Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Toxicol Appl Pharmacol ; 484: 116858, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341105

RESUMO

Chronic arsenic exposures are associated with multiple hematologic disturbances, including anemia. The goal of this study was to evaluate associations between arsenic exposures and hematological parameters among men and women who are chronically exposed to elevated levels of arsenic from drinking water. Hematologic analyses were performed on blood collected from 755 participants (45% male and 54% female) in the Health Effects of Arsenic Longitudinal Study (HEALS) cohort, Bangladesh. Herein, we used linear regression models to estimate associations between red blood cell (RBC) parameters (i.e., RBC counts, hematocrit (HCT), hemoglobin (Hgb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC)) and measurements of arsenic exposure (urinary arsenic and urinary arsenic metabolites). Arsenic exposures showed trending associations with decreased RBC counts in both men and women, a positive association with MCV in males, and an inverse association with MCHC among males, but not among non-smoking females. Among men, those who smoked had stronger associations between arsenic exposures and MCHC than non-smoking males. Collectively, our results show that arsenic exposures affect multiple RBC parameters and highlight potentially important sex differences in arsenic-induced hematotoxicity.


Assuntos
Arsênio , Adulto , Feminino , Humanos , Masculino , Arsênio/toxicidade , Estudos Longitudinais , Bangladesh/epidemiologia , Eritrócitos , Índices de Eritrócitos
2.
Environ Res ; 262(Pt 1): 119833, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39179143

RESUMO

Arsenic is a ubiquitous toxic metalloid causing serious health problems. Speciation analysis of arsenic in human urine provides valuable insights for large-scale epidemiological studies and informs on sources of exposure as well as human metabolism. The Multi-Ethnic Study of Atherosclerosis (MESA) is a valuable cohort for assessing chronic low-moderate arsenic exposure and health effects in an ethnically diverse US population. We present a state-of-the-art arsenic speciation analysis methodology and its application to 7677 MESA spot urine samples based on high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. This method is fast, robust and detects a total of 11 individual As species at method detection limits of 0.02-0.03 µg arsenic/L urine for each individual species. Our analytical approach features excellent mean method accuracy (98%) and precision (5%) for the main arsenic species in urine (arsenobetaine, methylarsonic acid, dimethylarsinic acid, and total inorganic As); intra- (3-6%) and inter-day coefficients of variability (5-6%); column recovery (96 ± 7%); and spike recovery (97 ± 6%). The main arsenic species were detectable in ≥95% of urine samples due to the implementation of an oxidation step. Each individual minor arsenic species was detectable in ≤25% of all urines, although at least one of them was detected in almost half the participants. We identified two minor urinary arsenic species as dimethylarsinoylacetic acid and dimethylarsinoylpropionic acid, potential metabolites of seafood-related arsenicals. We observed differences in individual As species excretion by race/ethnicity, with Asian-American participants featuring 3-4 times higher concentrations compared to other participants. We also found differences by site, body mass index, smoking status, rice intake, and water arsenic levels, potentially indicating different exposures or related to individual bio-metabolism. The proposed approach is suitable for epidemiological studies and the collected data will constitute the base for future research on potential health effects of chronic low-level arsenic exposure.

3.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650499

RESUMO

The urinary arsenic metabolites may vary among individuals and the genetic factors have been reported to explain part of the variation. We assessed the influence of polymorphic variants of Arsenic-3-methyl-transferase and Glutathione-S-transferase on urinary arsenic metabolites. Twenty-two groundwater wells for human consumption from municipalities of Colombia were analyzed for assessed the exposure by lifetime average daily dose (LADD) (µg/kg bw/day). Surveys on 151 participants aged between 18 and 81 years old were applied to collect demographic information and other factors. In addition, genetic polymorphisms (GSTO2-rs156697, GSTP1-rs1695, As3MT-rs3740400, GSTT1 and GSTM1) were evaluated by real time and/or conventional PCR. Arsenic metabolites: AsIII, AsV, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were measured using HPLC-HG-AFS. The influence of polymorphic variants, LADD and other factors were tested using multivariate analyses. The median of total arsenic concentration in groundwater was of 33.3 µg/L and the median of LADD for the high exposure dose was 0.33 µg/kg bw/day. Univariate analyses among arsenic metabolites and genetic polymorphisms showed MMA concentrations higher in heterozygous and/or homozygous genotypes of As3MT compared to the wild-type genotype. Besides, DMA concentrations were lower in heterozygous and/or homozygous genotypes of GSTP1 compared to the wild-type genotype. Both DMA and MMA concentrations were higher in GSTM1-null genotypes compared to the active genotype. Multivariate analyses showed statistically significant association among interactions gene-gene and gene-covariates to modify the MMA and DMA excretion. Interactions between polymorphic variants As3MT*GSTM1 and GSTO2*GSTP1 could be potential modifiers of urinary excretion of arsenic and covariates as age, LADD, and alcohol consumption contribute to largely vary the arsenic individual metabolic capacity in exposed people.


Assuntos
Arsênio/química , Arsênio/metabolismo , Glutationa Transferase/genética , Água Subterrânea/química , Metiltransferases/genética , Polimorfismo Genético/genética , Adulto , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/urina , Arsênio/urina , Arsenicais/urina , Ácido Cacodílico/urina , Exposição Ambiental/efeitos adversos , Feminino , Genótipo , Humanos , Masculino
4.
Environ Res ; 176: 108561, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31299617

RESUMO

Chronic arsenic (As) exposure is a major environmental threat to human health affecting >100 million people worldwide. Low blood selenium (Se) increases the risk of As-induced health problems. Our aim was to reduce As toxicity through a naturally Se-rich lentil diet. In a randomized, double-blind, placebo-control trial in Bangladesh, 405 participants chronically exposed to As were enrolled. The intervention arm (Se-group) consumed Se-rich lentils (55 µg Se/day); the control arm received lentils of similar nutrient profile except with low Se (1.5 µg Se/day). Anthropometric measurements, blood, urine and stool samples, were taken at baseline, 3 and 6 months; hair at baseline and 6 months after intervention. Morbidity data were collected fortnightly. Measurements included total As in all biological samples, As metabolites in urine, and total Se in blood and urine. Intervention with Se-rich lentils resulted in higher urinary As excretion (p = 0.001); increased body mass index (p ≤ 0.01), and lower incidence of asthma (p = 0.05) and allergy (p = 0.02) compared to the control group. The Se-group demonstrated increased excretion of urinary As metabolite, dimethylarsinic acid (DMA) at 6 months compared to control group (p = 0.008). Consuming Se-rich lentils can increase As excretion and improve the health indicators in the presence of continued As exposure.


Assuntos
Intoxicação por Arsênico/epidemiologia , Arsênio , Dieta/métodos , Lens (Planta)/química , Selênio/análise , Bangladesh/epidemiologia , Método Duplo-Cego , Humanos
5.
Environ Health ; 18(1): 94, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690343

RESUMO

BACKGROUND: Prenatal inorganic arsenic (iAs) exposure is associated with pregnancy outcomes. Maternal capabilities of arsenic biotransformation and elimination may influence the susceptibility of arsenic toxicity. Therefore, we examined the determinants of arsenic metabolism of pregnant women in Bangladesh who are exposed to high levels of arsenic. METHODS: In a prospective birth cohort, we followed 1613 pregnant women in Bangladesh and collected urine samples at two prenatal visits: one at 4-16 weeks, and the second at 21-37 weeks of pregnancy. We measured major arsenic species in urine, including iAs (iAs%) and methylated forms. The proportions of each species over the sum of all arsenic species were used as biomarkers of arsenic methylation efficiency. We examined the difference in arsenic methylation using a paired t-test between first and second visits. Using linear regression, we examined determinants of arsenic metabolism, including age, BMI at enrollment, education, financial provider income, arsenic exposure level, and dietary folate and protein intake, adjusted for daily energy intake. RESULTS: Comparing visit 2 to visit 1, iAs% decreased 1.1% (p <  0.01), and creatinine-adjusted urinary arsenic level (U-As) increased 21% (95% CI: 15, 26%; p <  0.01). Drinking water arsenic concentration was positively associated with iAs% at both visits. When restricted to participants with higher adjusted urinary arsenic levels (adjusted U-As > 50 µg/g-creatinine) gestational age at measurement was strongly associated with DMA% (ß = 0.38, p <  0.01) only at visit 1. Additionally, DMA% was negatively associated with daily protein intake (ß = - 0.02, p <  0.01) at visit 1, adjusting for total energy intake and other covariates. CONCLUSIONS: Our findings indicate that arsenic metabolism and adjusted U-As level increase during pregnancy. We have identified determinants of arsenic methylation efficiency at visit 1.


Assuntos
Arsênio/metabolismo , Arsenicais/urina , Água Potável/análise , Exposição Ambiental/análise , Adulto , Bangladesh , Biomarcadores/urina , Feminino , Idade Gestacional , Humanos , Metilação , Gravidez , Estudos Prospectivos , Adulto Jovem
6.
Environ Toxicol ; 32(1): 28-36, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26494561

RESUMO

To investigate the interaction between skin lesion status and arsenic methylation profiles, the concentrations and proportions of arsenic metabolites in urine and arsenic methylation capacities of study subjects were determined. The results showed that the mean urinary concentrations of iAs (inorganic arsenic), MMA (monomethylarsonic acid), DMA (dimethylarsinic acid), and TAs (total arsenic) were 75.65, 68.78, 265.81, and 410.24 µg/L, respectively, in the skin lesions subjects. The highest values were observed in the multiple skin lesions subjects. Higher %iAs and %MMA, and lower %DMA, PMI (primary methylation index), and SMI (secondary methylation index) were found in skin lesions subjects. The multiple skin lesions subjects had highest %iAs and %MMA, and lowest %DMA, PMI, and SMI. The prevalence of skin lesions strongly, positively correlated with arsenic levels in drinking water. The elder persons also had higher frequency of skin lesions compared with younger persons. It can be concluded that arsenic levels in drinking water significantly affected the prevalence of skin lesions. Male subjects usually had higher proportions of skin lesions when compared with female subjects. Moreover, it may be concluded that MMA was significantly related to single skin lesion, whereas DMA and iAs were associated with multiple skin lesions. It seemed that MMA had greater toxicity to hyperkeratosis, whereas DMA and iAs had higher toxicity to depigmentation or pigmentation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 28-36, 2017.


Assuntos
Arsênio/toxicidade , Arsenicais/metabolismo , Água Potável/análise , Dermatopatias/induzido quimicamente , Dermatopatias/patologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Arsênio/urina , China/epidemiologia , Feminino , Humanos , Masculino , Metilação , Pessoa de Meia-Idade , Prevalência , Pele/patologia , Dermatopatias/epidemiologia , Adulto Jovem
7.
J Environ Sci (China) ; 49: 7-27, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28007181

RESUMO

Hundreds of millions of people around the world are exposed to elevated concentrations of inorganic and organic arsenic compounds, increasing the risk of a wide range of health effects. Studies of the environmental fate and human health effects of arsenic require authentic arsenic compounds. We summarize here the synthesis and characterization of more than a dozen methylated and thiolated arsenic compounds that are not commercially available. We discuss the methods of synthesis for the following 14 trivalent (III) and pentavalent (V) arsenic compounds: monomethylarsonous acid (MMAIII), dicysteinylmethyldithioarsenite (MMAIII(Cys)2), monomethylarsonic acid (MMAV), monomethylmonothioarsonic acid (MMMTAV) or monothio-MMAV, monomethyldithioarsonic acid (MMDTAV) or dithio-MMAV, monomethyltrithioarsonate (MMTTAV) or trithio-MMAV, dimethylarsinous acid (DMAIII), dimethylarsino-glutathione (DMAIII(SG)), dimethylarsinic acid (DMAV), dimethylmonothioarsinic acid (DMMTAV) or monothio-DMAV, dimethyldithioarsinic acid (DMDTAV) or dithio-DMAV, trimethylarsine oxide (TMAOV), arsenobetaine (AsB), and an arsenicin-A model compound. We have reviewed and compared the available methods, synthesized the arsenic compounds in our laboratories, and provided characterization information. On the basis of reaction yield, ease of synthesis and purification of product, safety considerations, and our experience, we recommend a method for the synthesis of each of these arsenic compounds.


Assuntos
Arsênio/química , Arsenicais/química , Segurança Química , Saúde Ambiental , Substâncias Perigosas/química , Ecologia
8.
Sci Total Environ ; 863: 160883, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36526194

RESUMO

Arsenic exposure may disrupt sex steroid hormones, causing endocrine disruption. However, human evidence is limited and inconsistent, especially for children and adolescents. To evaluate the independent and combined associations between arsenic exposure and serum sex steroid hormones in children and adolescents, we conducted a cross-sectional analysis of data from 1063 participants aged 6 to 19 years from the 2013-2016 National Health and Nutrition Examination Survey (NHANES). Three urine arsenic metabolites were examined, as well as three serum sex steroid hormones, estradiol (E2), total testosterone (TT), and sex hormone-binding globulin (SHBG). The ratio of TT to E2 (TT/E2) and the free androgen index (FAI) generated by TT/SHBG were also assessed. Linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were used to evaluate the associations of individual or arsenic metabolite combinations with sex steroid hormones by gender and age stratification. Positive associations were found between total arsenic and arsenic metabolites with TT, E2, and FAI. In contrast, negative associations were found between arsenic metabolites and SHBG. Furthermore, there was an interaction after gender-age stratification between DMA and SHBG in female adolescents. Notably, based on the WQS and BKMR model results, the combined association of arsenic and its metabolites was positively associated with TT, E2, and FAI and negatively associated with SHBG. Moreover, DMA and MMA dominated the highest weights among the arsenic metabolites. Overall, our results indicate that exposure to arsenic, either alone or in mixtures, may alter sex steroid hormone levels in children and adolescents.


Assuntos
Arsênio , Adolescente , Criança , Feminino , Humanos , Adulto Jovem , Teorema de Bayes , Estudos Transversais , Estradiol , Hormônios Esteroides Gonadais , Inquéritos Nutricionais , Globulina de Ligação a Hormônio Sexual/análise , Testosterona
9.
Biomolecules ; 13(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759824

RESUMO

Our study aimed to conduct a comprehensive biochemical profiling and metabolomics analysis to investigate the effects of arsenic-induced metabolic disorders, with a specific focus on disruptions in lipid metabolism, amino acid metabolism, and carbohydrate metabolism. Additionally, we sought to assess the therapeutic potential of resveratrol (RSV) as a remedy for arsenic-induced diabetes, using metformin (MF) as a standard drug for comparison. We measured the total arsenic content in mouse serum by employing inductively coupled plasma mass spectrometry (ICP-MS) after administering a 50-ppm solution of sodium arsenate (50 mg/L) in purified water. Our findings revealed a substantial increase in total arsenic content in the exposed group, with a mean value of 166.80 ± 8.52 ppb (p < 0.05). Furthermore, we investigated the impact of arsenic exposure on various biomarkers using enzyme-linked immunosorbent assay (ELISA) methods. Arsenic exposed mice exhibited significant hyperglycemia (p < 0.001) and elevated levels of homeostatic model assessment of insulin resistance (HOMA-IR), hemoglobin A1c (Hb1Ac), Inflammatory biomarkers as well as liver and kidney function biomarkers (p < 0.05). Additionally, the levels of crucial enzymes linked to carbohydrate metabolism, including α-glucosidase, hexokinase, and glucose-6-phosphatase (G6PS), and oxidative stress biomarkers, such as levels of glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), were significantly reduced in the arsenic-exposed group compared to the control group (p < 0.05). However, the level of MDA was significantly increased. Molecular analysis of gene expression indicated significant upregulation of key enzymes involved in lipid metabolism, such as carnitine palmitoyl-transferase-I (CPT-I), carnitine palmitoyl-transferase-II (CPT-II), lecithin-cholesterol acyltransferase (LCAT), and others. Additionally, alterations in gene expression related to glucose transporter-2 (GLUT-2), glucose-6-phosphatase (G6PC), and glucokinase (GK), associated with carbohydrate metabolism, were observed. Amino acid analysis revealed significant decreases in nine amino acids in arsenic-exposed mice. Metabolomics analysis identified disruptions in lipid metabolomes, amino acids, and arsenic metabolites, highlighting their involvement in essential metabolic pathways. Histopathological observations revealed significant changes in liver architecture, hepatocyte degeneration, and increased Kupffer cells in the livers of arsenic-exposed mice. In conclusion, these findings enhance our comprehension of the impact of environmental toxins on metabolic health and offer potential avenues for remedies against such disruptions.


Assuntos
Antifibrinolíticos , Arsênio , Animais , Camundongos , Arsênio/toxicidade , Suscetibilidade a Doenças , Glucose-6-Fosfatase , Aminoácidos , Carnitina O-Palmitoiltransferase , Carnitina
10.
J Expo Sci Environ Epidemiol ; 29(5): 624-632, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30262833

RESUMO

Arsenic intake from household drinking/cooking water and food may represent a significant exposure pathway to induce cancer and non-cancer health effects. This study is based on the human biomonitoring of 395 volunteers from 223 households with private water sources located in rural Punjab, Pakistan. This work has shown the relative contribution of water and staple food to arsenic intake and accumulation by multiple biological matrix measurements of inorganic and organic arsenic species, while accounting for potential confounders such as age, gender, occupation, and exposure duration of the study population. Multi-variable linear regression showed a strong significant relationship between total arsenic (tAs) intake from water and concentrations of tAs, inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine and toenail samples. tAs intake from staple food (rice and wheat) also showed a strong significant relationship with hair tAs and iAs. The sole impact of staple food intake on biomarkers was assessed and a significant correlation was found with all of the urinary arsenic metabolites. Toenail was found to be the most valuable biomarker of past exposure to inorganic and organic arsenic species of dietary and metabolic origin.


Assuntos
Arsênio/análise , Biomarcadores/análise , Exposição Dietética , Exposição Ambiental/análise , Cabelo/química , Unhas/química , Arsênio/urina , Monitoramento Biológico , Biomarcadores/urina , Feminino , Humanos , Masculino , Paquistão , População Rural , Poluentes Químicos da Água/urina
11.
Sci Total Environ ; 669: 1-6, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877956

RESUMO

Chronic exposure to inorganic arsenic (As) is associated with numerous adverse effects. Argentina is one of the countries affected by arsenicism; however, there are few studies that evaluate inorganic As exposure and its effects on child population. The aim of this study is to evaluate exposure to As through water and food in child populations living in the provinces of Santiago del Estero and Chaco (n = 101), and to determine the impact of this exposure analysing biomarkers of exposure (urine and hair As contents) and effect [8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG)]. The populations selected live in three areas with different levels of As in the drinking water (Santa Teresa de Carballo, 0.925 mg/L; Taco Pozo, 0.210 mg/L; Jumi Pozo, 0.016 mg/L). The As intakes through water and food are especially high in the areas with the greatest As exposure (Santa Teresa de Carballo, 1575 ±â€¯8 µg/day; Taco Pozo, 386 ±â€¯8 µg/day; Jumi Pozo, 39 ±â€¯1 µg/day). The total As contents in most of the samples of hair (0.11-13.11 mg/kg) and urine (31-4258 µg/g creatinine) are higher than the reference values (hair: 1 mg/kg; urine: 50 µg/g creatinine). The increase in the level of As exposure alters the profile of metabolites in urine, with a decrease of dimethylarsinic acid (10%) and an increase in the percentages of monomethylarsonic acid (4%) and inorganic As (6%). The results also show high values of 8-OHdG (3.7-37.8 µg/g creatinine), a oxidative DNA damage marker, in the two areas with greater As exposure.


Assuntos
Arsênio/metabolismo , Arsenicais/metabolismo , Desoxiguanosina/análogos & derivados , Exposição Ambiental , Poluentes Ambientais/metabolismo , Cabelo/química , 8-Hidroxi-2'-Desoxiguanosina , Argentina , Pré-Escolar , Desoxiguanosina/metabolismo , Dieta , Água Potável , Monitoramento Ambiental , Feminino , Humanos , Masculino , Estudantes
12.
Environ Health Perspect ; 115(10): 1503-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17938743

RESUMO

BACKGROUND: In Bangladesh, tens of millions of people have been consuming waterborne arsenic for decades. The extent to which As is transported to the fetus during pregnancy has not been well characterized. OBJECTIVES: We therefore conducted a study of 101 pregnant women who gave birth in Matlab, Bangladesh. METHODS: Maternal and cord blood pairs were collected and concentrations of total As were analyzed for 101 pairs, and As metabolites for 30 pairs. Maternal urinary As metabolites and plasma folate, cobalamin, and homocysteine levels in maternal cord pairs were also measured. Household tube well-water As concentrations exceeded the World Health Organization guideline of 10 microg/L in 38% of the cases. RESULTS: We observed strong associations between maternal and cord blood concentrations of total As (r = 0.93, p < 0.0001). Maternal and cord blood arsenic metabolites (n = 30) were also strongly correlated: in dimethylarsinate (DMA) (r = 0.94, p < 0.0001), monomethylarsonate (r = 0.80, p < 0.0001), arsenite (As(+3)) (r = 0.80, p < 0.0001), and arsenate (As(+5)) (r = 0.89, p < 0.0001). Maternal homocysteine was a strong predictor of %DMA in maternal urine, maternal blood, and cord blood (beta = -6.2, p < 0.02; beta = -10.9, p < 0.04; and beta = -13.7, p < 0.04, respectively). Maternal folate was inversely associated with maternal blood As(5+) (beta = 0.56, p < 0.05), and maternal cobalamin was inversely associated with cord blood As(5+) (beta = -1.2, p < 0.01). CONCLUSIONS: We conclude that exposure to all metabolites of inorganic As occurs in the prenatal period.


Assuntos
Intoxicação por Arsênico/sangue , Arsênio/sangue , Sangue Fetal/química , Troca Materno-Fetal , Adulto , Arsênio/metabolismo , Arsênio/urina , Intoxicação por Arsênico/urina , Bangladesh , Biomarcadores/sangue , Estudos de Coortes , Exposição Ambiental , Feminino , Ácido Fólico/sangue , Homocisteína/sangue , Humanos , Recém-Nascido , Gravidez , Vitamina B 12/sangue , Abastecimento de Água/análise
13.
Sci Total Environ ; 586: 1237-1244, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28233618

RESUMO

Rice accumulates 10-fold higher inorganic arsenic (i-As), an established human carcinogen, than other grains. This review summarizes epidemiologic studies that examined the association between rice consumption and biomarkers of arsenic exposure. After reviewing the literature we identified 20 studies, among them included 18 observational and 2 human experimental studies that reported on associations between rice consumption and an arsenic biomarker. Among individuals not exposed to contaminated water, rice is a source of i-As exposure - rice consumption has been consistently related to arsenic biomarkers, and the relationship has been clearly demonstrated in experimental studies. Early-life i-As exposure is of particular concern due to its association with lifelong adverse health outcomes. Maternal rice consumption during pregnancy also has been associated with infant toenail total arsenic concentrations indicating that dietary exposure during pregnancy results in fetal exposure. Thus, the collective evidence indicates that rice is an independent source of arsenic exposure in populations around the world and highlights the importance of investigating its affect on health.


Assuntos
Arsênio/análise , Exposição Dietética , Contaminação de Alimentos/análise , Oryza , Feminino , Humanos , Recém-Nascido , Exposição Materna , Gravidez
14.
Biol Trace Elem Res ; 170(2): 300-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26335574

RESUMO

More than 0.3 million individuals are subject to chronic exposure to arsenic via their drinking water in Inner Mongolia, China. To determine arsenic methylation capacity profiles for such individuals, concentrations of urinary arsenic metabolites were measured for 548 subjects using high-performance liquid chromatography and a hydride generator combined with inductively coupled plasma-mass spectrometry. Mean urinary concentrations of dimethylarsonic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenic (iAs), and total arsenic (TAs) were 200.50, 46.71, 52.96, and 300.17 µg/L, respectively. The %iAs, %DMA, and %MMA were 15.98, 69.72, and 14.29%. Mean urinary %iAs and %MMA were higher in males, while urinary %DMA was higher in females. There was a strong positive correlation between %iAs and %MMA, with negative correlations between %iAs and %DMA, and %iAs and %MMA. In addition, %iAs and %MMA were positively associated with total arsenic in drinking water (WAs), while %DMA was negatively related with WAs. Regression analysis indicated that the primary methylation index (PMI) and secondary methylation index (SMI) generally decreased with increasing WAs. Females had a higher arsenic methylation capacity compared to males. Younger subjects had lower primary arsenic methylation capacity. However, the secondary arsenic methylation capacity was hardly affected by age. Moreover, both primary and secondary arsenic methylation capacities were negatively related to WAs.


Assuntos
Arsênio/toxicidade , Arsenicais/urina , Ácido Cacodílico/análogos & derivados , Exposição Ambiental/efeitos adversos , População Rural , Adolescente , Adulto , Idoso , Ácido Cacodílico/urina , Criança , China , Feminino , Humanos , Masculino , Metilação , Pessoa de Meia-Idade
15.
Toxicol Sci ; 153(1): 112-23, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27370415

RESUMO

Variants in AS3MT, the gene encoding arsenic (+3 oxidation state) methyltranserase, have been shown to influence patterns of inorganic arsenic (iAs) metabolism. Several studies have suggested that capacity to metabolize iAs may vary depending on levels of iAs exposure. However, it is not known whether the influence of variants in AS3MT on iAs metabolism also vary by level of exposure. We investigated, in a population of Mexican adults exposed to drinking water As, whether associations between 7 candidate variants in AS3MT and urinary iAs metabolites were consistent with prior studies, and whether these associations varied depending on the level of exposure. Overall, associations between urinary iAs metabolites and AS3MT variants were consistent with the literature. Referent genotypes, defined as the genotype previously associated with a higher percentage of urinary dimethylated As (DMAs%), were associated with significant increases in the DMAs% and ratio of DMAs to monomethylated As (MAs), and significant reductions in MAs% and iAs%. For 3 variants, associations between genotypes and iAs metabolism were significantly stronger among subjects exposed to water As >50 versus ≤50 ppb (water As X genotype interaction P < .05). In contrast, for 1 variant (rs17881215), associations were significantly stronger at exposures ≤50 ppb. Results suggest that iAs exposure may influence the extent to which several AS3MT variants affect iAs metabolism. The variants most strongly associated with iAs metabolism-and perhaps with susceptibility to iAs-associated disease-may vary in settings with exposure level.


Assuntos
Arsênio/toxicidade , Água Potável/química , Exposição Ambiental , Metiltransferases/metabolismo , Adulto , Arsênio/análise , Arsênio/urina , Estudos Transversais , Feminino , Genótipo , Humanos , Limite de Detecção , Masculino , Metiltransferases/genética , Polimorfismo de Nucleotídeo Único
16.
J Environ Sci (China) ; 147: 62-73, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003077

RESUMO

Non-ferrous metal smelting poses significant risks to public health. Specifically, the copper smelting process releases arsenic, a semi-volatile metalloid, which poses an emerging exposure risk to both workers and nearby residents. To comprehensively understand the internal exposure risks of metal(loid)s from copper smelting, we explored eighteen metal(loid)s and arsenic metabolites in the urine of both occupational and non-occupational populations using inductively coupled plasma mass spectrometry with high-performance liquid chromatography and compared their health risks. Results showed that zinc and copper (485.38 and 14.00 µg/L), and arsenic, lead, cadmium, vanadium, tin and antimony (46.80, 6.82, 2.17, 0.40, 0.44 and 0.23 µg/L, respectively) in workers (n=179) were significantly higher compared to controls (n=168), while Zinc, tin and antimony (412.10, 0.51 and 0.15 µg/L, respectively) of residents were significantly higher than controls. Additionally, workers had a higher monomethyl arsenic percentage (MMA%), showing lower arsenic methylation capacity. Source appointment analysis identified arsenic, lead, cadmium, antimony, tin and thallium as co-exposure metal(loid)s from copper smelting, positively relating to the age of workers. The hazard index (HI) of workers exceeded 1.0, while residents and control were approximately at 1.0. Besides, all three populations had accumulated cancer risks exceeding 1.0 × 10-4, and arsenite (AsIII) was the main contributor to the variation of workers and residents. Furthermore, residents living closer to the smelting plant had higher health risks. This study reveals arsenic exposure metabolites and multiple metals as emerging contaminants for copper smelting exposure populations, providing valuable insights for pollution control in non-ferrous metal smelting.


Assuntos
Metalurgia , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Exposição Ambiental/estatística & dados numéricos , Metais/urina , Metais/análise , Medição de Risco , Arsênio/análise , Monitoramento Ambiental , Adulto , Poluentes Ambientais/análise , Pessoa de Meia-Idade
17.
Environ Health Toxicol ; 29: e2014018, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25384385

RESUMO

OBJECTIVES: The purpose of this study was to determine a separation method for each arsenic metabolite in urine by using a high performance liquid chromatography (HPLC)- inductively coupled plasma-mass spectrometer (ICP-MS). METHODS: Separation of the arsenic metabolites was conducted in urine by using a polymeric anion-exchange (Hamilton PRP X-100, 4.6 mm×150 mm, 5 µm) column on Agilent Technologies 1260 Infinity LC system coupled to Agilent Technologies 7700 series ICP/MS equipment using argon as the plasma gas. RESULTS: All five important arsenic metabolites in urine were separated within 16 minutes in the order of arsenobetaine, arsenite, dimethylarsinate, monomethylarsonate and arsenate with detection limits ranging from 0.15 to 0.27 µg/L (40 µL injection). We used GEQUAS No. 52, the German external quality assessment scheme and standard reference material 2669, National Institute of Standard and Technology, to validate our analyses. CONCLUSIONS: The method for separation of arsenic metabolites in urine was established by using HPLC-ICP-MS. This method contributes to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies for arsenic exposure in South Korea.

18.
Environ Health Perspect ; 117(3): 455-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19337522

RESUMO

BACKGROUND: Urinary arsenic metabolites (UAs) are used as biomarkers of exposure and metabolism. OBJECTIVES: To characterize inter- and intraindividual variability in UAs in healthy individuals. METHODS: In a longitudinal study conducted in Bangladesh, we collected water and spot urine samples from 196 participants every 3 months for 2 years. Water arsenic (As) was measured by inductively coupled plasma-mass spectrometry and urinary As [arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)] were detected using high-performance liquid chromatography-hydride-generated atomic absorption spectrometry. We used linear mixed-effects models to compute variance components and evaluate the association between UAs and selected factors. RESULTS: The concentrations of UAs were fairly reproducible within individuals, with intraclass correlation coefficients (ICCs) of 0.41, 0.35, 0.47, and 0.49 for inorganic As (InAs), MMA, DMA, and total urinary As (TUA). However, when expressed as a ratio, the percent InAs (%InAs), %MMA, and %DMA were poorly reproducible within individuals, with ICCs of 0.16, 0.16, and 0.17, respectively. Arsenic metabolism was significantly associated with sex, exposure, age, smoking, chewing betel nut, urinary creatinine, and season. Specificity and sensitivity analyses showed that a single urine sample adequately classified a participant's urinary As profile as high or low, but TUA had only moderate specificity for correctly classifying drinking water exposures. CONCLUSIONS: Epidemiologic studies should use both urinary As concentrations and the relative proportion of UAs to minimize measurement error and to facilitate interpretation of factors that influence As metabolism.


Assuntos
Arsênio/urina , Biomarcadores/urina , Exposição Ambiental , Arsênio/metabolismo , Arsenicais/metabolismo , Arsenicais/urina , Bangladesh , Cromatografia Líquida de Alta Pressão , Água Doce/química , Humanos , Espectrometria de Massas , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA