Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Pflugers Arch ; 472(2): 195-216, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31955265

RESUMO

Exchange protein directly activated by cAMP (Epac) mediates cAMP-mediated cell signal independent of protein kinase A (PKA). Mice lacking Epac1 displayed metabolic defect suggesting possible functional involvement of skeletal muscle and exercise capacity. Epac1 was highly expressed, but not Epac 2, in the extensor digitorum longus (EDL) and soleus muscles. The exercise significantly increased protein expression of Epac 1 in EDL and soleus muscle of wild-type (WT) mice. A global proteomics and pathway analyses revealed that Epac 1 deficiency mainly affected "the energy production and utilization" process in the skeletal muscle. We have tested their forced treadmill exercise tolerance. Epac1-/- mice exhibited significantly reduced exercise capacity in the forced treadmill exercise and lower number of type 1 fibers than WT mice. The basal protein level of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) was reduced in the Epac1-/- mice. Furthermore, increasing expression of PGC-1α by exercise was also significantly attenuated in the skeletal muscle of Epac1-/- mice. The expressions of downstream target genes of PGC-1α, which involved in uptake and oxidation of fatty acids, ERRα and PPARδ, and fatty acid content were lower in muscles of Epac1-/-, suggesting a role of Epac1 in forced treadmill exercise capacity by regulating PGC-1α pathway and lipid metabolism in skeletal muscle. Taken together, Epac1 plays an important role in exercise capacity by regulating PGC-1α and fatty acid metabolism in the skeletal muscle.


Assuntos
Ácidos Graxos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Atividade Motora , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Estresse Fisiológico , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Esforço Físico
2.
Biomolecules ; 14(8)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39199373

RESUMO

Sulfonylureas (SUs) are a class of antidiabetic drugs widely used in the management of diabetes mellitus type 2. They promote insulin secretion by inhibiting the ATP-sensitive potassium channel in pancreatic ß-cells. Recently, the exchange protein directly activated by cAMP (Epac) was identified as a new class of target proteins of SUs that might contribute to their antidiabetic effect, through the activation of the Ras-like guanosine triphosphatase Rap1, which has been controversially discussed. We used human embryonic kidney (HEK) 293 cells expressing genetic constructs of various Förster resonance energy transfer (FRET)-based biosensors containing different versions of Epac1 and Epac2 isoforms, alone or fused to different phosphodiesterases (PDEs), to monitor SU-induced conformational changes in Epac or direct PDE inhibition in real time. We show that SUs can both induce conformational changes in the Epac2 protein but not in Epac1, and directly inhibit the PDE3 and PDE4 families, thereby increasing cAMP levels in the direct vicinity of these PDEs. Furthermore, we demonstrate that the binding site of SUs in Epac2 is distinct from that of cAMP and is located between the amino acids E443 and E460. Using biochemical assays, we could also show that tolbutamide can inhibit PDE activity through an allosteric mechanism. Therefore, the cAMP-elevating capacity due to allosteric PDE inhibition in addition to direct Epac activation may contribute to the therapeutic effects of SU drugs.


Assuntos
AMP Cíclico , Fatores de Troca do Nucleotídeo Guanina , Compostos de Sulfonilureia , Humanos , Compostos de Sulfonilureia/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/química , Hipoglicemiantes/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Sítios de Ligação , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo
3.
Braz J Otorhinolaryngol ; 89(3): 469-476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37116375

RESUMO

OBJECTIVE: To explore whether Cyclic Adenosine Monophosphate (cAMP)-Epac1 signaling is activated in 1-Desamino-8-D-arginine-Vasopressin-induced Endolymphatic Hydrops (DDAVP-induced EH) and to provide new insight for further in-depth study of DDAVP-induced EH. METHODS: Eighteen healthy, red-eyed guinea pigs (36 ears) weighing 200-350 g were randomly divided into three groups: the control group, which received intraperitoneal injection of sterile saline (same volume as that in the other two groups) for 7 consecutive days; the DDAVP-7d group, which received intraperitoneal injection of 10 mg/mL/kg DDAVP for 7 consecutive days; and the DDAVP-14d group, which received intraperitoneal injection of 10 µg/mL/kg DDAVP for 14 consecutive days. After successful modeling, all animals were sacrificed, and cochlea tissues were collected to detect the mRNA and protein expression of the exchange protein directly activated by cAMP-1 and 2 (Epac1, Epac2), and Repressor Activator Protein-1 (Rap1) by Reverse Transcription (RT)-PCR and western blotting, respectively. RESULTS: Compared to the control group, the relative mRNA expression of Epac1, Epac2, Rap1A, and Rap1B in the cochlea tissue of the DDAVP-7d group was significantly higher (p <  0.05), while no significant difference in Rap1 GTPase activating protein (Rap1gap) mRNA expression was found between the two groups. The relative mRNA expression of Epac1, Rap1A, Rap1B, and Rap1gap in the cochlea tissue of the DDAVP-14d group was significantly higher than that of the control group (p <  0.05), while no significant difference in Epac2 mRNA expression was found between the DDAVP-14d and control groups. Comparison between the DDAVP-14d and DDAVP-7d groups showed that the DDAVP-14d group had significantly lower Epac2 and Rap1A (p <  0.05) and higher Rap1gap (p < 0.05) mRNA expression in the cochlea tissue than that of the DDAVP-7d group, while no significant differences in Epac1 and Rap1B mRNA expression were found between the two groups. Western blotting showed that Epac1 protein expression in the cochlea tissue was the highest in the DDAVP-14d group, followed by that in the DDAVP-7d group, and was the lowest in the control group, showing significant differences between groups (p <  0.05); Rap1 protein expression in the cochlea tissue was the highest in the DDAVP-7d group, followed by the DDAVP-14d group, and was the lowest in the control group, showing significant differences between groups (p <  0.05); no significant differences in Epac2 protein expression in the cochlea tissue were found among the three groups. CONCLUSION: DDAVP upregulated Epac1 protein expression in the guinea pig cochlea, leading to activation of the inner ear cAMP-Epac1 signaling pathway. This may be an important mechanism by which DDAVP regulates endolymphatic metabolism to induce EH and affect inner ear function. OXFORD CENTRE FOR EVIDENCE-BASED MEDICINE 2011 LEVELS OF EVIDENCE: Level 5.


Assuntos
Orelha Interna , Hidropisia Endolinfática , Cobaias , Animais , Desamino Arginina Vasopressina/farmacologia , Transdução de Sinais , Hidropisia Endolinfática/induzido quimicamente , Cóclea
4.
Biochim Biophys Acta Bioenerg ; 1862(4): 148367, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33412125

RESUMO

The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.


Assuntos
Adenilil Ciclases/metabolismo , Citosol/metabolismo , Glicólise , NAD/metabolismo , Oxirredução , Fosforilação Oxidativa , Adenilil Ciclases/genética , Células Hep G2 , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , NAD/genética , Consumo de Oxigênio
5.
Acta Physiol (Oxf) ; 229(1): e13442, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943825

RESUMO

AIM: The cAMP-mediator Epac1 (RapGef3) has high renal expression. Preliminary observations revealed increased diuresis in Epac1-/- mice. We hypothesized that Epac1 could restrict diuresis by promoting transcellular collecting duct (CD) water and urea transport or by stabilizing CD paracellular junctions to reduce osmolyte loss from the renal papillary interstitium. METHODS: In Epac1-/- and Wt C57BL/6J mice, renal papillae, dissected from snap-frozen kidneys, were assayed for the content of key osmolytes. Cell junctions were analysed by transmission electron microscopy. Urea transport integrity was evaluated by urea loading with 40% protein diet, endogenous vasopressin production was manipulated by intragastric water loading and moderate dehydration and vasopressin type 2 receptors were stimulated selectively by i.p.-injected desmopressin (dDAVP). Glomerular filtration rate (GFR) was estimated as [14 C]inulin clearance. The glomerular filtration barrier was evaluated by urinary albumin excretion and microvascular leakage by the renal content of time-spaced intravenously injected 125 I- and 131 I-labelled albumin. RESULTS: Epac1-/- mice had increased diuresis and increased free water clearance under antidiuretic conditions. They had shorter and less dense CD tight junction (TJs) and attenuated corticomedullary osmotic gradient. Epac1-/- mice had no increased protein diet-induced urea-dependent osmotic diuresis, and expressed Wt levels of aquaporin-2 (AQP-2) and urea transporter A1/3 (UT-A1/3). Epac1-/- mice had no urinary albumin leakage and unaltered renal microvascular albumin extravasation. Their GFR was moderately increased, unless when treated with furosemide. CONCLUSION: Our results conform to the hypothesis that Epac1-dependent mechanisms protect against diabetes insipidus by maintaining renal papillary osmolarity and the integrity of CD TJs.


Assuntos
Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/fisiopatologia , Deleção de Genes , Fatores de Troca do Nucleotídeo Guanina/deficiência , Túbulos Renais Coletores/fisiopatologia , Osmose , Junções Íntimas/patologia , Animais , Diabetes Insípido Nefrogênico/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/patologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Braz. j. otorhinolaryngol. (Impr.) ; Braz. j. otorhinolaryngol. (Impr.);89(3): 469-476, May-June 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447713

RESUMO

Abstract Objective To explore whether Cyclic Adenosine Monophosphate (cAMP)-Epac1 signaling is activated in 1-Desamino-8-D-arginine-Vasopressin-induced Endolymphatic Hydrops (DDAVP-induced EH) and to provide new insight for further in-depth study of DDAVP-induced EH. Methods Eighteen healthy, red-eyed guinea pigs (36 ears) weighing 200-350 g were randomly divided into three groups: the control group, which received intraperitoneal injection of sterile saline (same volume as that in the other two groups) for 7 consecutive days; the DDAVP-7d group, which received intraperitoneal injection of 10 mg/mL/kg DDAVP for 7 consecutive days; and the DDAVP-14d group, which received intraperitoneal injection of 10 μg/mL/kg DDAVP for 14 consecutive days. After successful modeling, all animals were sacrificed, and cochlea tissues were collected to detect the mRNA and protein expression of the exchange protein directly activated by cAMP-1 and 2 (Epac1, Epac2), and Repressor Activator Protein-1 (Rap1) by Reverse Transcription (RT)-PCR and western blotting, respectively. Results Compared to the control group, the relative mRNA expression of Epac1, Epac2, Rap1A, and Rap1B in the cochlea tissue of the DDAVP-7d group was significantly higher (p< 0.05), while no significant difference in Rap1 GTPase activating protein (Rap1gap) mRNA expression was found between the two groups. The relative mRNA expression of Epac1, Rap1A, Rap1B, and Rap1gap in the cochlea tissue of the DDAVP-14d group was significantly higher than that of the control group (p< 0.05), while no significant difference in Epac2 mRNA expression was found between the DDAVP-14d and control groups. Comparison between the DDAVP-14d and DDAVP-7d groups showed that the DDAVP-14d group had significantly lower Epac2 and Rap1A (p< 0.05) and higher Rap1gap (p < 0.05) mRNA expression in the cochlea tissue than that of the DDAVP-7d group, while no significant differences in Epac1 and Rap1B mRNA expression were found between the two groups. Western blotting showed that Epac1 protein expression in the cochlea tissue was the highest in the DDAVP-14d group, followed by that in the DDAVP-7d group, and was the lowest in the control group, showing significant differences between groups (p< 0.05); Rap1 protein expression in the cochlea tissue was the highest in the DDAVP-7d group, followed by the DDAVP-14d group, and was the lowest in the control group, showing significant differences between groups (p< 0.05); no significant differences in Epac2 protein expression in the cochlea tissue were found among the three groups. Conclusion DDAVP upregulated Epac1 protein expression in the guinea pig cochlea, leading to activation of the inner ear cAMP-Epac1 signaling pathway. This may be an important mechanism by which DDAVP regulates endolymphatic metabolism to induce EH and affect inner ear function. Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence Level 5.

7.
J Mol Endocrinol ; 54(1): 17-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25378661

RESUMO

The proper production of the implantation-related factors, leukemia inhibitory factor (LIF), cyclooxygenase 2 (COX2, PTGS2), and prostaglandin E2 (PGE2) in the uterine glands is essential for embryo implantation and the establishment of endometrial receptivity. It has been shown that cAMP-mediated protein kinase A (PKA) signaling regulates the production of these factors. We have previously reported that exchange protein directly activated by cAMP 2 (EPAC2, RAPGEF4), another cAMP mediator, is involved in the differentiation of endometrial stromal cells through the regulation of the expression of calreticulin (CALR). To address whether EPAC2-CALR signaling is involved in the expression of implantation-related factors, we examined the effect of EPAC2 and CALR knockdown on their expression in cultured human endometrial glandular epithelial EM1 cells, treated with forskolin, an adenylyl cyclase activator, an EPAC-selective cAMP analog (8-(4-chlorophenylthio)-2'-O-methyl cAMP (CPT)), or a PKA-selective cAMP analog (N(6)-phenyl-cAMP (Phe)). In addition, the status of cell senescence was examined. EPAC2 knockdown suppressed the expression of CALR protein and mRNA in EM1 cells. Forskolin- or Phe-, but not CPT-, induced expression of LIF or PTGS2 and secretion of PGE2 was inhibited in EPAC2- or CALR-silenced EM1 cells. In addition, knockdown of EPAC2 or CALR increased senescence-associated beta galactosidase activity and expression of p21 but decreased expression of p53. These findings indicate that expression of CALR regulated by EPAC2 in endometrial glandular epithelial cells is critical for the expression of LIF and PTGS2-mediated production of PGE2 through cAMP signaling. Furthermore, EPAC2 and CALR could play a role in the maintenance of gland function.


Assuntos
Calbindina 2/metabolismo , Ciclo-Oxigenase 2/metabolismo , Endométrio/citologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Fator Inibidor de Leucemia/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/genética , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Fator Inibidor de Leucemia/genética
8.
Trends Endocrinol Metab ; 25(2): 60-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24231725

RESUMO

The pleiotropic second-messenger cAMP plays a crucial role in mediating the effects of various hormones on metabolism. The major intracellular functions of cAMP are transduced by protein kinase A (PKA) and by exchange proteins directly activated by cAMP (EPACs). The latter act as guanine-nucleotide exchange factors for the RAS-like small G proteins Rap1 and Rap2. Although the role of PKA in regulating energy balance has been extensively studied, the impact of EPACs remains relatively enigmatic. This review summarizes recent genetic and pharmacological studies concerning EPAC involvement in glucose homeostasis and energy balance via the regulation of leptin and insulin signaling pathways. In addition, the development of small-molecule EPAC-specific modulators and their therapeutic potential for the treatment of diabetes and obesity are discussed.


Assuntos
AMP Cíclico/fisiologia , Metabolismo Energético/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Homeostase/efeitos dos fármacos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Glucose/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Leptina/fisiologia , Modelos Animais , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA