Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Ecotoxicol Environ Saf ; 277: 116376, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657453

RESUMO

The application of an external magnetic field has been shown to improve the Cd phytoremediation efficiency of F. arundinacea by leaf harvesting. However, the influencing mechanisms of the promoting effect have not yet been revealed. This study evaluated variations in the Cd subcellular allocation and fractions in various F. arundinacea leaves, with or without magnetized water irrigation. Over 50 % of the metal were sequestered within the cell wall in all tissues under all treatments, indicating that cell wall binding was a critical detoxification pathway for Cd. After magnetized water treatment, the metal stored in the cytoplasm of roots raised from 33.1 % to 45.3 %, and the quantity of soluble Cd in plant roots enhanced from 53.4 % to 59.0 %. The findings suggested that magnetized water mobilized Cd in the roots, and thus drove it into the leaves. In addition, the proportion of Cd in the organelles, and the concentration of ethanol-extracted Cd in emerging leaves, decreased by 13.0 % and 47.1 %, respectively, after magnetized water treatment. These results explained why an external field improved the phytoextraction effect of the plant through leaf harvesting.


Assuntos
Biodegradação Ambiental , Cádmio , Festuca , Folhas de Planta , Raízes de Plantas , Folhas de Planta/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Festuca/metabolismo , Festuca/efeitos dos fármacos , Irrigação Agrícola/métodos , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Água/química
2.
Environ Geochem Health ; 46(9): 343, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073487

RESUMO

Phosphorus (P) plays an important role in immobilizing heavy metals (HMs), thereby preventing their accumulation, especially in edible parts of crops. In this study, vermicompost (VM) and chemical fertilizers (CFs) were used as soil amendments to increase the available P concentration in soil contaminated with cadmium (Cd) and nickel (Ni), with the aim of reducing their bioavailability, uptake, and bioaccessibility. Using CF and VM as soil amendments substantially increased the available P and exchangeable potassium concentrations in the soil. Furthermore, VM addition led to an increase in OM content and in exchangeable calcium and magnesium, resulting in the improved growth of lettuce. It also reduced the uptake of Cd and Ni in the two lettuce cultivars tested in the study. However, CF addition boosted the accumulation of Cd and Ni by increasing the soil acidity. CF addition, and especially VM addition, altered the chemical forms of Cd and Ni from active to inactive. Overall, the results of this study underscore the positive impact of using VM as a soil amendment on lettuce growth and the prevention of HM accumulation in edible parts of lettuce. VM addition led to decreased bioavailability, uptake, and bioaccessibility of HMs in soil, which could improve food safety and reduce potential risks associated with HM contamination.


Assuntos
Disponibilidade Biológica , Lactuca , Metais Pesados , Fósforo , Poluentes do Solo , Solo , Poluentes do Solo/metabolismo , Lactuca/metabolismo , Lactuca/crescimento & desenvolvimento , Solo/química , Fertilizantes , Cádmio/metabolismo , Níquel , Compostagem/métodos
3.
Ecotoxicol Environ Saf ; 242: 113853, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809396

RESUMO

Various indices based on metal chemical data are used to evaluate pollution and ecological risk, but the consistency of the assessment results is usually unsatisfactory, and it is unclear if the ecological risk from sediment metals is accurately represented in in situ zoobenthos. Herein, the pollution and ecological risk associated with As, Cd, Cr, Cu, Ni, Pb and Zn in the sediments of two adjacent lakes (Datun (DT) and Changqiao (CQ)) were comprehensively evaluated by integrating metal concentrations, chemical forms and bioaccumulation in Bellamya aeruginosa (B. aeruginosa). The metal concentrations and chemical compositions varied widely in the sediments. Over 50% of the Cd, Pb and Zn in the sediments was present in bioavailable forms, followed by 28% of Cu and less than 25% of As, Cr and Ni. According to the enrichment factor (EF) and concentration enrichment ratio (CER) assessments, Cr and Ni were natural in origin, while the other metals were at minor to extremely high pollution levels, with average EFs of 1.5-77.6 and CERs of 1.1-113.4. The pollution levels for Cd, Cu and Pb from the EF and CER assessments were similar, while those for As and Zn were higher according to CER than EF (p = 0.05), likely due to the baseline underestimation associated with the potential diagenetic remobilization of bioavailable metals. The ecological risk index (Er), sediment quality guidelines (SQGs) and risk assessment code (RAC) showed a high eco-risk for Cd, while no similar risk was found for the other metals. By integrating risk indices with the chemical forms and pollution levels of metals, we deduced high eco-risks for As and Pb and moderate eco-risks for Cu and Zn in DT Lake and moderate eco-risks for As, Pb and Zn in CQ Lake. The other metals in the sediments of the two lakes presented low eco-risks. No significant positive correlations (p = 0.05) between metal accumulation in B. aeruginosa and the indices of pollution and eco-risk were observed except for the case of As, implying that measuring the metal concentrations in B. aeruginosa would not accurately characterize the metal pollution and ecological risk of sediments.


Assuntos
Gastrópodes , Metais Pesados , Poluentes Químicos da Água , Animais , Bioacumulação , Cádmio , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Lagos/química , Chumbo , Metais Pesados/análise , Pseudomonas aeruginosa , Medição de Risco , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 241: 113755, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689889

RESUMO

Lead (Pb) is one of the most harmful, toxic pollutants to the ecological environment and humans. Centipedegrass, a fast-growing warm-season turfgrass, is excellent for Pb pollution remediation. Exogenous low-molecular-weight organic acid (LMWOA) treatment is a promising approach for assisted phytoremediation. However, the effects of this treatment on the tolerance and Pb accumulation of centipedegrass are unclear. This study investigated these effects on the physiological growth response and Pb accumulation distribution characteristics of centipedegrass. Applications of 400 µM citric acid (CA), malic acid (MA) and tartaric acid (TA) significantly reduced membrane lipid peroxidation levels of leaves and improved biomass production of Pb-stressed plants. These treatments mainly increased peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities and enhanced free protein (Pro), ascorbic acid (AsA) and phytochelatins (PCs) contents, ultimately improving the Pb tolerance of centipedegrass. Their promoting effects decreased as follows: TA>CA>MA. All the treatments decreased root Pb concentrations and increased stem and leaf Pb concentrations, thus increasing total Pb accumulation and TF values. MA had the best and worst effects on Pb accumulation and Pb transportation, respectively. CA had the best and worst effects on Pb transportation and Pb accumulation, respectively. TA exhibited strong effects on both Pb accumulation and transport. Furthermore, all treatments changed the subcellular Pb distribution patterns and distribution models of the chemical forms of Pb in each tissue. The root Pb concentration was more highly correlated with the Pb subcellular fraction distribution pattern, while the stem and leaf Pb concentrations were more highly correlated with the distribution models of the chemical forms of Pb. Overall, TA improved plant Pb tolerance best and promoted both Pb absorption and transportation well and is considered the best candidate for Pb-contaminated soil remediation with centipedegrass. This study provides a new idea for Pb-contaminated soil remediation with centipedegrass combined with LMWOAs.


Assuntos
Chumbo , Poluentes do Solo , Antioxidantes/metabolismo , Biodegradação Ambiental , Ácido Cítrico/metabolismo , Humanos , Chumbo/metabolismo , Fitoquelatinas/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo , Poluentes do Solo/metabolismo , Estresse Fisiológico
5.
Int J Phytoremediation ; 24(3): 293-300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34154481

RESUMO

In this study, a novel extraction and safety evaluation method for heavy metals based on different functions of plants was proposed, and an edible plant (pea) was used as the research material to explore the feasibility of the novel method. Pea sprouts were cultured in cadmium (Cd) concentrations of 0, 1.0, 3.0, and 5.0 mg L-1, respectively. The Cd in pea sprouts was continuously extracted with 100 °C distilled water, 60% ethanol, 6% acetic acid, and simulated gastric juice. It was observed that highest amount of Cd (48.65-58.87%) was found in the extraction of roots with 6% acetic acid, followed by 100 °C distilled water (28.68-37.61%). While in stems, most of the Cd (70.73-85.39%) was extracted by 6% acetic acid. The recovery rate of the sequential chemical extraction technique employed in this experiment was between 93 and 106%. Compared with traditional methods, this study has its development potential in two aspects. First, it can determine which steps of sequential extractions of heavy metals in plants are the most harmful to humans. Secondly, corresponding measures can be taken to reduce heavy metals in vegetables used daily, such as soaking edible vegetables in vinegar for a short time. Novelty statement: In this study, a novel extraction and safety evaluation method for heavy metals based on different functions of plants was proposed, and an edible plant (pea) was used as the research material to explore the feasibility of the novel method. Compared with the commonly used extraction methods, the novel method is more reasonable and has greater development potential.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Humanos , Metais Pesados/análise , Pisum sativum , Medição de Risco , Plântula/química , Poluentes do Solo/análise
6.
Bull Environ Contam Toxicol ; 108(5): 909-916, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35234979

RESUMO

Previous studies have reported that co-contamination can result in more complex effects on the phytoremediation efficiency of plants relative to those of a single pollutant. However, the effect of co-contamination on plant rhizosphere characteristics has rarely been revealed. This study was carried out to assess the changes in soil pH, the content and fractionation of dissolved organic matter (DOM), and the metal solubility in the rhizosphere of Arabidopsis thaliana when treated with Cd and Pb simultaneously. The results showed that co-contamination increased the concentrations of DOM by 24.8% and 30.9% in the rhizosphere soil of A. thaliana relative to individual Cd or Pb pollution, respectively. At the end of the experiment, co-contamination significantly decreased the initial soil pH from 6.6 ± 0.3 to 5.5 ± 0.4, whereas a decrease was not observed under Pb pollution alone. Variations in soil pH and DOM can change the fractions of the two metals in the rhizosphere soil of A. thaliana. DOM in co-contaminated soil showed a higher Cd (1.05 mg L-1) and Pb (0.75 mg L-1) extraction ability relative to that in the Cd-polluted (0.89 mg Cd L-1 and 0.59 mg Pb L-1) or Pb-polluted (0.68 mg Cd L-1 and 0.63 mg Pb L-1) soils. The soluble Cd content in the co-contaminated (0.44 mg L-1) soil was significantly lower than that in the Cd-polluted (0.71 mg L-1) soil because A. thaliana is a Cd accumulator, whereas the soluble Pb content showed the opposite trend (47.0 mg L-1 vs. 37.4 mg L-1) because the species is a Pb excluder. Therefore, A. thaliana in co-contaminated soil would pose a leaching risk for the non-hyperaccumulated metals, thereby increasing the potential ecological risk during the phytoremediation process.


Assuntos
Arabidopsis , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Matéria Orgânica Dissolvida , Chumbo , Rizosfera , Solo/química , Poluentes do Solo/análise
7.
Ecotoxicol Environ Saf ; 208: 111412, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039872

RESUMO

Cadmium (Cd) is a severely toxic and carcinogenic heavy metal. Cigarette smoking is one of the major source of Cd exposure in humans. Nicotiana tabacum is primarily a leaf Cd accumulator, while Nicotiana rustica is a root Cd accumulator among Nicotiana species. However, little is known about the mechanisms of differential Cd translocation and accumulation in Nicotiana. To find the key factors, Cd concentration, Cd chemical forms, and transcriptome analysis were comparatively studied between N. tabacum and N. rustica under control or 10 µM Cd stress. The leaf/root Cd concentration ratio of N. tabacum was 2.26 and that of N. rustica was 0.14. The Cd concentration in xylem sap of N. tabacum was significantly higher than that of N. rustica. The root of N. tabacum had obviously higher proportion of ethanol extractable Cd (40%) and water extractable Cd (16%) than those of N. rustica (16% and 6%). Meanwhile the proportion of sodium chloride extracted Cd in N. rustica (71%) was significantly higher than that in N. tabacum (30%). A total of 30710 genes expressed differentially between the two species at control, while this value was 30,294 under Cd stress, among which 27,018 were collective genes, manifesting the two species existed enormous genetic differences. KEGG pathway analysis showed the phenylpropanoid biosynthesis pathway was overrepresented between the two species under Cd stress. Several genes associated with pectin methylesterase, suberin and lignin synthesis, and heavy metal transport were discovered to be differential expressed genes between two species. The results suggested that the higher accumulation of Cd in the leaf of N. tabacum depends on a comprehensive coordination of Cd transport, including less cell wall binding, weaker impediment by the Casparian strip, and efficient xylem loading.


Assuntos
Cádmio/toxicidade , Nicotiana/fisiologia , Transcriptoma , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Humanos , Metais Pesados/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Nicotiana/metabolismo , Xilema/metabolismo
8.
Ecotoxicol Environ Saf ; 213: 112076, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33639562

RESUMO

We executed a pot experiment to examine the differences of absorption, chemical forms, subcellular distribution, and toxicity of Cd between two cultivars of Chinese flowering cabbage Brassica campestris [Lvbao701 (low-Cd cultivar) and Chicaixin No.4 (high-Cd cultivar)]. Compared to Chicaixin No.4, the presence of Lvbao701 enhanced the proportion of insoluble Cd forms in soil, Lvbao701 roots and leaves had higher proportion of Cd converted into insoluble phosphate precipitates and pectate-or protein-bound forms and lower proportion of inorganic Cd, which result in low accumulation and toxicity of Cd to Lvbao701 and cutworm Spodoptera litura fed on Lvbao701 leaves. Instead of total Cd, Cd transfer and toxicity in B. campestris-S. litura system depend on chemical Cd forms in soil and cabbages and subcellular Cd distributions in cabbages and insects, and the proportions of them were not the highest among all chemical forms and subcellular distributions of Cd. Although exchangeable Cd was major Cd chemical form in cabbage planted soil, Cd bound to iron and manganese oxides and to organic matter were significantly correlated with growth indices and photosynthesis parameters of cabbages. Despite major part of Cd was precipitated in cell wall of roots, Cd in organelle fraction was closely associated with the fitness of cabbages. Metal-rich granules, not cytosolic fraction (the major subcellular Cd distribution), affected the food utilization of S. litura. Therefore, cabbage cultivars significantly affected Cd transfer and toxicity in B. campestris-S. litura system, and the use of Lvbao701 in Cd polluted soil could reduce potential risks for Cd entering food chains.


Assuntos
Brassica/fisiologia , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Animais , Brassica/metabolismo , Cádmio/metabolismo , China , Cadeia Alimentar , Larva/metabolismo , Raízes de Plantas/metabolismo , Reprodução , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Spodoptera/crescimento & desenvolvimento , Spodoptera/fisiologia
9.
Ecotoxicol Environ Saf ; 205: 111132, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32836155

RESUMO

Due to high sorption capacity for heavy metals, magnetic biochar (MBC) has the potential to adsorb heavy metals in soils, which are then removed together with MBC from soils by a magnetic field. In this study, two magnetic biochars (MBC300 and MBC700) were derived from the magnetization of wheat straw biochars pyrolyzed at 300 and 700 °C. Strong binding of Pb with iron oxide particles deposited on biochar was observed. After the MBCs (7.5%, w/w) were applied to two naturally Pb-polluted soils (named as He-soil and Hu-soil) for 720 h, the removal efficiency of Pb from the soil by MBC300 (26.8-40.1%) was similar (p > 0.05) to that by MBC700 (25.1-42.1%). This is because MBC300 has lower sorption capacity for Pb but higher recovery percentage from soils as a result of lower saturation magnetization. The removal efficiencies of Pb by the two MBCs were 13-17% higher for He-soil than for Hu-soil, which was due to higher proportion of mobile forms of Pb in He-soil (82.3%) than in Hu-soil (51.5%). Spectroscopic analysis indicated that Pb in soils tended to bind onto the surface of MBC in more stable forms. Moreover, removing Pb from soils by MBC could decrease Pb concentration in ryegrass by about 30%. Therefore, it might be a potential method to remedy Pb-polluted soils.


Assuntos
Recuperação e Remediação Ambiental/métodos , Chumbo/química , Poluentes do Solo/química , Adsorção , Carvão Vegetal , Poluição Ambiental/análise , Chumbo/análise , Lolium , Fenômenos Magnéticos , Metais Pesados/análise , Pirólise , Solo/química , Poluentes do Solo/análise , Triticum
10.
Ecotoxicol Environ Saf ; 203: 110988, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678761

RESUMO

The screening and identification of hyperaccumulators is the key to the phytoremediation of soils contaminated by heavy metal (HM). Arbuscular mycorrhizal fungus (AMF) can improve plant growth and tolerance to HM; therefore, AMF-assisted phytoextraction has been regarded as a potential technique for the remediation of HM-polluted soils. A greenhouse pot experiment was conducted to determine whether Sphagneticola calendulacea is a Cd-hyperaccumulator and to investigate the effect of the AMF-Funneliformis mosseae (FM) on plant growth and on the accumulation, subcellular distribution and chemical form of Cd in S. calendulacea grown in soils supplemented with different Cd levels. At 25, 50 and 100 mg Cd kg-1 level, S. calendulacea showed high Cd tolerance, the translocation factor and the bioconcentration factor exceeded 1, and accumulation of more than 100 mg Cd kg-1 was observed in the aboveground parts of the plant, meeting the requirements for a Cd-hyperaccumulator. Moreover, FM colonization significantly increased both biomasses and Cd concentration in S. calendulacea. After FM inoculation, the Cd concentrations and proportions increased in the cell walls, but exhibited no significant change in the organelles of the shoots. Meanwhile, FM symbiosis contributed to the conversion of Cd from highly toxic chemical forms (extracted by 80% ethanol and deionized water) to less toxic chemical forms (extracted by 1 M NaCl, 2% acetic acid, 0.6 M HCl) of Cd in the shoots. Overall, S. calendulacea is a typical Cd-hyperaccumulator, and FM symbiosis relieved the phytotoxicity of Cd and promoted plant growth and Cd accumulation, and thus greatly increasing the efficiency of phytoextraction for Cd-polluted soil. Our study provides a theoretical basis and application guidance for the remediation of Cd-contaminated soil by the symbiont of S. calendulacea with FM.


Assuntos
Asteraceae/metabolismo , Bioacumulação , Cádmio/metabolismo , Glomeromycota/fisiologia , Micorrizas/fisiologia , Poluentes do Solo/metabolismo , Asteraceae/crescimento & desenvolvimento , Asteraceae/microbiologia , Biodegradação Ambiental
11.
Ecotoxicol Environ Saf ; 174: 370-376, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849657

RESUMO

PAHs affect the uptake of heavy metal by plants. The uptake pathway, distribution and detoxification of nickel (Ni) in Agropyron cristatum L. (A. cristatum) were investigated in the presence of pyrene in this study. Most of Ni was adsorbed on the cell wall in the insoluble phosphate (57.31-72.18%) form and pectate and protein integrated (38.27-38.98%) form. Ni was transferred to the organelle (from 37.84% to 40.52%) in the presence of pyrene. The concentration of Ni in A. cristatum decreased by 27.42%; it was affected by the ATP production inhibitor and 29.49% by the P-type ATPase inhibitor. The results indicated that the uptake of Ni related closely to the synthesis and decomposition of ATP and was an active uptake process. Contents of phytochelatins (PCs) in A. cristatum in Ni contaminated soils increased by 19.97%, and an additional 4.13% increase occurred in the presence of pyrene when compared to single Ni contamination. The content of malic acid in A. cristatum was the highest for 262.78 mg g-1 in shoots and 46.81 mg g-1 in roots with Ni contamination. Besides, acetic acid in shoots and roots increased by 40.25% and 102.63% with Ni contamination, and by 61.59% and 185.71% with Ni-pyrene co-contamination. This study preliminarily explored the inhibitory mechanism of pyrene on plant uptake of Ni.


Assuntos
Agropyron/metabolismo , Níquel/metabolismo , Pirenos/química , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Transporte Biológico , Malatos/metabolismo , Modelos Teóricos , Níquel/análise , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
12.
Ecotoxicol Environ Saf ; 171: 894-903, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30606507

RESUMO

Coptis chinensis Franch., is a widely used medicinal plant in China. This plant is often contaminated by cadmium (Cd) and render health risk to human consumers. Understanding distribution of Cd and its chemical forms is important to evaluate accumulation of the metal and its detoxification mechanisms in this plant. Since few studies have focused on this aspect, we used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to spatially locate Cd in rhizome cross-sections, and ICP-MS to analyze the Cd subcellular distribution and the chemical forms of Cd in different tissues. Rhizome bioimaging results showed that Cd was distributed predominantly within the periderm, cortex, pith, and root trace vascular bundle. The LA-ICP-MS results suggested that Ca2+ channels might be a pathway for Cd entry into the plant. Subcellular distribution data indicated that most of Cd was associated with the cell wall (41.8-77.1%) and the soluble fraction (14.4-52.7%) in all tissues. Analysis of chemical forms revealed that majority Cd existed in less mobile and less toxic forms in all tissues, and P could convert to insoluble phosphate with Cd to moderate Cd toxicity. The new understanding of Cd accumulation and detoxification might provide novel strategies for reducing the levels of Cd in C. chinensis Franch., thereby mitigating its potential transfer to humans and providing a theoretical basis for evaluating the Cd status in other medicinal plants. Further, our findings might provide a basis for establishing a reasonable Cd limit level of traditional Chinese medicinal materials.


Assuntos
Cádmio/análise , Coptis/química , Cádmio/química , Cádmio/isolamento & purificação , Cádmio/toxicidade , Fracionamento Celular , China , Espectrometria de Massas , Plantas Medicinais/química , Rizoma/química
13.
Ecotoxicol Environ Saf ; 181: 146-154, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31177079

RESUMO

The impact of lead (Pb) on Spirodela polyrhiza was studied to determine the subcellular distribution, chemical forms, and resulting morphophysiological modifications after treatments with 20 or 80 µM Pb(NO3)2 for 10 days. At the subcellular level, the Pb uptake by S. polyrhiza was mainly compartmentalized in the cell walls (70%), and the majority of Pb (approximately 70%) was extracted using 1 M NaCl and 2% acetic acid (HAc). Visual symptoms of phytotoxcity, surface roughness and closure of stomata, were observed in Pb-treated fronds. Electron-dense precipitates were present in cell walls, and changes to the ultrastructure were most noticeably exhibited in organelle shape, internal organization, and size of the plastoglobules of chloroplasts. Toxic concentrations of Pb induced oxidative stress in fronds, characterized by an accumulation of malondialdehyde (MDA) and decreased chlorophyll and unsaturated fatty acid contents. Pb exposure increased ABS/RC, TRo/RC, DIo/RC, Vj, and φDo (Fv/Fm), indicating that reaction centers were transformed to dissipation sinks, leading to a decrease in the efficiency of photosystem II, which was evident from the decreased values of Fv/Fo, Fv/Fm, ψEo, φEo, RC/ABS, and PIabs. These results indicated that decreased photosynthesis in Pb-treated fronds was partially ascribed to the lower pigment content, inhibition of electron transport, inactivation of the reaction centers, damage to the chloroplast ultrastructure, and stomatal closure. The physiological implications of subcellular distribution and chemical forms are discussed in relation to Pb accumulation and detoxification. However, Pb accumulation significantly impaired photosynthesis and membrane integrity in the fronds of S. polyrhiza.


Assuntos
Araceae/efeitos dos fármacos , Chumbo/toxicidade , Araceae/anatomia & histologia , Araceae/metabolismo , Araceae/ultraestrutura , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Transporte de Elétrons/efeitos dos fármacos , Ácidos Graxos Insaturados/metabolismo , Chumbo/farmacocinética , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo
14.
Int J Phytoremediation ; 21(4): 391-398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30656972

RESUMO

In this study, we compared the chemical forms and subcellular distribution of Cd in high-Cd (X16) and low-Cd (N88) sweet potato cultivars through hydroponic experiments and examined the Cd distribution in their roots by histochemical staining. The results showed that inorganic and pectate/protein-integrated Cd predominated in the leaves, and Cd concentrations were significantly higher in X16 than in N88. However, in the roots, Cd was mostly integrated with pectate and protein, and Cd concentration was higher in N88 than in X16. It was mainly stored through vacuolar sequestration and cell wall binding. In the leaves and stems, Cd concentrations in all subcellular fractions were higher in X16 than in N88; the opposite was observed in the roots. In X16, Cd was mostly accumulated in the root stele, and its Cd translocation factor was higher than that of N88. Overall, the subcellular fractions of X16 roots retained less Cd than N88 roots, and more Cd entered the root stele of X16 and subsequently moved to the shoots. The higher amounts of inorganic, water-soluble, and pectate/protein-integrated Cd with high mobility in the shoots of X16 than in N88 might facilitate Cd remobilization to other tissues, but this needs to be further studied.


Assuntos
Ipomoea batatas , Poluentes do Solo , Biodegradação Ambiental , Cádmio , Raízes de Plantas
15.
J Environ Sci (China) ; 78: 63-73, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30665657

RESUMO

Screening potential plant species is a crucial consideration in phytoremediation technology. Our previous study demonstrated that Rhus chinensis Mill. seedlings had potentials for phytoremediation of Pb contaminated soil. However, its bioaccumulation and tolerance characteristics remain unclear. Seedling growth, LMWOAs secreted by roots, Pb subcellular distribution and chemical forms, and mineral elements in R. chinensis tissues were evaluated under different Pb concentrations (0, 25, 50, 100, 200 and 400 mg/L) in culture solution at 14 days after planting. R. chinensis did not show visual symptoms of Pb toxicity under lower Pb treatments; however, Pb significantly declined the growth of seedlings under higher Pb treatments. Higher Pb stress also decreased the concentrations of nitrogen in leaves, but increased the concentrations of P and K in roots. Pb stress also decreased Mn concentrations in leaves. A great quantity of Pb was uptake and mostly retained in R. chinensis roots. Nonetheless, R. chinensis can still concentrate 459.3 and 1102.7 mg/kg Pb in leaves and stems, respectively. Most of Pb in R. chinensis tissues was stored in the cell wall with HAc-, HCl-, and NaCl-extractable form. LMWOAs secreted by R. chinensis roots showed a strong positive correlation with Pb concentrations in all plant tissues and with P in roots. Our results suggested that Pb deposited in the cell wall and integration with phosphate or oxalate might be responsible for the tolerance of R. chinensis under Pb stress in short period.


Assuntos
Biodegradação Ambiental , Chumbo/toxicidade , Rhus/fisiologia , Poluentes do Solo/toxicidade , Chumbo/metabolismo , Poluentes do Solo/metabolismo , Estresse Fisiológico
16.
Glob Chang Biol ; 24(9): 4160-4172, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29748989

RESUMO

Input of labile organic carbon can enhance decomposition of extant soil organic carbon (SOC) through priming. We hypothesized that long-term nitrogen (N) input in different chemical forms alters SOC pools by altering priming effects associated with N-mediated changes in plants and soil microbes. The hypothesis was tested by integrating field experimental data of plants, soil microbes and two incubation experiments with soils that had experienced 10 years of N enrichment with three chemical forms (ammonium, nitrate and both ammonium and nitrate) in an alpine meadow on the Tibetan Plateau. Incubations with glucose-13 C addition at three rates were used to quantify effects of exogenous organic carbon input on the priming of SOC. Incubations with microbial inocula extracted from soils that had experienced different long-term N treatments were conducted to detect effects of N-mediated changes in soil microbes on priming effects. We found strong evidence and a mechanistic explanation for alteration of SOC pools following 10 years of N enrichment with different chemical forms. We detected significant negative priming effects both in soils collected from ammonium-addition plots and in sterilized soils inoculated with soil microbes extracted from ammonium-addition plots. In contrast, significant positive priming effects were found both in soils collected from nitrate-addition plots and in sterilized soils inoculated with soil microbes extracted from nitrate-addition plots. Meanwhile, the abundance and richness of graminoids were higher and the abundance of soil microbes was lower in ammonium-addition than in nitrate-addition plots. Our findings provide evidence that shifts toward higher graminoid abundance and changes in soil microbial abundance mediated by N chemical forms are key drivers for priming effects and SOC pool changes, thereby linking human interference with the N cycle to climate change.


Assuntos
Carbono/análise , Mudança Climática , Nitrogênio/análise , Solo/química , Compostos de Amônio/análise , Fertilizantes/análise , Nitratos/análise , Tibet
17.
Ecotoxicol Environ Saf ; 162: 563-570, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30029102

RESUMO

A plant's tolerance to heavy metals (HMs) and its detoxification mechanisms are associated with the subcellular distribution of HMs and their chemical forms. In this study, water spinach (Ipomoea aquatica Forsk.) was grown in two soils contaminated with a single HM (cadmium, Cd) or combined HMs (Cd and nickel, Ni). Inoculation of arbuscular mycorrizal fungi (AMF) was conducted to increase the accumulation of phosphorus (P) in plants. One major exception was to decrease the migration and accumulation of HMs in edible parts by the formation of P-HM complexes. The effects of blanching and simulated digestion on bioaccessibility were also assessed. The experimental results showed that the water spinach species used in this study had a high capacity to accumulate HMs. AMF treatment improved water spinach growth and decreased the accumulation of Ni but not that of Cd. Soluble and inorganic Cd and Ni were the major subcellular fractions and chemical forms in water spinach; these two HMs also exhibited higher migration capacities in comparison to chromium (Cr). Relative to raw tissues, 45-84% of Cd, Cr, and Ni were leached after blanching. Approximately 32-55%, 16-50%, and 27-40% of Cd, Cr, and Ni, respectively, were bioaccessible and could be metabolized by in vitro digestive fluids.


Assuntos
Ipomoea/química , Ipomoea/microbiologia , Metais Pesados/análise , Micorrizas , Disponibilidade Biológica , Concentração de Íons de Hidrogênio , Fósforo/análise , Solo/química , Poluentes do Solo/análise
18.
Int J Phytoremediation ; 20(5): 448-453, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29608376

RESUMO

Morus alba L. (mulberry) is a perennial woody tree and a species with great potential for Cd phyremediation owing to its large biomass and extensive root system. The mechanisms involved in Cd detoxification were investigated by analyzing the subcellular distribution and chemical forms of Cd in mulberry in the present study. These results indicated that 53.27-70.17% of Cd mulberry accumulated was stored in the root and only about 10% were in the leaves. Lots of the Cd was located in the cell wall of the mulberry root and in soluble fraction of the mulberry leaf. Moreover, in roots, the largest amount of Cd was in the form of undissolved Cd-phosphate. While in mulberry leaves and stems, most of the Cd was extracted by 2% Acetic acid and 0.6 M HCl, representing Cd-phosphate and Cd-oxalate. It could be concluded that the Cd combination with peptides and organo-ligands in vacuole of leaf or complexed with proteins or cellulose in the cell wall of root might be contributed to the tolerance of mulberry to Cd stress. The mulberry could be used to remediate the Cd polluted farmland soils.


Assuntos
Cádmio , Morus , Biodegradação Ambiental , Folhas de Planta , Solo
19.
Ecotoxicol Environ Saf ; 144: 131-137, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28609662

RESUMO

The partition coefficients between bovine serum albumin (BSA) and water (KBSA/w) for ionogenic organic chemicals (IOCs) were different greatly from those of neutral organic chemicals (NOCs). For NOCs, several excellent models were developed to predict their logKBSA/w. However, it was found that the conventional descriptors are inappropriate for modeling logKBSA/w of IOCs. Thus, alternative approaches are urgently needed to develop predictive models for KBSA/w of IOCs. In this study, molecular descriptors that can be used to characterize the ionization effects (e.g. chemical form adjusted descriptors) were calculated and used to develop predictive models for logKBSA/w of IOCs. The models developed had high goodness-of-fit, robustness, and predictive ability. The predictor variables selected to construct the models included the chemical form adjusted averages of the negative potentials on the molecular surface (Vs-adj-), the chemical form adjusted molecular dipole moment (dipolemomentadj), the logarithm of the n-octanol/water distribution coefficient (logD). As these molecular descriptors can be calculated from their molecular structures directly, the developed model can be easily used to fill the logKBSA/w data gap for other IOCs within the applicability domain. Furthermore, the chemical form adjusted descriptors calculated in this study also could be used to construct predictive models on other endpoints of IOCs.


Assuntos
1-Octanol/química , Modelos Químicos , Compostos Orgânicos/química , Soroalbumina Bovina/química , Água/química , Relação Quantitativa Estrutura-Atividade
20.
Bull Environ Contam Toxicol ; 98(3): 317-322, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27377752

RESUMO

Impatiens walleriana (I. walleriana), a potential cadmium (Cd) hyperaccumulator, can propagate by cuttings, which are less expensive to grow than seedlings. Different growth periods for cuttings, however, may lead to different physiological characteristics. In this study, I. walleriana cuttings were hydroponically grown in Cd-containing solutions (1.0-10.0 µM) for various growth periods (10-60 days). Experimental results showed that the Cd treatments had negative effects on growth compared to the controls that were not spiked with Cd. The extension of the growth period promoted most of the growth exhibitions of I. walleriana, except for SPAD readings for cuttings grown in the 5.0 and 10.0 µM solutions. The accumulation of Cd also increased over time, except in the roots of the cuttings grown in the 5.0 and 10.0 µM solutions. The subcellular distribution and chemical forms of Cd showed that I. walleriana developed better tolerance and detoxification capacities in the cuttings grown in the 5.0 and 10.0 µM solutions than in the cuttings grown in the other two Cd treatments.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Impatiens/crescimento & desenvolvimento , Impatiens/metabolismo , Relação Dose-Resposta a Droga , Hidroponia , Impatiens/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA