoot where they regulate a new signal. We used soybean to demonstrate that this shoot-derived signal is miR2111, which is transported via phloem to the root where it targets transcripts of Too Much Love (TML), a negative regulator of nodulation. Shoot perception of rhizobia-induced CLE peptides suppresses miR2111 expression, resulting in TML accumulation in roots and subsequent inhibition of nodule organogenesis. Feeding synthetic mature miR2111 via the petiole increased nodule numbers per plant. Likewise, elevating miR2111 availability by over-expression promoted nodulation, while target mimicry of TML induced the opposite effect on nodule development in wild-type plants and alleviated the supernodulating and stunted root growth phenotypes of AON-defective mutants. Additionally, in non-nodulating wild-type plants, ectopic expression of miR2111 significantly enhanced lateral root emergence with a decrease in lateral root length and average root diameter. In contrast, hairy roots constitutively expressing the target mimic construct exhibited reduced lateral root density. Overall, these findings demonstrate that miR2111 is both the critical shoot-to-root factor that positively regulates root nodule development and also acts to shape root system architecture.


Assuntos
Glycine max/crescimento & desenvolvimento , Glycine max/genética , MicroRNAs/metabolismo , Família Multigênica , Brotos de Planta/genética , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Modelos Biológicos , Fenótipo , Floema/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
8.
Plant J ; 98(2): 228-242, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30570783

RESUMO

Glycogen synthase kinase/SHAGGY-like kinases (SKs) are a highly conserved family of signaling proteins that participate in many developmental, cell-differentiation, and metabolic signaling pathways in plants and animals. Here, we investigate the involvement of SKs in legume nodulation, a process requiring the integration of multiple signaling pathways. We describe a group of SKs in the model legume Lotus japonicus (LSKs), two of which respond to inoculation with the symbiotic nitrogen-fixing bacterium Mesorhizobium loti. RNAi knock-down plants and an insertion mutant for one of these genes, LSK1, display increased nodulation. Ηairy-root lines overexpressing LSK1 form only marginally fewer mature nodules compared with controls. The expression levels of genes involved in the autoregulation of nodulation (AON) mechanism are affected in LSK1 knock-down plants at low nitrate levels, both at early and late stages of nodulation. At higher levels of nitrate, these same plants show the opposite expression pattern of AON-related genes and lose the hypernodulation phenotype. Our findings reveal an additional role for the versatile SK gene family in integrating the signaling pathways governing legume nodulation, and pave the way for further study of their functions in legumes.


Assuntos
Lotus/genética , Lotus/metabolismo , Nodulação/genética , Nodulação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/metabolismo , Mesorhizobium/fisiologia , Nitratos/metabolismo , Bactérias Fixadoras de Nitrogênio , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/classificação , Interferência de RNA , Rhizobium/metabolismo , Nódulos Radiculares de Plantas , Simbiose
9.
Genet Med ; 21(8): 1761-1771, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30670881

RESUMO

PURPOSE: ABCA4-associated disease, a recessive retinal dystrophy, is hallmarked by a large proportion of patients with only one pathogenic ABCA4 variant, suggestive for missing heritability. METHODS: By locus-specific analysis of ABCA4, combined with extensive functional studies, we aimed to unravel the missing alleles in a cohort of 67 patients (p), with one (p = 64) or no (p = 3) identified coding pathogenic variants of ABCA4. RESULTS: We identified eight pathogenic (deep-)intronic ABCA4 splice variants, of which five are novel and six structural variants, four of which are novel, including two duplications. Together, these variants account for the missing alleles in 40.3% of patients. Furthermore, two novel variants with a putative cis-regulatory effect were identified. The common hypomorphic variant c.5603A>T p.(Asn1868Ile) was found as a candidate second allele in 43.3% of patients. Overall, we have elucidated the missing heritability in 83.6% of our cohort. In addition, we successfully rescued three deep-intronic variants using antisense oligonucleotide (AON)-mediated treatment in HEK 293-T cells and in patient-derived fibroblast cells. CONCLUSION: Noncoding pathogenic variants, novel structural variants, and a common hypomorphic allele of the ABCA4 gene explain the majority of unsolved cases with ABCA4-associated disease, rendering this retinopathy a model for missing heritability in autosomal recessive disorders.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Genes Recessivos/genética , Oligonucleotídeos Antissenso/genética , Distrofias Retinianas/genética , Adulto , Alelos , Estudos de Coortes , Éxons/genética , Feminino , Frequência do Gene , Células HEK293 , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Oligonucleotídeos Antissenso/farmacologia , Linhagem , Fenótipo , Distrofias Retinianas/patologia
10.
J Exp Bot ; 70(4): 1407-1417, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30753553

RESUMO

The number of legume root nodules resulting from a symbiosis with rhizobia is tightly controlled by the plant. Certain members of the CLAVATA3/Embryo Surrounding Region (CLE) peptide family, specifically MtCLE12 and MtCLE13 in Medicago truncatula, act in the systemic autoregulation of nodulation (AON) pathway that negatively regulates the number of nodules. Little is known about the molecular pathways that operate downstream of the AON-related CLE peptides. Here, by means of a transcriptome analysis, we show that roots ectopically expressing MtCLE13 deregulate only a limited number of genes, including three down-regulated genes encoding lysin motif receptor-like kinases (LysM-RLKs), among which are the nodulation factor (NF) receptor NF Perception gene (NFP) and two up-regulated genes, MtTML1 and MtTML2, encoding Too Much Love (TML)-related Kelch-repeat containing F-box proteins. The observed deregulation was specific for the ectopic expression of nodulation-related MtCLE genes and depended on the Super Numeric Nodules (SUNN) AON RLK. Moreover, overexpression and silencing of these two MtTML genes demonstrated that they play a role in the negative regulation of nodule numbers. Hence, the identified MtTML genes are the functional counterpart of the Lotus japonicus TML gene shown to be central in the AON pathway. Additionally, we propose that the down-regulation of a subset of LysM-RLK-encoding genes, among which is NFP, might contribute to the restriction of further nodulation once the first nodules have been formed.


Assuntos
Regulação para Baixo , Medicago truncatula/fisiologia , Proteínas de Plantas/genética , Nodulação/genética , Regulação da Expressão Gênica de Plantas , Homeostase/genética , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo
11.
Clin Chem Lab Med ; 57(9): 1329-1338, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30903753

RESUMO

Background New moving average quality control (MA QC) optimization methods have been developed and are available for laboratories. Having these methods will require a strategy to integrate MA QC and routine internal QC. Methods MA QC was considered only when the performance of the internal QC was limited. A flowchart was applied to determine, per test, whether MA QC should be considered. Next, MA QC was examined using the MA Generator (www.huvaros.com), and optimized MA QC procedures and corresponding MA validation charts were obtained. When a relevant systematic error was detectable within an average daily run, the MA QC was added to the QC plan. For further implementation of MA QC for continuous QC, MA QC management software was configured based on earlier proposed requirements. Also, protocols for the MA QC alarm work-up were designed to allow the detection of temporary assay failure based on previously described experiences. Results Based on the flowchart, 10 chemistry, two immunochemistry and six hematological tests were considered for MA QC. After obtaining optimal MA QC settings and the corresponding MA validation charts, the MA QC of albumin, bicarbonate, calcium, chloride, creatinine, glucose, magnesium, potassium, sodium, total protein, hematocrit, hemoglobin, MCH, MCHC, MCV and platelets were added to the QC plans. Conclusions The presented method allows the design and implementation of QC plans integrating MA QC for continuous QC when internal QC has limited performance.


Assuntos
Testes de Química Clínica/normas , Garantia da Qualidade dos Cuidados de Saúde/métodos , Gestão da Qualidade Total/métodos , Humanos , Laboratórios , Controle de Qualidade , Software , Gestão da Qualidade Total/normas
12.
Am J Kidney Dis ; 71(2): 281-286, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29203127

RESUMO

Oxalate nephropathy is an uncommon condition that causes acute kidney injury with the potential for progression to end-stage renal disease. Diagnosis is based on the kidney biopsy findings of abundant polarizable calcium oxalate crystals in the epithelium and lumen of renal tubules. We report a case of acute oxalate nephropathy in a 65-year-old woman, temporally associated with the consumption of an oxalate-rich green smoothie juice "cleanse" prepared from juicing oxalate-rich green leafy vegetables and fruits. Predisposing factors included a remote history of gastric bypass and recent prolonged antibiotic therapy. She had normal kidney function before using the cleanse and developed acute kidney injury that progressed to end-stage renal disease. Consumption of such juice cleanses increases oxalate absorption, causing hyperoxaluria and acute oxalate nephropathy in patients with predisposing risk factors. Given the increasing popularity of juice cleanses, it is important that both patients and physicians have greater awareness of the potential for acute oxalate nephropathy in susceptible individuals with risk factors such as chronic kidney disease, gastric bypass, and antibiotic use.


Assuntos
Injúria Renal Aguda , Sucos de Frutas e Vegetais/efeitos adversos , Falência Renal Crônica , Rim/patologia , Oxalatos/efeitos adversos , Diálise Renal/métodos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Idoso , Antibacterianos/uso terapêutico , Progressão da Doença , Feminino , Derivação Gástrica/efeitos adversos , Humanos , Hiperoxalúria/diagnóstico , Hiperoxalúria/etiologia , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/etiologia , Falência Renal Crônica/fisiopatologia , Fatores de Risco , Resultado do Tratamento
13.
Adv Exp Med Biol ; 1074: 83-89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721931

RESUMO

Choroideremia is a progressive genetic eye disorder caused by mutations in the CHM gene that encodes the Rab escort protein-1 (REP-1). One of the many CHM mutations described so far is a deep-intronic variant, c.315-4587T>A, that creates a novel splice acceptor site resulting in the insertion of a 98-bp pseudoexon in the CHM transcript. Antisense oligonucleotides (AONs) are a potential therapeutic tool for correcting splice defects, as they have the properties to bind to the pre-mRNA and redirect the splicing process. Previously, we used AONs to correct aberrant splicing events caused by a recurrent intronic mutation in CEP290 underlying Leber congenital amaurosis. Here, we expand the use of these therapeutic molecules for the c.315-4587T>A deep-intronic mutation in CHM by demonstrating splice correction in patient-derived lymphoblast cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Coroideremia/terapia , Terapia Genética/métodos , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNA/genética , Células Cultivadas , Humanos , Técnicas In Vitro , Íntrons/genética , Masculino , Mutação , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Transcrição Gênica , Transfecção
14.
New Phytol ; 210(2): 643-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26661110

RESUMO

The role of shoot-root signals in the control of nodulation and arbuscular mycorrhizal (AM) development were examined in the divergent legume species pea and blue lupin. These species were chosen as pea can host both symbionts, whereas lupin can nodulate but has lost the ability to form AM. Intergeneric grafts between lupin and pea enabled examination of key long-distance signals in these symbioses. The role of strigolactones, auxin and elements of the autoregulation of nodulation (AON) pathway were investigated. Grafting studies were combined with loss-of-function mutants to monitor symbioses (nodulation, AM) and hormone effects (levels, gene expression and application studies). Lupin shoots suppress AM colonization in pea roots, in part by downregulating strigolactone exudation involving reduced expression of the strigolactone biosynthesis gene PsCCD8. By contrast, lupin shoots enhance pea nodulation, independently of strigolactones, possibly due to a partial incompatibility in AON shoot-root signalling between pea and lupin. This study highlights that nodulation and AM symbioses can be regulated independently and this may be due to long-distance signals, a phenomenon we were able to uncover by working with divergent legumes. We also identify a role for strigolactone exudation in determining the status of non-AM hosts.


Assuntos
Lupinus/metabolismo , Pisum sativum/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Transdução de Sinais , Simbiose , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Lupinus/genética , Lupinus/microbiologia , Modelos Biológicos , Micorrizas/fisiologia , Pisum sativum/genética , Pisum sativum/microbiologia , Nodulação , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Trítio
15.
Adv Exp Med Biol ; 854: 517-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427454

RESUMO

Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic.


Assuntos
Oligonucleotídeos Antissenso/genética , Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Reparo Gênico Alvo-Dirigido/métodos , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Humanos , Mutação , Precursores de RNA/genética , Splicing de RNA/genética
16.
Ann Bot ; 113(6): 1037-45, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24694828

RESUMO

BACKGROUND AND AIMS: The number of nodules formed on a legume root system is under the strict genetic control of the autoregulation of nodulation (AON) pathway. Plant hormones are thought to play a role in AON; however, the involvement of two hormones recently described as having a largely positive role in nodulation, strigolactones and brassinosteroids, has not been examined in the AON process. METHODS: A genetic approach was used to examine if strigolactones or brassinosteroids interact with the AON system in pea (Pisum sativum). Double mutants between shoot-acting (Psclv2, Psnark) and root-acting (Psrdn1) mutants of the AON pathway and strigolactone-deficient (Psccd8) or brassinosteroid-deficient (lk) mutants were generated and assessed for various aspects of nodulation. Strigolactone production by AON mutant roots was also investigated. KEY RESULTS: Supernodulation of the roots was observed in both brassinosteroid- and strigolactone-deficient AON double-mutant plants. This is despite the fact that the shoots of these plants displayed classic strigolactone-deficient (increased shoot branching) or brassinosteroid-deficient (extreme dwarf) phenotypes. No consistent effect of disruption of the AON pathway on strigolactone production was found, but root-acting Psrdn1 mutants did produce significantly more strigolactones. CONCLUSIONS: No evidence was found that strigolactones or brassinosteroids act downstream of the AON genes examined. While in pea the AON mutants are epistatic to brassinosteroid and strigolactone synthesis genes, we argue that these hormones are likely to act independently of the AON system, having a role in the promotion of nodule formation.


Assuntos
Brassinosteroides/farmacologia , Lactonas/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Mutação
17.
Mol Cell Neurosci ; 56: 169-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23631896

RESUMO

Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are two of the most common inherited neuromuscular diseases in humans. Both conditions are fatal and no clinically available treatments are able to significantly alter disease course in either case. However, by manipulation of pre-mRNA splicing using antisense oligonucleotides, defective transcripts from the DMD gene and from the SMN2 gene in SMA can be modified to once again produce protein and restore function. A large number of in vitro and in vivo studies have validated the applicability of this approach and an increasing number of preliminary clinical trials have either been completed or are under way. Several different oligonucleotide chemistries can be used for this purpose and various strategies are being developed to facilitate increased delivery efficiency and prolonged therapeutic effect. As these novel therapeutic compounds start to enter the clinical arena, attention must also be drawn to the question of how best to facilitate the clinical development of such personalised genetic therapies and how best to implement their provision.


Assuntos
Terapia Genética , Atrofia Muscular Espinal/terapia , Distrofia Muscular de Duchenne/terapia , Splicing de RNA , Animais , Distrofina/genética , Distrofina/metabolismo , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
18.
Heliyon ; 10(2): e24058, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293547

RESUMO

All-optical networks (AON) provide large bandwidth, high-speed switching, and quality of service (QoS). However, the emergence of recent applications generating flexible traffic demands affects AON resource utilization and QoS management. These concerns are handled by AON using core nodes with large wavelength converters (WC) and fiber delay line (FDL) spaces, resulting in a high cost of implementation and operation. This paper proposes a hybrid core node architecture, upgrading existing nodes with limited effective modification to minimize physical topology costs. This hybrid architecture increases WC and FDL availability and reduces wavelength utilization according to traffic behavior. These new node functions are enabled using an advanced algorithm integrating a novel cost formulation merging WC and FDL with lightpath deflection (LD). This algorithm activates resource availabilities using a flexible QoS scheme considering the required and real-time traffic loss and blocking delay. The experimental results indicate that the proposed approach optimizes AON resources while guaranteeing required traffic demands compared to the existing techniques.

19.
Hum Mutat ; 34(10): 1387-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23864287

RESUMO

Limb-girdle muscular dystrophy type 2A (LGMD2A) is the most frequent autosomal recessive muscular dystrophy. It is caused by mutations in the calpain-3 (CAPN3) gene. The majority of the mutations described to date are located in the coding sequence of the gene. However, it is estimated that 25% of the mutations are present at exon-intron boundaries and modify the pre-mRNA splicing of the CAPN3 transcript. We have previously described the first deep intronic mutation in the CAPN3 gene: c.1782+1072G>C mutation. This mutation causes the pseudoexonization of an intronic sequence of the CAPN3 gene in the mature mRNA. In the present work, we show that the point mutation generates the inclusion of the pseudoexon in the mRNA using a minigene assay. In search of a treatment that restores normal splicing, splicing modulation was induced by RNA-based strategies, which included antisense oligonucleotides and modified small-nuclear RNAs. The best effect was observed with antisense sequences, which induced pseudoexon skipping in both HeLa cells cotransfected with mutant minigene and in fibroblasts from patients. Finally, transfection of antisense sequences and siRNA downregulation of serine/arginine-rich splicing factor 1 (SRSF1) indicate that binding of this factor to splicing enhancer sequences is involved in pseudoexon activation.


Assuntos
Éxons , Íntrons , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Oligonucleotídeos Antissenso/genética , RNA Nuclear Pequeno/genética , Processamento Alternativo , Calpaína/genética , Linhagem Celular , Feminino , Fibroblastos/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Humanos , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas Nucleares/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Processamento de Serina-Arginina
20.
Neurobiol Dis ; 58: 49-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23659897

RESUMO

Spinocerebellar ataxia type 3 is caused by a polyglutamine expansion in the ataxin-3 protein, resulting in gain of toxic function of the mutant protein. The expanded glutamine stretch in the protein is the result of a CAG triplet repeat expansion in the penultimate exon of the ATXN3 gene. Several gene silencing approaches to reduce mutant ataxin-3 toxicity in this disease aim to lower ataxin-3 protein levels, but since this protein is involved in deubiquitination and proteasomal protein degradation, its long-term silencing might not be desirable. Here, we propose a novel protein modification approach to reduce mutant ataxin-3 toxicity by removing the toxic polyglutamine repeat from the ataxin-3 protein through antisense oligonucleotide-mediated exon skipping while maintaining important wild type functions of the protein. In vitro studies showed that exon skipping did not negatively impact the ubiquitin binding capacity of ataxin-3. Our in vivo studies showed no toxic properties of the novel truncated ataxin-3 protein. These results suggest that exon skipping may be a novel therapeutic approach to reduce polyglutamine-induced toxicity in spinocerebellar ataxia type 3.


Assuntos
Doença de Machado-Joseph/patologia , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Repetições de Trinucleotídeos/genética , Animais , Ataxina-3 , Células Cultivadas , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Éxons/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Oligonucleotídeos Antissenso/farmacologia , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Transfecção , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA