Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(9): e2306695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857593

RESUMO

Reversible oxygen redox (OR) is considered as a paradigmatic avenue to boost the energy densities of layered oxide cathodes. However, its activation is largely coupled with the local coordination environment around oxygen, which is usually accompanied with irreversible oxygen release and unfavorable structure distortion. Herein, it is revealed that the synergistic effect of transition-metal (TM) vacancy and substitution element for modulating the OR activity and reversibility of layered Na0.67 MnO2 through multimodal operando synchrotron characterizations and electrochemical investigations. It is disclosed that TM vacancy can not only suppress the complicated phase transition but also stimulate the OR activity by creating nonbonding O 2p states via the Na─O─vacancy configurations. Notably, the substitution element plays a decisive role for regulating the reversibility of vacancy-boosted OR activity: the presence of strong Al─O bonds stabilizes the Mn-O motifs by sharing O with Al in the rigid Mn─O─Al frameworks, which mitigates TM migration and oxygen release induced by TM vacancy, leading to enhanced OR reversibility; while the introduction of weak Zn─O bonds exacerbates TM migration and irreversible oxygen release. This work clarifies the critical role of both TM vacancy and substitution element for regulating the OR chemistry, providing an effective avenue for designing high-performance cathodes employing anionic redox.

2.
Small ; : e2401132, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552226

RESUMO

Li-rich layered oxides cathodes (LLOs) have prevailed as the promising high-energy-density cathode materials due to their distinctive anionic redox chemistry. However, uncontrollable anionic redox process usually leads to structural deterioration and electrochemical degradation. Herein, a Mo/Cl co-doping strategy is proposed to regulate the relative position of energy band for modulating the anionic redox chemistry and strengthening the structural stability of Co-free Li1.16Mn0.56Ni0.28O2 cathodes. The incorporation of Mo with high d state orbit and Cl with low electronegativity can narrow the band energy gap between bonding and antibonding bands via increasing the filled lower-Hubbard band (LHB) and decreasing the non-bonding O 2p energy bands, promoting the anionic redox reversibility. In addition, strong covalent Mo─O and Mn─Cl bonding further increases the covalency of Mn─O band to further stabilize the O2 n- species and enhance the reversible distortion of MnO6 octahedron. The strengthening electronic conductivity, together with the epitaxial structure Li2MoO4 facilitates the fast Li+ kinetics. As a result, the dual doping material exhibits enhanced anionic redox reversibility and suppressed oxygen release with increased cyclic stability and excellent rate performance. This strategy provides some guidance to design high-energy-density LLOs with desirable anionic redox reversibility and stable crystal structure via band structure engineering.

3.
Angew Chem Int Ed Engl ; 63(6): e202316790, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38116869

RESUMO

Electrolyte engineering is a fascinating choice to improve the performance of Li-rich layered oxide cathodes (LRLO) for high-energy lithium-ion batteries. However, many existing electrolyte designs and adjustment principles tend to overlook the unique challenges posed by LRLO, particularly the nucleophilic attack. Here, we introduce an electrolyte modification by locally replacing carbonate solvents in traditional electrolytes with a fluoro-ether. By benefit of the decomposition of fluoro-ether under nucleophilic O-related attacks, which delivers an excellent passivation layer with LiF and polymers, possessing rigidity and flexibility on the LRLO surface. More importantly, the fluoro-ether acts as "sutures", ensuring the integrity and stability of both interfacial and bulk structures, which contributed to suppressing severe polarization and enhancing the cycling capacity retention from 39 % to 78 % after 300 cycles for the 4.8 V-class LRLO. This key electrolyte strategy with comprehensive analysis, provides new insights into addressing nucleophilic challenge for high-energy anionic redox related cathode systems.

4.
Angew Chem Int Ed Engl ; 63(18): e202400837, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38446007

RESUMO

Magnesium batteries attract interest as alternative energy-storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg2+ and the host structure. V2PS10 is reported as a positive electrode material for rechargeable magnesium batteries. Cyclable capacity of 100 mAh g-1 is achieved with fast Mg2+ diffusion of 7.2 × ${\times }$ 10-11-4 × ${\times }$ 10-14 cm2 s-1. The fast insertion mechanism results from combined cationic redox on the V site and anionic redox on the (S2)2- site; enabled by reversible cleavage of S-S bonds, identified by X-ray photoelectron and X-ray absorption spectroscopy. Detailed structural characterisation with maximum entropy method analysis, supported by density functional theory and projected density of states analysis, reveals that the sulphur species involved in anion redox are not connected to the transition metal centres, spatially separating the two redox processes. This facilitates fast and reversible Mg insertion in which the nature of the redox process depends on the cation insertion site, creating a synergy between the occupancy of specific Mg sites and the location of the electrons transferred.

5.
Angew Chem Int Ed Engl ; 63(5): e202316112, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38088222

RESUMO

Compensating the irreversible loss of limited active lithium (Li) is essentially important for improving the energy-density and cycle-life of practical Li-ion battery full-cell, especially after employing high-capacity but low initial coulombic efficiency anode candidates. Introducing prelithiation agent can provide additional Li source for such compensation. Herein, we precisely implant trace Co (extracted from transition metal oxide) into the Li site of Li2 O, obtaining (Li0.66 Co0.11 □0.23 )2 O (CLO) cathode prelithiation agent. The synergistic formation of Li vacancies and Co-derived catalysis efficiently enhance the inherent conductivity and weaken the Li-O interaction of Li2 O, which facilitates its anionic oxidation to peroxo/superoxo species and gaseous O2 , achieving 1642.7 mAh/g~Li2O prelithiation capacity (≈980 mAh/g for prelithiation agent). Coupled 6.5 wt % CLO-based prelithiation agent with LiCoO2 cathode, substantial additional Li source stored within CLO is efficiently released to compensate the Li consumption on the SiO/C anode, achieving 270 Wh/kg pouch-type full-cell with 92 % capacity retention after 1000 cycles.

6.
Small ; 19(41): e2303539, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37287389

RESUMO

On account of high capacity and high voltage resulting from anionic redox, Li-rich layered oxides (LLOs) have become the most promising cathode candidate for the next-generation high-energy-density lithium-ion batteries (LIBs). Unfortunately, the participation of oxygen anion in charge compensation causes lattice oxygen evolution and accompanying structural degradation, voltage decay, capacity attenuation, low initial columbic efficiency, poor kinetics, and other problems. To resolve these challenges, a rational structural design strategy from surface to bulk by a facile pretreatment method for LLOs is provided to stabilize oxygen redox. On the surface, an integrated structure is constructed to suppress oxygen release, electrolyte attack, and consequent transition metals dissolution, accelerate lithium ions transport on the cathode-electrolyte interface, and alleviate the undesired phase transformation. While in the bulk, B doping into Li and Mn layer tetrahedron is introduced to increase the formation energy of O vacancy and decrease the lithium ions immigration barrier energy, bringing about the high stability of surrounding lattice oxygen and outstanding ions transport ability. Benefiting from the specific structure, the designed material with the enhanced structural integrity and stabilized anionic redox performs an excellent electrochemical performance and fast-charging property..

7.
Small ; 19(21): e2300175, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36843265

RESUMO

The construction of a protective layer for stabilizing anion redox reaction is the key to obtaining long cycling stability for Li-rich Mn-based cathode materials. However, the protection of the exposed surface/interface of the primary particles inside the secondary particles is usually ignored and difficult, let alone the investigation of the impact of the surface engineering of the internal primary particles on the cycling stability. In this work, an efficient method to regulate cycling stability is proposed by simply adjusting the distribution state of the boron nickel complexes coating layer. Theoretical calculation and experimental results display that the full-surface boron nickel complexes coating layer can not only passivate the activity of interface oxygen and improve its stability but also play the role of sharing voltage and protective layer to gradually activate the oxygen redox reaction during cycling. As a result, the elaborately designed cobalt-free Li-rich Mn-based cathode displays the highest discharge-specific capacity retentions of 91.1% after 400 cycles at 1 C and 94.3% even after 800 cycles at 5 C. In particular, the regulation strategy has well universality and is suitable for other high-capacity Li-rich cathode materials.

8.
Small ; 19(18): e2300419, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36725302

RESUMO

All-Mn-based Li-rich cathodes Li2 MnO3 have attracted extensive attention because of their cost advantage and ultrahigh theoretical capacity. However, the unstable anionic redox reaction (ARR), which involves irreversible oxygen releases, causes declines in cycling capacity and intercalation potential, thus hindering their practical applications. Here, it is proposed that introducing stacking-fault defects into the Li2 MnO3 can localize oxygen lattice evolutions and stabilize the ARR, eliminating oxygen releases. The thus-made cathode has a highly reversible capacity (320 mA h g-1 ) and achieves excellent cycling stability. After 100 cycles, the capacity retention rate is 86% and the voltage decay is practically eliminated at 0.19 mV per cycle. Attributing to the stable ARR, samples show reduced stress-strain and phase transitions. Neutron pair distribution function (nPDF) measurements indicate that there is a structure response of localized oxygen lattice distortion to the ARR and the average oxygen lattice framework is well-preserved which is a prerequisite for the high cycle reversibility.

9.
Nano Lett ; 22(24): 9972-9981, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36512422

RESUMO

Development of high-energy-density rechargeable battery systems not only needs advanced qualitative characterizations for mechanism exploration but also requires accurate quantification technology to quantitatively elucidate products and fairly assess numerous modification strategies. Herein, as a reliable quantification technology, titration mass spectroscopy (TMS) is developed to accurately quantify O-related anionic redox reactions (Li-O2 battery and nickel-cobalt-manganese (NCM)/Li-rich cathodes), parasitic carbonate deposition and decomposition (derived from air-exposure degradation and electrolyte oxidation), and dead Li0 formation (Li-metal battery and over-discharged graphite anode). TMS technology can harvest key information on products (e.g., quantification of oxidized lattice oxygen and solid electrolyte interphase (SEI)/cathode electrolyte interphase (CEI) components) and guide corresponding design strategy by enhancing understanding of the mechanism (e.g., clearly distinguish the catalytic target of highly oxidative Ni4+ on the NCM cathode). Not limited as a rigid quantification tool for widely known products/mechanisms, TMS technology has been demonstrated as a powerful and versatile tool for the investigations of advanced batteries.

10.
Angew Chem Int Ed Engl ; 62(9): e202216797, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36545849

RESUMO

Aluminum-ion batteries (AIBs) are a promising candidate for large-scale energy storage due to the abundant reserves, low cost, good safety, and high theoretical capacity of Al. However, AIBs with inorganic positive electrodes still suffer from sluggish kinetics and structural collapse upon cycling. Herein, we propose a novel p-type poly(vinylbenzyl-N-phenoxazine) (PVBPX) positive electrode for AIBs. The dual active sites enable PVBPX to deliver a high capacity of 133 mAh g-1 at 0.2 A g-1 . More impressively, the expanded π-conjugated construction, insolubility, and anionic redox chemistry without bond rearrangement of PVBPX for AIBs contribute to an amazing ultra-long lifetime of 50000 cycles. The charge storage mechanism is that the AlCl4 - ions can reversibly coordinate/dissociate with the N and O sites in PVBPX sequentially, which is evidenced by both experimental and theoretical results. These findings establish a foundation to advance organic AIBs for large-scale energy storage.

11.
Angew Chem Int Ed Engl ; 62(10): e202213996, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622734

RESUMO

A battery cathode based on the superoxide/peroxide redox not only inherits the advantage of oxygen (O2 ) batteries in high capacities and low costs but also overcomes the disadvantages in O2 storage, electrolyte evaporation, and anode deactivation due to O2 crossover. Herein, we report an enhanced potassium superoxide (KO2 )/peroxide (K2 O2 ) conversion by adopting a high-donicity anion additive in the ether-based electrolyte. Such an anion was synthesized via a "Solvent-in-Anion" strategy and validated to enhance the electron donicity of the electrolyte. The use of high-donicity anion could lead to enhanced KO2 utilization (≈90.2 %) by retarding electrode passivation and allow the full charging back of K2 O2 through the solution-mediated pathway without electrocatalysts. No apparent cell degradation is observed during the first 120 cycles by controlling the reversible depth-of-discharge capacity at 292 mAh g-1 KO 2 ${{_{{\rm KO}{_{2}}}}}$ within an O2 -free region. The K-KO2 cell delivers a high energy efficiency (>84.4 %) and a lifespan of over 1440 hours.

12.
Angew Chem Int Ed Engl ; 62(5): e202215131, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36471651

RESUMO

Charge compensation on anionic redox reaction (ARR) has been promising to realize extra capacity beyond transition metal redox in battery cathodes. The practical development of ARR capacity has been hindered by high-valence oxygen instability, particularly at cathode surfaces. However, the direct probe of surface oxygen behavior has been challenging. Here, the electronic states of surface oxygen are investigated by combining mapping of resonant Auger electronic spectroscopy (mRAS) and ambient pressure X-ray photoelectron spectroscopy (APXPS) on a model LiCoO2 cathode. The mRAS verified that no high-valence oxygen can sustain at cathode surfaces, while APXPS proves that cathode electrolyte interphase (CEI) layer evolves and oxidizes upon oxygen gas contact. This work provides valuable insights into the high-valence oxygen degradation mode across the interface. Oxygen stabilization from surface architecture is proven a prerequisite to the practical development of ARR active cathodes.

13.
Small ; 18(24): e2200289, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35585688

RESUMO

Recently, sodium-ion batteries have shown great potential for energy storage owing to their favorable electrochemical properties and intrinsic cost performance, which fuels the research and development of Mn-based layered oxides as promising sodium-ion cathodes. However, the undesirable structural evolution and oxygen redox impose great challenge on the cycling stability and rate capability of such cathodes. In this work, it is reported that Fe and Al can effectively tailor the Na2/3 Mn2/3 Fe1/6 Al1/6 O2 to trigger a stable cationic and anionic redox behavior. In situ X-ray diffraction analysis confirms the retention of a stable P2 phase upon cycling, and density functional theory results demonstrate that Al3+ doping can strengthen the covalency of MnO bond. The Na2/3 Mn2/3 Fe1/6 Al1/6 O2 cathode can retain 90% of its initial capacity within the voltage range of 2.0-4.2 V versus Na+ /Na at 200 mA g-1 after 100 cycles. Moreover, ex situ X-ray photoelectron spectroscopy reveals that the specific capacity can be replenished by the synergistic reactions between Fe3+ /Fe4+ /Fe3+ and O2- /(O2 )n - pairs within the voltage range of 4.0-4.4 V versus Na+ /Na, which is also elucidated by theoretical calculation.

14.
Angew Chem Int Ed Engl ; 61(33): e202206625, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35674734

RESUMO

Anion redox contributes to the anomalous capacity exceeding the theoretical limit of layered oxides. However, double-high activity and reversibility is challenging due to the structural rearrangement and potential oxygen loss. Here, we propose a strategy for constructing a dual honeycomb-superlattice structure in Na2/3 [Li1/7 Mn5/14 ][Mg1/7 Mn5/14 ]O2 to simultaneously realize high activity and reversibility of lattice O redox. Theoretical simulation and electrochemical tests show that [Li1/7 Mn5/14 ] superlattice units remarkably trigger the anion redox activity and enable the delivery of a record capacity of 285.9 mA g-1 in layered sodium-ion battery cathodes. Nuclear magnetic resonance and in situ X-ray diffraction reveal that [Mg1/7 Mn5/14 ] superlattice units are beneficial to the structure and anion redox reversibility, where Li+ reversibly shuttles between Na layers and transition-metal slabs in contrast to the absence of [Mg1/7 Mn5/14 ] units. Our findings underline the importance of multifunctional units and provide a path to advanced battery materials.

15.
Angew Chem Int Ed Engl ; 61(47): e202212471, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36265124

RESUMO

The key to increasing the energy density of lithium-ion batteries is to incorporate high contents of extractable Li into the cathode. Unfortunately, this triggers formidable challenges including structural instability and irreversible chemistry under operation. Here, we report a new kind of ultra-high Li compound: Li4+x MoO5 Fx (1≤x≤3) for cathode with an unprecedented level of electrochemically active Li (>3 Li+ per formula), delivering a reversible capacity up to 438 mAh g-1 . Unlike other reported Li-rich cathodes, Li4+x MoO5 Fx presents distinguished structure stability to immunize against irreversible behaviors. Through spectroscopic and electrochemical techniques, we find an anionic redox-dominated charge compensation with negligible oxygen release and voltage decay. Our theoretical analysis reveals a "reductive effect" of high-level fluorination stabilizes the anionic redox by reducing the oxygen ions in pure-Li conditions, enabling a facile, reversible, and high Li-portion cycling.

16.
Small ; 17(32): e2100840, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34197017

RESUMO

Li-rich layered oxide materials are considered promising candidates for high-capacity cathodes for battery applications and improving the reversibility of the anionic redox reaction is the key to exploiting the full capacity of these materials. However, permanent structural change of the electrode occurring upon electrochemical cycling results in capacity and voltage decay. In view of these factors, Ti4+ -substituted Li2 IrO3 (Li2 Ir0.75 Ti0.25 O3 ) is synthesized, which undergoes an oxygen redox reaction with suppressed voltage decay, yielding improved electrochemical performance and good capacity retention. It is shown that the increased bond covalency upon Ti4+ substitution results in structural stability, tuning the phase stability from O3 to O1' upon de-lithiation during charging compared with O3 to T3 and O1 for pristine Li2 IrO3 , thereby facilitating the oxidation of oxygen. This work unravels the role of Ti4+ in stabilizing the cathode framework, providing insight for a fundamental design approach for advanced Li-rich layered oxide battery materials.

17.
Nano Lett ; 20(9): 6852-6858, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32790320

RESUMO

Lack of appropriate cathodes severely restrains the development of high-energy Mg batteries. In this work, we proposed joint cationic and anionic redox chemistry of transition-metal (TM) sulfides as the most promising way out. A series of solid-solution pyrite FexCo1-xS2 (0 ≤ x ≤ 1) was specially designed, in which S 3p electrons pour into the d bands of Fe and Co, generating redox-active dimerized (S2)2-. The Fe0.5Co0.5S2 sample is highlighted to deliver a high specific energy of 240 Wh/kg at room temperature involving both cationic (Fe and Co) and anionic (S) redox. The highly delocalized electronic clouds in pyrite structures comfortably accommodate the charge of Mg2+, contributing to the fast kinetics and the superior cycling stability of the Fe0.5Co0.5S2. It is anticipated that the joint cationic and anionic redox chemistry proposed in this work would be the ultimate answer for designing high-energy cathodes for advanced Mg batteries.

18.
Small ; 16(12): e1902462, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31482668

RESUMO

To realize the development of rechargeable sodium batteries, new positive electrode materials without less abundant elements are explored. Enrichment of sodium contents in host structures is required to increase the theoretical capacity as electrode materials, and therefore Na-excess compounds are systematically examined in a binary system of Na2 TiO3 -NaMnO2 . After several trials, synthesis of Na-excess compounds with a cation disordered rocksalt structure is successful by adapting a mechanical milling method. Among the tested electrode materials, Na1.14 Mn0.57 Ti0.29 O2 in this binary system delivers a large reversible capacity of ≈200 mA h g-1 , originating from reversible redox reactions of cationic Mn3+ /Mn4+ and anionic O2- /On - redox confirmed by X-ray absorption spectroscopy. Holes in oxygen 2p orbitals, which are formed by electrochemical oxidation, are energetically stabilized by electron donation from Mn ions. Moreover, reversibility of anionic redox is significantly improved compared with a former study on a binary system of Na3 NbO3 -NaMnO2 tested as model electrode materials.

19.
Small ; 16(5): e1905875, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31943743

RESUMO

The anionic redox chemistries of layered cathode materials have been in focus recently due to an intriguing phenomenon that cannot be described by the number of electrons of transition metal ions. However, even though several studies have investigated the anionic redox chemistry of layered materials in terms of the charge compensation, the relationship between the origin of the structural behavior and anionic redox chemistry in layered materials remains poorly understood. In addition, a simultaneous redox process of transition metal ions could occur through the d bands interaction. Here, it is demonstrated that the anionic redox chemistry is associated with the anisotropic structural behavior of the layered cathode materials albeit without providing additional capacities exceeding the theoretical values. These findings will provide a foundation of a new chapter in the understanding of the properties of materials.

20.
Chem Rec ; 19(4): 690-707, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30311732

RESUMO

Dependence on lithium-ion batteries for automobile applications is rapidly increasing, and further improvement, especially for positive electrode materials, is indispensable to increase energy density of lithium-ion batteries. In the past several years, many new lithium-excess high-capacity electrode materials with rocksalt-related structures have been reported. These materials deliver high reversible capacity with cationic/anionic redox and percolative lithium migration in the oxide/oxyfluoride framework structures, and recent research progresses on these electrode materials are reviewed. Material design strategies for these lithium-excess electrode materials are also described. Future possibility of high-energy non-aqueous batteries with advanced positive electrode materials is discussed for more details.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA