Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.295
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(1): 209-229.e26, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608654

RESUMO

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.


Assuntos
Diferenciação Celular , Fatores de Transcrição , Humanos , Cromatina , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Fatores de Transcrição/metabolismo , Atlas como Assunto
2.
Cell ; 185(13): 2213-2233.e25, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35750033

RESUMO

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Colesterol/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Microglia/metabolismo
3.
Cell ; 175(7): 1796-1810.e20, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30528432

RESUMO

The 9p21.3 cardiovascular disease locus is the most influential common genetic risk factor for coronary artery disease (CAD), accounting for ∼10%-15% of disease in non-African populations. The ∼60 kb risk haplotype is human-specific and lacks coding genes, hindering efforts to decipher its function. Here, we produce induced pluripotent stem cells (iPSCs) from risk and non-risk individuals, delete each haplotype using genome editing, and generate vascular smooth muscle cells (VSMCs). Risk VSMCs exhibit globally altered transcriptional networks that intersect with previously identified CAD risk genes and pathways, concomitant with aberrant adhesion, contraction, and proliferation. Unexpectedly, deleting the risk haplotype rescues VSMC stability, while expressing the 9p21.3-associated long non-coding RNA ANRIL induces risk phenotypes in non-risk VSMCs. This study shows that the risk haplotype selectively predisposes VSMCs to adopt a cell state associated with CAD phenotypes, defines new VSMC-based networks of CAD risk genes, and establishes haplotype-edited iPSCs as powerful tools for functionally annotating the human genome.


Assuntos
Cromossomos Humanos Par 9 , Doença da Artéria Coronariana , Edição de Genes , Haplótipos , Células-Tronco Pluripotentes Induzidas , Polimorfismo de Nucleotídeo Único , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos Par 9/genética , Cromossomos Humanos Par 9/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Feminino , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcrição Gênica
4.
Cell ; 167(7): 1734-1749.e22, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984724

RESUMO

Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects.


Assuntos
Fator de Transcrição GATA4/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Cromatina , Elementos Facilitadores Genéticos , Feminino , Coração/crescimento & desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas com Domínio T/genética
5.
Annu Rev Neurosci ; 43: 375-389, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640930

RESUMO

Scientists have been fascinated by the human brain for centuries, yet knowledge of the cellular and molecular events that build the human brain during embryogenesis and of how abnormalities in this process lead to neurological disease remains very superficial. In particular, the lack of experimental models for a process that largely occurs during human in utero development, and is therefore poorly accessible for study, has hindered progress in mechanistic understanding. Advances in stem cell-derived models of human organogenesis, in the form of three-dimensional organoid cultures, and transformative new analytic technologies have opened new experimental pathways for investigation of aspects of development, evolution, and pathology of the human brain. Here, we consider the biology of brain organoids, compared and contrasted with the endogenous human brain, and highlight experimental strategies to use organoids to pioneer new understanding of human brain pathology.


Assuntos
Encéfalo/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Organogênese/fisiologia , Organoides/citologia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Doenças do Sistema Nervoso/patologia
6.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38349741

RESUMO

The mechanosensitive PIEZO channel family has been linked to over 26 disorders and diseases. Although progress has been made in understanding these channels at the structural and functional levels, the underlying mechanisms of PIEZO-associated diseases remain elusive. In this study, we engineered four PIEZO-based disease models using CRISPR/Cas9 gene editing. We performed an unbiased chemical mutagen-based genetic suppressor screen to identify putative suppressors of a conserved gain-of-function variant pezo-1[R2405P] that in human PIEZO2 causes distal arthrogryposis type 5 (DA5; p. R2718P). Electrophysiological analyses indicate that pezo-1(R2405P) is a gain-of-function allele. Using genomic mapping and whole-genome sequencing approaches, we identified a candidate suppressor allele in the C. elegans gene gex-3. This gene is an ortholog of human NCKAP1 (NCK-associated protein 1), a subunit of the Wiskott-Aldrich syndrome protein (WASP)-verprolin homologous protein (WAVE/SCAR) complex, which regulates F-actin polymerization. Depletion of gex-3 by RNAi, or with the suppressor allele gex-3(av259[L353F]), significantly increased brood size and ovulation rate, as well as alleviating the crushed oocyte phenotype of the pezo-1(R2405P) mutant. Expression of GEX-3 in the soma is required to rescue the brood size defects in pezo-1(R2405P) animals. Actin organization and orientation were disrupted and distorted in the pezo-1 mutants. Mutation of gex-3(L353F) partially alleviated these defects. The identification of gex-3 as a suppressor of the pathogenic variant pezo-1(R2405P) suggests that the PIEZO coordinates with the cytoskeleton regulator to maintain the F-actin network and provides insight into the molecular mechanisms of DA5 and other PIEZO-associated diseases.


Assuntos
Actinas , Artrogripose , Oftalmoplegia , Doenças Retinianas , Animais , Feminino , Humanos , Actinas/genética , Artrogripose/genética , Caenorhabditis elegans/genética , Canais Iônicos , Mutação/genética , Polimerização
7.
Proc Natl Acad Sci U S A ; 121(10): e2308255121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412125

RESUMO

MicroRNAs (miRNA) associate with Argonaute (AGO) proteins and repress gene expression by base pairing to sequences in the 3' untranslated regions of target genes. De novo coding variants in the human AGO genes AGO1 and AGO2 cause neurodevelopmental disorders (NDD) with intellectual disability, referred to as Argonaute syndromes. Most of the altered amino acids are conserved between the miRNA-associated AGO in Homo sapiens and Caenorhabditis elegans, suggesting that the human mutations could disrupt conserved functions in miRNA biogenesis or activity. We genetically modeled four human AGO1 mutations in C. elegans by introducing identical mutations into the C. elegans AGO1 homologous gene, alg-1. These alg-1 NDD mutations cause phenotypes in C. elegans indicative of disrupted miRNA processing, miRISC (miRNA silencing complex) formation, and/or target repression. We show that the alg-1 NDD mutations are antimorphic, causing developmental and molecular phenotypes stronger than those of alg-1 null mutants, likely by sequestrating functional miRISC components into non-functional complexes. The alg-1 NDD mutations cause allele-specific disruptions in mature miRNA profiles, accompanied by perturbation of downstream gene expression, including altered translational efficiency and/or messenger RNA abundance. The perturbed genes include those with human orthologs whose dysfunction is associated with NDD. These cross-clade genetic studies illuminate fundamental AGO functions and provide insights into the conservation of miRNA-mediated post-transcriptional regulatory mechanisms.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Transtornos do Neurodesenvolvimento , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , MicroRNAs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mutação
8.
Semin Cell Dev Biol ; 155(Pt C): 23-29, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37202277

RESUMO

The interests in blood endothelial cells arise from their therapeutic potential in vascular repair and regeneration. Our understanding of blood endothelial cells that exist in the circulation has been evolving significantly from the original concept of endothelial progenitor cells. Many studies have uncovered heterogeneities of blood endothelial subtypes where some cells express both endothelial and hematopoietic antigens, and others possess either mature or immature endothelial markers. Due to the lack of definitive cell marker identities, there have been momentums in the field to adopt a technical-oriented labeling system based on the cells' involvement in postnatal neovascularization and cell culture derivatives. Our review streamlines nomenclatures for blood endothelial subtypes and standardizes understanding of their functional differences. Broadly, we will discuss about myeloid angiogenic cells (MACs), endothelial colony-forming cells (ECFCs), blood outgrowth endothelial cells (BOECs) and circulating endothelial cells (CECs). The strategic location of blood endothelial cells confers them essential roles in supporting physiological processes. MACs exert angiogenic effects through paracrine mechanisms, while ECFCs are recruited to sites of vascular injury to participate directly in new vessel formation. BOECs are an in vitro derivative of ECFCs. CECs are shed into the bloodstream from damaged vessels, hence reflective of endothelial dysfunction. With clarity on the functional attributes of blood endothelial subtypes, we present recent advances in their applications in disease modelling, along with serving as biomarkers of vascular tissue homeostasis.


Assuntos
Células Progenitoras Endoteliais , Células Progenitoras Endoteliais/fisiologia , Técnicas de Cultura de Células , Biomarcadores , Neovascularização Fisiológica , Células Cultivadas
9.
Annu Rev Genet ; 52: 271-293, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30208291

RESUMO

Age-associated neurological diseases represent a profound challenge in biomedical research as we are still struggling to understand the interface between the aging process and the manifestation of disease. Various pathologies in the elderly do not directly result from genetic mutations, toxins, or infectious agents but are primarily driven by the many manifestations of biological aging. Therefore, the generation of appropriate model systems to study human aging in the nervous system demands new concepts that lie beyond transgenic and drug-induced models. Although access to viable human brain specimens is limited and induced pluripotent stem cell models face limitations due to reprogramming-associated cellular rejuvenation, the direct conversion of somatic cells into induced neurons allows for the generation of human neurons that capture many aspects of aging. Here, we review advances in exploring age-associated neurodegenerative diseases using human cell reprogramming models, and we discuss general concepts, promises, and limitations of the field.


Assuntos
Envelhecimento/genética , Células-Tronco Pluripotentes Induzidas/patologia , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Envelhecimento/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Reprogramação Celular/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia
10.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36317797

RESUMO

Deconstructing and then reconstructing developmental processes ex vivo is crucial to understanding how organs assemble and how physiology can be disrupted in disease. Human 3D stem cell-derived systems, such as organoids, have facilitated this pursuit; however, they often do not capture inter-tissue or inter-lineage cellular interactions that give rise to emergent tissue properties during development. Assembloids are self-organizing 3D cellular systems that result from the integration of multiple organoids or the combination of organoids with missing cell types or primary tissue explants. Here, we outline the concept and types of assembloids and present their applications for studying the nervous system and other tissues. We describe tools that are used to probe and manipulate assembloids and delineate current challenges and the potential for this new approach to interrogate development and disease.


Assuntos
Organoides , Humanos
11.
Annu Rev Biomed Eng ; 26(1): 383-414, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38424088

RESUMO

Kidney disease is a global health crisis affecting more than 850 million people worldwide. In the United States, annual Medicare expenditures for kidney disease and organ failure exceed $81 billion. Efforts to develop targeted therapeutics are limited by a poor understanding of the molecular mechanisms underlying human kidney disease onset and progression. Additionally, 90% of drug candidates fail in human clinical trials, often due to toxicity and efficacy not accurately predicted in animal models. The advent of ex vivo kidney models, such as those engineered from induced pluripotent stem (iPS) cells and organ-on-a-chip (organ-chip) systems, has garnered considerable interest owing to their ability to more accurately model tissue development and patient-specific responses and drug toxicity. This review describes recent advances in developing kidney organoids and organ-chips by harnessing iPS cell biology to model human-specific kidney functions and disease states. We also discuss challenges that must be overcome to realize the potential of organoids and organ-chips as dynamic and functional conduits of the human kidney. Achieving these technological advances could revolutionize personalized medicine applications and therapeutic discovery for kidney disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nefropatias , Rim , Dispositivos Lab-On-A-Chip , Organoides , Engenharia Tecidual , Humanos , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Engenharia Tecidual/métodos , Modelos Biológicos , Medicina de Precisão/métodos
12.
Stem Cells ; 42(3): 230-250, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38183264

RESUMO

Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Doença Pulmonar Obstrutiva Crônica , Humanos , SARS-CoV-2 , Proteômica , Imunoterapia , Inflamação
13.
Bioessays ; 45(2): e2200130, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36517085

RESUMO

Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor impairments, and child mortality. Recently, we demonstrated that mutations leading to specific PCH subtypes destabilize TSEN in vitro and cause imbalances of immature to mature tRNA ratios in patient-derived cells. However, how tRNA processing defects translate to disease on a systems level has not been understood. Recent findings suggested that other cellular processes may be affected by mutations in TSEN/CLP1 and obscure the molecular mechanisms of PCH emergence. Here, we review PCH disease models linked to the TSEN/CLP1 machinery and discuss future directions to study neuropathogenesis.


Assuntos
Doenças Cerebelares , Splicing de RNA , RNA de Transferência , Criança , Humanos , Doenças Cerebelares/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Splicing de RNA/fisiologia , RNA de Transferência/genética , RNA de Transferência/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012976

RESUMO

COVID-19 remains a stark health threat worldwide, in part because of minimal levels of targeted vaccination outside high-income countries and highly transmissible variants causing infection in vaccinated individuals. Decades of theoretical and experimental data suggest that nonspecific effects of non-COVID-19 vaccines may help bolster population immunological resilience to new pathogens. These routine vaccinations can stimulate heterologous cross-protective effects, which modulate nontargeted infections. For example, immunization with Bacillus Calmette-Guérin, inactivated influenza vaccine, oral polio vaccine, and other vaccines have been associated with some protection from SARS-CoV-2 infection and amelioration of COVID-19 disease. If heterologous vaccine interventions (HVIs) are to be seriously considered by policy makers as bridging or boosting interventions in pandemic settings to augment nonpharmaceutical interventions and specific vaccination efforts, evidence is needed to determine their optimal implementation. Using the COVID-19 International Modeling Consortium mathematical model, we show that logistically realistic HVIs with low (5 to 15%) effectiveness could have reduced COVID-19 cases, hospitalization, and mortality in the United States fall/winter 2020 wave. Similar to other mass drug administration campaigns (e.g., for malaria), HVI impact is highly dependent on both age targeting and intervention timing in relation to incidence, with maximal benefit accruing from implementation across the widest age cohort when the pandemic reproduction number is >1.0. Optimal HVI logistics therefore differ from optimal rollout parameters for specific COVID-19 immunizations. These results may be generalizable beyond COVID-19 and the US to indicate how even minimally effective heterologous immunization campaigns could reduce the burden of future viral pandemics.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Modelos Teóricos , SARS-CoV-2/imunologia , Estações do Ano , Vacinação/métodos , Algoritmos , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Mortalidade Hospitalar , Hospitalização/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Pandemias/prevenção & controle , Admissão do Paciente/estatística & dados numéricos , SARS-CoV-2/fisiologia , Taxa de Sobrevida , Estados Unidos/epidemiologia , Vacinação/estatística & dados numéricos
15.
Genes Dev ; 31(13): 1325-1338, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794185

RESUMO

Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix-loop-helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation-Tcf3 and Foxa2-and activating inducers Evx1, Grrp1, and Mesp1. Most importantly, CRISPR/Cas9-mediated ablation of the entire Id (Id1-4) family in mouse embryos leads to failure of anterior cardiac progenitor specification and the development of heartless embryos. Thus, Id proteins play a central and evolutionarily conserved role during heart formation and provide a novel means to efficiently produce cardiovascular progenitors for regenerative medicine and drug discovery applications.


Assuntos
Linhagem da Célula/genética , Coração/embriologia , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Organogênese/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Cardiopatias Congênitas/genética , Humanos , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Mutação , Sementes , Xenopus laevis/embriologia
16.
J Mol Cell Cardiol ; 192: 65-78, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761989

RESUMO

Endothelial dysfunction is a central contributor to the development of most cardiovascular diseases and is characterised by the reduced synthesis or bioavailability of the vasodilator nitric oxide together with other abnormalities such as inflammation, senescence, and oxidative stress. The use of patient-specific and genome-edited human pluripotent stem cell-derived endothelial cells (hPSC-ECs) has shed novel insights into the role of endothelial dysfunction in cardiovascular diseases with strong genetic components such as genetic cardiomyopathies and pulmonary arterial hypertension. However, their utility in studying complex multifactorial diseases such as atherosclerosis, metabolic syndrome and heart failure poses notable challenges. In this review, we provide an overview of the different methods used to generate and characterise hPSC-ECs before comprehensively assessing their effectiveness in cardiovascular disease modelling and high-throughput drug screening. Furthermore, we explore current obstacles that will need to be overcome to unleash the full potential of hPSC-ECs in facilitating patient-specific precision medicine. Addressing these challenges holds great promise in advancing our understanding of intricate cardiovascular diseases and in tailoring personalised therapeutic strategies.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Humanos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Células Endoteliais/metabolismo , Animais , Células-Tronco Pluripotentes/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia
17.
Pflugers Arch ; 476(6): 975-992, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38538988

RESUMO

Human-induced pluripotent stem cells (iPS cells) are efficiently differentiated into sensory neurons. These cells express the voltage-gated sodium channel NaV1.7, which is a validated pain target. NaV1.7 deficiency leads to pain insensitivity, whereas NaV1.7 gain-of-function mutants are associated with chronic pain. During differentiation, the sensory neurons start spontaneous action potential firing around day 22, with increasing firing rate until day 40. Here, we used CRISPR/Cas9 genome editing to generate a HA-tag NaV1.7 to follow its expression during differentiation. We used two protocols to generate sensory neurons: the classical small molecule approach and a directed differentiation methodology and assessed surface NaV1.7 expression by Airyscan high-resolution microscopy. Our results show that maturation of at least 49 days is necessary to observe robust NaV1.7 surface expression in both protocols. Electric activity of the sensory neurons precedes NaV1.7 surface expression. A clinically effective NaV1.7 blocker is still missing, and we expect this iPS cell model system to be useful for drug discovery and disease modeling.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Canal de Sódio Disparado por Voltagem NAV1.7 , Células Receptoras Sensoriais , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Sistemas CRISPR-Cas
18.
Am J Epidemiol ; 193(2): 339-347, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37715459

RESUMO

Transmissible infections such as those caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread according to who contacts whom. Therefore, many epidemic models incorporate contact patterns through contact matrices. Contact matrices can be generated from social contact survey data. However, the resulting matrices are often imbalanced, such that the total number of contacts reported by group A with group B do not match those reported by group B with group A. We examined the theoretical influence of imbalanced contact matrices on the estimated basic reproduction number (R0). We then explored how imbalanced matrices may bias model-based epidemic projections using an illustrative simulation model of SARS-CoV-2 with 2 age groups (<15 and ≥15 years). Models with imbalanced matrices underestimated the initial spread of SARS-CoV-2, had later time to peak incidence, and had smaller peak incidence. Imbalanced matrices also influenced cumulative infections observed per age group, as well as the estimated impact of an age-specific vaccination strategy. Stratified transmission models that do not consider contact balancing may generate biased projections of epidemic trajectory and the impact of targeted public health interventions. Therefore, modeling studies should implement and report methods used to balance contact matrices for stratified transmission models.


Assuntos
COVID-19 , Epidemias , Humanos , Adolescente , COVID-19/epidemiologia , SARS-CoV-2 , Simulação por Computador , Número Básico de Reprodução , Modelos Teóricos
19.
J Gene Med ; 26(2): e3677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380785

RESUMO

Rett syndrome (RTT) is a rare but dreadful X-linked genetic disease that mainly affects young girls. It is a neurological disease that affects nerve cell development and function, resulting in severe motor and intellectual disabilities. To date, no cure is available for treating this disease. In 90% of the cases, RTT is caused by a mutation in methyl-CpG-binding protein 2 (MECP2), a transcription factor involved in the repression and activation of transcription. MECP2 is known to regulate several target genes and is involved in different physiological functions. Mouse models exhibit a broad range of phenotypes in recapitulating human RTT symptoms; however, understanding the disease mechanisms remains incomplete, and many potential RTT treatments developed in mouse models have not shown translational effectiveness in human trials. Recent data hint that the zebrafish model emulates similar disrupted neurological functions following mutation of the mecp2 gene. This suggests that zebrafish can be used to understand the onset and progression of RTT pathophysiology and develop a possible cure. In this review, we elaborate on the molecular basis of RTT pathophysiology in humans and model organisms, including rodents and zebrafish, focusing on the zebrafish model to understand the molecular pathophysiology and the development of therapeutic strategies for RTT. Finally, we propose a rational treatment strategy, including antisense oligonucleotides, small interfering RNA technology and induced pluripotent stem cell-derived cell therapy.


Assuntos
Deficiência Intelectual , Síndrome de Rett , Camundongos , Animais , Feminino , Humanos , Síndrome de Rett/genética , Síndrome de Rett/terapia , Peixe-Zebra/genética , Regulação da Expressão Gênica , Mutação
20.
Biochem Biophys Res Commun ; 714: 149993, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663096

RESUMO

Sarcoidosis, a systemic inflammatory disease, poses challenges in understanding its etiology and variable clinical courses. Despite ongoing uncertainty about causative agents and genetic predisposition, granuloma formation remains its hallmark feature. To address this, we developed a validated in vitro human granuloma model using patient-derived peripheral blood mononuclear cells (PBMCs), offering a dynamic platform for studying early granuloma formation and sarcoidosis pathogenesis. However, a current limitation of this model is its dependence on freshly isolated PBMCs obtained from whole blood. While cryopreservation is a common method for long-term sample preservation, the biological effects of freezing and thawing PBMCs on granuloma formation remain unclear. This study aimed to assess the viability and functionality of cryopreserved sarcoidosis PBMCs within the granuloma model, revealing similar granulomatous responses to fresh cells and highlighting the potential of cryopreserved PBMCs as a valuable tool for studying sarcoidosis and related diseases.


Assuntos
Criopreservação , Granuloma , Leucócitos Mononucleares , Sarcoidose , Humanos , Sarcoidose/imunologia , Sarcoidose/patologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Granuloma/patologia , Granuloma/imunologia , Antígenos/imunologia , Sobrevivência Celular , Células Cultivadas , Masculino , Feminino , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA