Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 815
Filtrar
1.
Cell ; 178(6): 1362-1374.e16, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31447178

RESUMO

TRPA1 is a chemosensory ion channel that functions as a sentinel for structurally diverse electrophilic irritants. Channel activation occurs through an unusual mechanism involving covalent modification of cysteine residues clustered within an amino-terminal cytoplasmic domain. Here, we describe a peptidergic scorpion toxin (WaTx) that activates TRPA1 by penetrating the plasma membrane to access the same intracellular site modified by reactive electrophiles. WaTx stabilizes TRPA1 in a biophysically distinct active state characterized by prolonged channel openings and low Ca2+ permeability. Consequently, WaTx elicits acute pain and pain hypersensitivity but fails to trigger efferent release of neuropeptides and neurogenic inflammation typically produced by noxious electrophiles. These findings provide a striking example of convergent evolution whereby chemically disparate animal- and plant-derived irritants target the same key allosteric regulatory site to differentially modulate channel activity. WaTx is a unique pharmacological probe for dissecting TRPA1 function and its contribution to acute and persistent pain.


Assuntos
Venenos de Escorpião/farmacologia , Canal de Cátion TRPA1/metabolismo , Animais , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Escorpiões/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(32): e2204078119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914154

RESUMO

Peptide-based cancer vaccines are widely investigated in the clinic but exhibit modest immunogenicity. One approach that has been explored to enhance peptide vaccine potency is covalent conjugation of antigens with cell-penetrating peptides (CPPs), linear cationic and amphiphilic peptide sequences designed to promote intracellular delivery of associated cargos. Antigen-CPPs have been reported to exhibit enhanced immunogenicity compared to free peptides, but their mechanisms of action in vivo are poorly understood. We tested eight previously described CPPs conjugated to antigens from multiple syngeneic murine tumor models and found that linkage to CPPs enhanced peptide vaccine potency in vivo by as much as 25-fold. Linkage of antigens to CPPs did not impact dendritic cell activation but did promote uptake of linked antigens by dendritic cells both in vitro and in vivo. However, T cell priming in vivo required Batf3-dependent dendritic cells, suggesting that antigens delivered by CPP peptides were predominantly presented via the process of cross-presentation and not through CPP-mediated cytosolic delivery of peptide to the classical MHC class I antigen processing pathway. Unexpectedly, we observed that many CPPs significantly enhanced antigen accumulation in draining lymph nodes. This effect was associated with the ability of CPPs to bind to lymph-trafficking lipoproteins and protection of CPP-antigens from proteolytic degradation in serum. These two effects resulted in prolonged presentation of CPP-peptides in draining lymph nodes, leading to robust T cell priming and expansion. Thus, CPPs can act through multiple unappreciated mechanisms to enhance T cell priming that can be exploited for cancer vaccines with enhanced potency.


Assuntos
Vacinas Anticâncer , Peptídeos Penetradores de Células , Imunogenicidade da Vacina , Linfonodos , Animais , Apresentação de Antígeno , Antígenos , Vacinas Anticâncer/imunologia , Peptídeos Penetradores de Células/farmacologia , Apresentação Cruzada , Células Dendríticas/imunologia , Linfonodos/imunologia , Camundongos , Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/imunologia
3.
Q Rev Biophys ; 55: e10, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35979810

RESUMO

Trp is unique among the amino acids since it is involved in many different types of noncovalent interactions such as electrostatic and hydrophobic ones, but also in π-π, π-cation, π-anion and π-ion pair interactions. In membranotropic peptides and proteins, Trp locates preferentially at the water-membrane interface. In antimicrobial or cell-penetrating peptides (AMPs and CPPs respectively), Trp is well-known for its strong role in the capacity of these peptides to interact and affect the membrane organisation of both bacteria and animal cells at the level of the lipid bilayer. This essential amino acid can however be involved in other types of interactions, not only with lipids, but also with other membrane partners, that are crucial to understand the functional roles of membranotropic peptides. This review is focused on this latter less known role of Trp and describes in details, both in qualitative and quantitative ways: (i) the physico-chemical properties of Trp; (ii) its effect in CPP internalisation; (iii) its importance in AMP activity; (iv) its role in the interaction of AMPs with glycoconjugates or lipids in bacteria membranes and the consequences on the activity of the peptides; (v) its role in the interaction of CPPs with negatively charged polysaccharides or lipids of animal membranes and the consequences on the activity of the peptides. We intend to bring highlights of the physico-chemical properties of Trp and describe its extensive possibilities of interactions, not only at the well-known level of the lipid bilayer, but with other less considered cell membrane components, such as carbohydrates and the extracellular matrix. The focus on these interactions will allow the reader to reevaluate reported studies. Altogether, our review gathers dedicated studies to show how unique are Trp properties, which should be taken into account to design future membranotropic peptides with expected antimicrobial or cell-penetrating activity.


Assuntos
Anti-Infecciosos , Peptídeos Penetradores de Células , Animais , Aminoácidos , Antibacterianos/química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos , Carboidratos , Cátions , Bicamadas Lipídicas , Triptofano/química , Triptofano/metabolismo , Água
4.
J Gene Med ; 26(1): e3627, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957034

RESUMO

BACKGROUND: Adeno-associated viruses (AAVs) are gaining interest in the development of cellular immunotherapy. Compared to other viral vectors, AAVs can reduce the risk of insertional oncogenesis. AAV serotype 6 (AAV6) shows the highest efficiency for transducing T cells. Nevertheless, a multiplicity of infection (MOI) of up to one million viral genomes per cell is required to transduce the target cells effectively. Cell-penetrating peptides (CPPs) are short, positively charged peptides that easily translocate the plasma membranes and can facilitate the cellular uptake of a wide variety of cargoes, including small molecules, nucleic acids, drugs, proteins and viral vectors. METHODS: The present study evaluated five CPPs (Antp, TAT-HA2, LAH4, TAT1 and TAT2) on their effects on enhancing transduction of AAV6 packaging a green fluorescent protein transgene into Jurkat T cell line. RESULTS: Vector incubation with peptides TAT-HA2 and LAH4 at a final concentration of 0.2 mm resulted in an approximately two-fold increase in transduced cells. At the lowest MOI tested (1.25 × 104 ), using LAH4 resulted in a 10-fold increase in transduction efficiency. The peptide LAH4 increased the uptake of AAV6 viral particles in both Jurkat cells and mouse primary T cells. Regardless of the large size of the AAV6-LAH4 complexes, their internalization does not appear to depend on macropinocytosis. CONCLUSIONS: Overall, the present study reports an approach to significantly improve the delivery of transgenes into T cells using AAV6 vectors. Notably, the peptides TAT-HA2 and LAH4 contribute to improving the use of AAV6 as a gene delivery vector for the engineering of T cells.


Assuntos
Peptídeos Penetradores de Células , Camundongos , Animais , Peptídeos Penetradores de Células/genética , Dependovirus/genética , Transdução Genética , Sorogrupo , Linhagem Celular , Vetores Genéticos/genética
5.
Chembiochem ; 25(2): e202300642, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37947251

RESUMO

In recent years, targeted drug delivery has attracted a great interest for enhanced therapeutic efficiency, with diminished side effects, especially in cancer therapy. Cell penetrating peptides (CPPs) like HIV1-TAT peptides, appear to be the perfect vectors for translocating drugs or other cargoes across the plasma membrane, but their application is limited mostly due to insufficient specificity for intended targets. Although these molecules were successfully used, the mechanism by which the peptides enter the cell interior still needs to be clarified. The tripeptide motif RGD (arginine-glycine-aspartate), found in extracellular matrix proteins has high affinity for integrin receptors overexpressed in cancer and it is involved in different phases of disease progression, including proliferation, invasion and migration. Discovery of new peptides with high binding affinity for disease receptors and permeability of plasma membranes is desirable for both, development of targeted drug delivery systems and early detection and diagnosis. To complement the TAT peptide with specific targeting ability, we conjugated it with an integrin-binding RGD motif. Although the idea of RGD-CPPs conjugates is not entirely new,[1] here we describe the permeability abilities and specificity of integrin receptors of RGD-TAT peptides in model membranes. Our findings reveal that this novel RGD sequence based on TAT peptide maintains its ability to permeate lipid membranes and exhibits specificity for integrin receptors embedded in giant unilamellar vesicles. This promising outcome suggests that the RGD-TAT peptide has significant potential for applications in the field of targeted drug delivery systems.


Assuntos
Peptídeos Penetradores de Células , Neoplasias , Humanos , Integrinas/metabolismo , Oligopeptídeos/química , Peptídeos Penetradores de Células/química , Lipídeos
6.
Crit Rev Microbiol ; : 1-40, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38425122

RESUMO

Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.

7.
Chemistry ; 30(28): e202400174, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38456376

RESUMO

We report the synthesis of a series of amphiphilic p-sulfonatocalix[4]arenes with varying alkyl chain lengths (CX4-Cn) and their application as efficient counterion activators for membrane transport of cell-penetrating peptides (CPPs). The enhanced membrane activity is confirmed with the carboxyfluorescein (CF) assay in vesicles and by the direct cytosolic delivery of CPPs into CHO-K1, HCT 116, and KTC-1 cells enabling excellent cellular uptake of the CPPs into two cancer cell lines. Intracellular delivery was confirmed by fluorescence microscopy after CPP entry into live cells mediated by CX4-Cn, which was also quantified after cell lysis by fluorescence spectroscopy. The results present the first systematic exploration of structure-activity relationships for calixarene-based counterion activators and show that CX4-Cn are exceptionally effective in cellular delivery of CPPs. The dodecyl derivative, CX4-C12, serves as best activator. A first mechanistic insight is provided by efficient CPP uptake at 4 °C and in the presence of the endocytosis inhibitor dynasore, which indicates a direct translocation of the CPP-counterion complexes into the cytosol and highlights the potential benefits of CX4-Cn for efficient and direct translocation of CPPs and CPP-conjugated cargo molecules into the cytosol of live cells.


Assuntos
Calixarenos , Peptídeos Penetradores de Células , Cricetulus , Calixarenos/química , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Humanos , Células CHO , Animais , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Fenóis/química , Endocitose , Tensoativos/química
8.
Mol Pharm ; 21(5): 2097-2117, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38440998

RESUMO

Currently, one of the most significant and rapidly growing unmet medical challenges is the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). This challenge encompasses the imperative development of efficacious therapeutic agents and overcoming the intricacies of the blood-brain barrier for successful drug delivery. Here we focus on the delivery aspect with particular emphasis on cell-penetrating peptides (CPPs), widely used in basic and translational research as they enhance drug delivery to challenging targets such as tissue and cellular compartments and thus increase therapeutic efficacy. The combination of CPPs with nanomaterials such as nanoparticles (NPs) improves the performance, accuracy, and stability of drug delivery and enables higher drug loads. Our review presents and discusses research that utilizes CPPs, either alone or in conjugation with NPs, to mitigate the pathogenic effects of neurodegenerative diseases with particular reference to AD and PD.


Assuntos
Barreira Hematoencefálica , Peptídeos Penetradores de Células , Sistemas de Liberação de Medicamentos , Nanopartículas , Doenças Neurodegenerativas , Doença de Parkinson , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/administração & dosagem , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico
9.
J Pept Sci ; 30(9): e3604, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38651525

RESUMO

Cell-penetrating peptides (CPPs) have been explored as versatile tools to transport various molecules into cells. The uptake mechanism of CPPs is still not clearly understood and most probably depends on several factors like the nature of the CPP itself, the attached cargo, the investigated cell system, and other experimental conditions, such as temperature and concentration. One of the first steps of internalization involves the interaction of CPPs with negatively charged molecules present at the outer layer of the cell membrane. Recently, thiol-mediated uptake has been found to support the effective translocation of sulfhydryl-bearing substances that would actually not be cell-permeable. Within this work, we aimed to understand the relevance of thiol reactivity for the uptake mechanism of cysteine-containing CPPs that we have developed previously in our group. Therefore, we compared the two peptides, sC18-Cys and CaaX-1, in their single reduced and dimeric disulfide versions. Cytotoxicity, intracellular accumulation, and impact on the internalization process of the disulfides were investigated in HeLa cells. Both disulfide CPPs demonstrated significantly stronger cytotoxic effects and membrane activity compared with their reduced counterparts. Notably, thiol-mediated uptake could be excluded as a main driver for translocation, showing that peptides like CaaX-1 are most likely taken up by other mechanisms.


Assuntos
Peptídeos Penetradores de Células , Dissulfetos , Compostos de Sulfidrila , Humanos , Dissulfetos/química , Dissulfetos/metabolismo , Células HeLa , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
10.
J Pept Sci ; 30(5): e3558, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38115215

RESUMO

The engineering of intracellular delivery systems with the goal of achieving personalized medicine has been encouraged by advances in nanomaterial science as well as a greater understanding of diseases and of the biochemical pathways implicated in many disorders. The development of vectors able to transport the drug to a target location and release it only on demand is undoubtedly the primary issue. From a molecular perspective, the topography of drug carrier surfaces is directly related to the design of an effective drug carrier because it provides a physical hint to modifying its interactions with biological systems. For instance, the initial ratio of hydrophilic to hydrophobic surfaces and the changes brought about by external factors enable the release or encapsulation of a therapeutic molecule and the ability of the nanosystem to cross biological barriers and reach its target without causing systemic toxicity. The first step in creating new materials with enhanced functionality is to comprehend and characterize the interplay between hydrophilic and hydrophobic molecules at the molecular level. Therefore, the focus of this review is on the function of hydrophobicity, which is essential for matching the complexity of biological environments with the intended functionality.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Portadores de Fármacos/química
11.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731938

RESUMO

Inherited retinal degeneration (RD) constitutes a heterogeneous group of genetic retinal degenerative disorders. The molecular mechanisms underlying RD encompass a diverse spectrum of cellular signaling, with the unfolded protein response (UPR) identified as a common signaling pathway chronically activated in degenerating retinas. TRIB3 has been recognized as a key mediator of the PERK UPR arm, influencing various metabolic pathways, such as insulin signaling, lipid metabolism, and glucose homeostasis, by acting as an AKT pseudokinase that prevents the activation of the AKT → mTOR axis. This study aimed to develop a gene-independent approach targeting the UPR TRIB3 mediator previously tested by our group using a genetic approach in mice with RD. The goal was to validate a therapeutic approach targeting TRIB3 interactomes through the pharmacological targeting of EGFR-TRIB3 and delivering cell-penetrating peptides targeting TRIB3 → AKT. The study employed rd10 and P23H RHO mice, with afatinib treatment conducted in p15 rd10 mice through daily intraperitoneal injections. P15 P23H RHO mice received intraocular injections of cell-penetrating peptides twice at a 2-week interval. Our study revealed that both strategies successfully targeted TRIB3 interactomes, leading to an improvement in scotopic A- and B-wave ERG recordings. Additionally, the afatinib-treated mice manifested enhanced photopic ERG amplitudes accompanied by a delay in photoreceptor cell loss. The treated rd10 retinas also showed increased PDE6ß and RHO staining, along with an elevation in total PDE activity in the retinas. Consequently, our study demonstrated the feasibility of a gene-independent strategy to target common signaling in degenerating retinas by employing a TRIB3-based therapeutic approach that delays retinal function and photoreceptor cell loss in two RD models.


Assuntos
Degeneração Retiniana , Animais , Camundongos , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Modelos Animais de Doenças , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Retina/metabolismo , Retina/efeitos dos fármacos , Retina/patologia
12.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999985

RESUMO

Advancements in medicine and pharmacology have led to the development of systems that deliver biologically active molecules inside cells, increasing drug concentrations at target sites. This improves effectiveness and duration of action and reduces side effects on healthy tissues. Cell-penetrating peptides (CPPs) show promise in this area. While traditional medicinal chemistry methods have been used to develop CPPs, machine learning techniques can speed up and reduce costs in the search for new peptides. A predictive algorithm based on machine learning models was created to identify novel CPP sequences using molecular descriptors using a combination of algorithms like k-nearest neighbors, gradient boosting, and random forest. Some potential CPPs were found and tested for cytotoxicity and penetrating ability. A new low-toxicity CPP was discovered from the Rhopilema esculentum venom proteome through this study.


Assuntos
Algoritmos , Peptídeos Penetradores de Células , Aprendizado de Máquina , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Humanos , Animais , Sequência de Aminoácidos , Venenos de Vespas/química , Proteoma
13.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893532

RESUMO

Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.


Assuntos
Peptídeos Penetradores de Células , Atrofia Muscular Espinal , Oligonucleotídeos Antissenso , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Humanos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Animais , Oligonucleotídeos/química , Oligonucleotídeos/farmacologia , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
14.
Angew Chem Int Ed Engl ; 63(9): e202310798, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38156978

RESUMO

RNA G-quadruplexes (D-rG4s) are prevalent in the transcriptome and play crucial regulatory roles in various biological processes. Recently, L-RNA aptamers have been reported to recognize functional rG4s with a strong binding affinity and specificity. However, owing to the poor cell penetration capacity of L-RNA aptamers, their biological applications are currently limited. Herein, we rationally design an L-RNA aptamer-peptide conjugate, Tamra_Ahx_R8_L-Apt.4-1c, which can efficiently translocate into the cytosol and target the rG4 of interest. Notably, we demonstrate diverse regulatory roles of Tamra_Ahx_R8_L-Apt.4-1c on rG4 motif present in different regions of mRNAs and further expand the application in different cell lines. Our novel and biocompatible conjugate enhances the cellular uptake of the L-RNA aptamer, and our robust strategy enables non-canonical RNA structures to be targeted by L-RNA aptamers for gene control in cells.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Aptâmeros de Nucleotídeos/química , RNA/química , RNA Mensageiro , Peptídeos/genética
15.
J Biol Chem ; 298(12): 102688, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370848

RESUMO

Parkinson's disease is a neurodegenerative movement disorder associated with the intracellular aggregation of α-synuclein (α-syn). Cytotoxicity is mainly associated with the oligomeric species (αSOs) formed at early stages in α-syn aggregation. Consequently, there is an intense focus on the discovery of novel inhibitors such as peptides to inhibit oligomer formation and toxicity. Here, using peptide arrays, we identified nine peptides with high specificity and affinity for αSOs. Of these, peptides p194, p235, and p249 diverted α-syn aggregation from fibrils to amorphous aggregates with reduced ß-structures and increased random coil content. However, they did not reduce αSO cytotoxicity and permeabilization of large anionic unilamellar vesicles. In parallel, we identified a non-self-aggregating peptide (p216), derived from the cell-penetrating peptide penetratin, which showed 12-fold higher binding affinity to αSOs than to α-syn monomers (Kdapp 2.7 and 31.2 µM, respectively). p216 reduced αSOs-induced large anionic unilamellar vesicle membrane permeability at 10-1 to 10-3 mg/ml by almost 100%, was not toxic to SH-SY5Y cells, and reduced αSOs cytotoxicity by about 20%. We conclude that p216 is a promising starting point from which to develop peptides targeting toxic αSOs in Parkinson's disease.


Assuntos
Peptídeos Penetradores de Células , Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Peptídeos Penetradores de Células/isolamento & purificação , Peptídeos Penetradores de Células/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Linhagem Celular Tumoral
16.
Mol Pharm ; 20(6): 3009-3019, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37093958

RESUMO

Multifunctionalized Chitosan-based polymeric micelles were used to deliver pVGF to the brain. VGF (non-acronymic) plays significant roles in neurogenesis and learning as well as synaptic and cognitive functions. Therefore, VGF gene therapy could be a better approach in developing effective therapeutics against Alzheimer's disease. Multifunctionalized chitosan polymeric micelles were developed by grafting oleic acid (OA) on the chitosan (CS) skeleton followed by penetratin (PEN) and mannose (MAN) conjugation. The OA-g-CS-PEN-MAN graft polymer formed cationic nanomicelles in an aqueous medium and polyplexed with pVGF. The polymeric micelles were nontoxic and cationic in charge and had an average hydrodynamic diameter of 199.8 ± 15.73 nm. Qualitative in vitro transfection efficiency of OA-g-CS-PEN-MAN/pGFP polyplex was investigated in bEnd.3, primary neurons, and astrocyte cells. In vivo transfection efficiency of OA-g-CS-PEN-MAN/pVGF polyplexes was analyzed in C57BL6/J mice after intranasal administration for 7 days. The VGF expression levels in primary astrocytes and neurons after OA-g-CS-PEN-MAN/pVGF treatment were 2.4 ± 0.24 and 1.49 ± 0.02 pg/µg of protein, respectively. The VGF expression in the OA-g-CS-PEN-MAN/pVGF polyplex-treated animal group was 64.9 ± 12.7 pg/mg of protein, significantly higher (p < 0.01) than that of the unmodified polymeric micelles. The in vivo transfection outcomes revealed that the developed multifunctionalized OA-g-CS-PEN-MAN polymeric micelles could effectively deliver pVGF to the brain, transfect brain cells, and express VGF in the brain after noninvasive intranasal administration.


Assuntos
Doença de Alzheimer , Quitosana , Camundongos , Animais , Micelas , Quitosana/metabolismo , Administração Intranasal , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Polímeros/metabolismo , Encéfalo/metabolismo , Ácido Oleico/metabolismo
17.
Eur Biophys J ; 52(6-7): 533-544, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610696

RESUMO

Peptide nucleic acid (PNA) is a nucleic acid mimic with high specificity and binding affinity to natural DNA or RNA, as well as resistance to enzymatic degradation. PNA sequences can be designed to selectively silence gene expression, which makes PNA a promising tool for antimicrobial applications. However, the poor membrane permeability of PNA remains the main limiting factor for its applications in cells. To overcome this obstacle, PNA conjugates with different molecules have been developed. This mini-review focuses on covalently linked conjugates of PNA with cell-penetrating peptides, aminosugars, aminoglycoside antibiotics, and non-peptidic molecules that were tested, primarily as PNA carriers, in antibacterial and antiviral applications. The chemistries of the conjugation and the applied linkers are also discussed.


Assuntos
Peptídeos Penetradores de Células , Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/química , Antibacterianos/farmacologia , Sequência de Aminoácidos , Peptídeos Penetradores de Células/farmacologia
18.
J Pept Sci ; 29(2): e3448, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35997639

RESUMO

Successful manual synthesis of the TD2.2 peptide acting as a blood-brain barrier shuttle was achieved. TD2.2 was successfully synthesised by sequential condensation of four protected peptide fragments on solid-phase settings, after several unsuccessful attempts using the stepwise approach. These fragments were chosen to minimise the number of demanding amino acids (in terms of coupling, Fmoc removal) in each fragment that are expected to hamper the overall synthetic process. Thus, the hydrophobic amino acids as well as Arg(Pbf) were strategically spread over multiple fragments rather than having them congested in one fragment. This study shows how a peptide that shows big challenges in the synthesis using the common stepwise elongation methodology can be synthesised with an acceptable purity. It also emphasises that choosing the right fragment with certain amino acid constituents is key for a successful synthesis. It is worth highlighting that lower amounts of reagents were required to synthesise the final peptide with an identical purity to that obtained by the automatic synthesiser.


Assuntos
Barreira Hematoencefálica , Peptídeos , Peptídeos/química , Fragmentos de Peptídeos/química , Aminoácidos/química , Técnicas de Síntese em Fase Sólida
19.
J Pept Sci ; 29(5): e3466, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36478488

RESUMO

Membranes consisting of phospholipid bilayers are an essential constituent of eukaryotic cells and their compartments. The alteration of their composition, structure, and morphology plays an important role in modulating physiological processes, such as transport of molecules, cell migration, or signaling, but it can also lead to lethal effects. The three main classes of membrane-active peptides that are responsible for inducing such alterations are cell-penetrating peptides (CPPs), antimicrobial peptides (AMPs), and fusion peptides (FPs). These peptides are able to interact with lipid bilayers in highly specific and tightly regulated manners. They can either penetrate the membrane, inducing nondestructive, transient alterations, or disrupt, permeabilize, or translocate through it, or induce membrane fusion by generating attractive forces between two bilayers. Because of these properties, membrane-active peptides have attracted the attention of the pharmaceutical industry, and naturally occurring bioactive structures have been used as a platform for synthetic modification and the development of artificial analogs with optimized therapeutic properties to transport biologically active cargos or serve as novel antimicrobial agents. In this review, we focus on synthetic membrane interacting peptides with bioactivity comparable with their natural counterparts and describe their mechanism of action.


Assuntos
Anti-Infecciosos , Peptídeos Penetradores de Células , Bicamadas Lipídicas/análise , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Antimicrobianos , Membrana Celular/química
20.
Bioorg Chem ; 134: 106424, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868126

RESUMO

Cell-penetrating peptides (CPPs) are prominent scaffolds for drug developments and related research, particularly the endocytic delivery of biomacromolecules. Effective cargo release from endosomes prior to lysosomal degradation is a crucial step, where the rational design and selection of CPPs remains a challenge and calls for deeper mechanistic understandings. Here, we have investigated a strategy of designing CPPs that selectively disrupt endosomal membranes based on bacterial membrane targeting sequences (MTSs). Six synthesized MTS peptides all exhibit cell-penetrating abilities, among which two d-peptides (d-EcMTS and d-TpMTS) are able to escape from endosomes and localize at ER after entering the cell. The utility of this strategy has been demonstrated by the intracellular delivery of green fluorescent protein (GFP). Together, these results suggest that the large pool of bacterial MTSs may be a rich source for the development of novel CPPs.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Endossomos/química , Endossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA