Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cell Physiol Biochem ; 58(2): 172-181, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643508

RESUMO

BACKGROUND/AIMS: Extracellular acidic conditions impair cellular activities; however, some cancer cells drive cellular signaling to adapt to the acidic environment. It remains unclear how ovarian cancer cells sense changes in extracellular pH. This study was aimed at characterizing acid-inducible currents in an ovarian cancer cell line and evaluating the involvement of these currents in cell viability. METHODS: The biophysical and pharmacological properties of membrane currents in OV2944, a mouse ovarian cancer cell line, were studied using the whole-cell configuration of the patch-clamp technique. Viability of this cell type in acidic medium was evaluated using the MTT assay. RESULTS: OV2944 had significant acid-sensitive outwardly rectifying (ASOR) Cl- currents at a pH50 of 5.3. The ASOR current was blocked by pregnenolone sulfate (PS), a steroid ion channel modulator that blocks the ASOR channel as one of its targets. The viability of the cells was reduced after exposure to an acidic medium (pH 5.3) but was slightly restored upon PS administration. CONCLUSION: These results offer first evidence for the presence of ASOR Cl- channel in ovarian cancer cells and indicate its involvement in cell viability under acidic environment.


Assuntos
Sobrevivência Celular , Neoplasias Ovarianas , Pregnenolona , Animais , Feminino , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Pregnenolona/farmacologia , Concentração de Íons de Hidrogênio , Sobrevivência Celular/efeitos dos fármacos , Canais de Cloreto/metabolismo , Canais de Cloreto/antagonistas & inibidores , Técnicas de Patch-Clamp , Potenciais da Membrana/efeitos dos fármacos
2.
J Biochem Mol Toxicol ; 38(1): e23515, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37632267

RESUMO

Accumulation of advanced glycation end products (AGEs) causes apoptosis in human nucleus pulposus cells (NPCs), contributing to intervertebral disc degeneration (IVDD). The purpose of this study was to determine the roles of thioredoxin-interacting protein (TXNIP) in the mechanisms underlying AGE-induced apoptosis of NPCs. TXNIP was silenced or overexpressed in HNPCs exposed to AGEs. Glycolysis was assessed using extracellular acidification rate (ECAR), ATP level, GLUT1, and GLUT4 measurements. AGEs, TXNIP, GLUT1, and GLUT4 levels in IVDD patients were measured as well. In NPCs, AGEs reduced cell viability, induced apoptosis, inhibited glycolysis, and increased TXNIP expression. Silencing TXNIP compromised the effects of AGEs on cell viability, apoptosis, and glycolysis in NPCs. Furthermore, TXNIP overexpression resulted in decreased cell viability, increased apoptotic cells, and glycolysis suppression. Furthermore, co-treatment with a glycolysis inhibitor improved TXNIP silencing's suppressive effects on AGE-induced cell injury in NPCs. In IVDD patients with Pfirrmann Grades II-V, increasing trends in AGEs and TXNIP were observed, while decreasing trends in GLUT1 and GLUT4. AGE levels had positive correlations with TXNIP levels. Both AGE and TXNIP levels correlated negatively with GLUT1 and GLUT4. Our study indicates that TXNIP plays a role in mediating AGE-induced cell injury through suppressing glycolysis. The accumulation of AGEs, the upregulation of TXNIP, and the downregulation of GLUT1 and GLUT4 are all linked to the progression of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Apoptose , Produtos Finais de Glicação Avançada/metabolismo , Proteínas de Transporte/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396845

RESUMO

Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is related to risk factors such as viral hepatitis, alcohol intake, and non-alcoholic fatty liver disease (NAFLD). The constitutive activation of the PI3K/AKT signaling pathway is common in HCC and has essential involvement in tumor progression. The serine/threonine kinase AKT has several downstream substrates, which have been implicated in the regulation of cellular metabolism. However, the contribution of each of the three AKT isoforms, i.e., AKT1, AKT2 and AKT3, to HCC metabolism has not been comprehensively investigated. In this study, we analyzed the functional role of AKT1, AKT2 and AKT3 in HCC metabolism. The overexpression of activated AKT1, AKT2 and AKT3 isoforms in the human HCC cell lines Hep3B and Huh7 resulted in higher oxygen consumption rate (OCR), ATP production, maximal respiration and spare respiratory capacity in comparison to vector-transduced cells. Vice versa, lentiviral vector-mediated knockdowns of each AKT isoform reduced OCR in both cell lines. Reduced OCR rates observed in the three AKT isoform knockdowns were associated with reduced extracellular acidification rates (ECAR) and reduced lactate production in both analyzed cell lines. Mechanistically, the downregulation of OCR by AKT isoform knockdowns correlated with an increased phosphorylation of the pyruvate dehydrogenase on Ser232, which negatively regulates the activity of this crucial gatekeeper of mitochondrial respiration. In summary, our data indicate that each of the three AKT isoforms is able to upregulate OCR, ECAR and lactate production independently of each other in human HCC cells through the regulation of the pyruvate dehydrogenase.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Ácido Láctico/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Oxirredutases , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvatos
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731941

RESUMO

Micro- and nanoplastic particles, including common forms like polyethylene and polystyrene, have been identified as relevant pollutants, potentially causing health problems in living organisms. The mechanisms at the cellular level largely remain to be elucidated. This study aims to visualize nanoplastics in bronchial smooth muscle (BSMC) and small airway epithelial cells (SAEC), and to assess the impact on mitochondrial metabolism. Healthy and asthmatic human BSMC and SAEC in vitro cultures were stimulated with polystyrene nanoplastics (PS-NPs) of 25 or 50 nm size, for 1 or 24 h. Live cell, label-free imaging by holotomography microscopy and mitochondrial respiration and glycolysis assessment were performed. Furthermore, 25 and 50 nm NPs were shown to penetrate SAEC, along with healthy and diseased BSMC, and they impaired bioenergetics and induce mitochondrial dysfunction compared to cells not treated with NPs, including changes in oxygen consumption rate and extracellular acidification rate. NPs pose a serious threat to human health by penetrating airway tissues and cells, and affecting both oxidative and glycolytic metabolism.


Assuntos
Brônquios , Células Epiteliais , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Nanopartículas , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Células Cultivadas , Poliestirenos , Asma/metabolismo , Asma/patologia , Músculo Liso/metabolismo , Microplásticos/toxicidade , Consumo de Oxigênio/efeitos dos fármacos
5.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511316

RESUMO

Oxidative stress (OS)-induced mitochondrial damage is a risk factor for primary open-angle glaucoma (POAG). Mitochondria-targeted novel antioxidant therapies could unearth promising drug candidates for the management of POAG. Previously, our dual-acting hybrid molecule SA-2 with nitric oxide-donating and antioxidant activity reduced intraocular pressure and improved aqueous humor outflow in rodent eyes. Here, we examined the mechanistic role of SA-2 in trabecular meshwork (TM) cells in vitro and measured the activity of intracellular antioxidant enzymes during OS. Primary human TM cells isolated from normal (hNTM) or glaucomatous (hGTM) post-mortem donors and transformed glaucomatous TM cells (GTM-3) were used for in vitro assays. We examined the effect of SA-2 on oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in vitro using Seahorse Analyzer with or without the oxidant, tert-butyl hydroperoxide (TBHP) treatment. Concentrations of total antioxidant enzymes, catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GPx) were measured. We observed significant protection of both hNTM and hGTM cells from TBHP-induced cell death by SA-2. Antioxidant enzymes were elevated in SA-2-treated cells compared to TBHP-treated cells. In addition, SA-2 demonstrated an increase in mitochondrial metabolic parameters. Altogether, SA-2 protected both normal and glaucomatous TM cells from OS via increasing mitochondrial energy parameters and the activity of antioxidant enzymes.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Antioxidantes/metabolismo , Malha Trabecular/metabolismo , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Mitocôndrias/metabolismo
6.
Lung ; 200(5): 591-599, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35930050

RESUMO

PURPOSE: Extracellular acidification is a major component of tissue inflammation, including airway inflammation. The extracellular proton-sensing mechanisms are inherent in various cells including airway structural cells, although their physiological and pathophysiological roles in bronchial smooth muscles (BSMs) are not fully understood. In the present study, to explore the functional role of extracellular acidification on the BSM contraction, the isolated mouse BSMs were exposed to acidic pH under contractile stimulation. METHODS AND RESULTS: The RT-PCR analyses revealed that the proton-sensing G protein-coupled receptors were expressed both in mouse BSMs and cultured human BSM cells. In the mouse BSMs, change in the extracellular pH from 8.0 to 6.8 caused an augmentation of contraction induced by acetylcholine. Interestingly, the acidic pH-induced BSM hyper-contraction was further augmented in the mice that were sensitized and repeatedly challenged with ovalbumin antigen. In this animal model of asthma, upregulations of G protein-coupled receptor 68 (GPR68) and GPR65, that were believed to be coupled with Gq and Gs proteins respectively, were observed, indicating that the acidic pH could cause hyper-contraction probably via an activation of GPR68. However, psychosine, a putative antagonist for GPR68, failed to block the acidic pH-induced responses. CONCLUSION: These findings suggest that extracellular acidification contributes to the airway hyperresponsiveness, a characteristic feature of bronchial asthma. Further studies are required to identify the receptor(s) responsible for sensing extracellular protons in BSM cells.


Assuntos
Asma , Hiper-Reatividade Brônquica , Acetilcolina/efeitos adversos , Acetilcolina/metabolismo , Animais , Brônquios , Hiper-Reatividade Brônquica/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/metabolismo , Ovalbumina , Prótons , Psicosina/efeitos adversos , Psicosina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
J Pineal Res ; 70(3): e12728, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33650175

RESUMO

Melanoma is a leading cause of cancer deaths worldwide. Although immunotherapy has revolutionized the treatment for some patients, resistance towards therapy and unwanted side effects remain a problem for numerous individuals. Broad anti-cancer activities of melatonin are recognized; however, additional investigations still need to be elucidated. Herein, using various human melanoma cell models, we explore in vitro the new insights into the regulation of melanoma by melatonin and its metabolites which possess, on the other side, high safety profiles and biological meaningful. In this study, using melanotic (MNT-1) and amelanotic (A375, G361, Sk-Mel-28) melanoma cell lines, the comparative oncostatic responses, the impact on melanin content (for melanotic MNT-1 melanoma cells) as well as the mitochondrial function controlled by melatonin, its precursor (serotonin), a kynuric (N1 -acetyl-N2 -formyl-5-methoxykynuramine, AFMK) and indolic pathway (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) metabolites were assessed. Namely, significant disturbances were observed in bioenergetics as follows: (i) uncoupling of oxidative phosphorylation (OXPHOS), (ii) attenuation of glycolysis, (iii) dissipation of mitochondrial transmembrane potential (mtΔΨ) accompanied by (iv) massive generation of reactive oxygen species (ROS), and (v) decrease of glucose uptake. Collectively, these results together with previously published reports provide a new biological potential and make an imperative to consider using melatonin or its metabolites for complementary future treatments of melanoma-affected patients; however, these associations should be additionally investigated in clinical setting.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/metabolismo , Biotransformação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Melanoma/patologia , Melatonina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
8.
Exp Cell Res ; 386(1): 111713, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705846

RESUMO

Reprogrammed glucose metabolism is essential for tumor initiation and development, especially for pancreatic ductal adenocarcinoma (PDAC). Most cancer cells rely on aerobic glycolysis, a phenomenon termed "the Warburg effect", to support uncontrolled proliferation and evade apoptosis. However, the direct regulators of the Warburg effect remain areas of active investigation. In this study, we found that the highly conserved transcription factor, TWIST1, is a crucial regulator of aerobic glycolysis in PDAC. Genetic silencing of TWIST1 significantly inhibited the glycolytic phenotypes of PDAC cells as revealed by reduced glucose uptake, lactate production, and extracellular acidification rate, which can be restored by re-expression of siRNA-resistant TWIST1. Moreover, tamoxifen-inducible expression of TWIST1 promoted the Warburg metabolism of PDAC cells. Mechanistically, by luciferase reporter assay and chromatin immunoprecipitation experiment, we showed that TWIST1 can directly increase the expression of several glycolytic genes, including SLC2A1, HK2, ENO1, and PKM2. Of note, the transcriptional regulation by TWIST1 was not dependent on HIF1α or c-Myc. In The Cancer Genome Atlas and Gene Expression Omnibus accession GSE15471, we confirmed that TWIST1 was closely associated with the glycolysis pathway. Collectively, our findings indicate that TWIST1 is likely to act as important regulator of the Warburg effect in PDAC.


Assuntos
Adenocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise , Proteínas Nucleares/genética , Neoplasias Pancreáticas/metabolismo , Proteína 1 Relacionada a Twist/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
9.
Cell Physiol Biochem ; 54(5): 853-874, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32901466

RESUMO

BACKGROUND/AIMS: The role of VDAC1, the most abundant mitochondrial outer membrane protein, in cell death depends on cell types and stimuli. Both silencing and upregulation of VDAC1 in various type of cancer cell lines can stimulate apoptosis. In contrast, in mouse embryonic stem (MES) cells and mouse embryonic fibroblasts (MEFs), the roles of VDAC1 knockout (VDAC1-/-) in apoptotic cell death are contradictory. The contribution and underlying mechanism of VDAC1-/- in oxidative stress-induced cell death in cardiac cells has not been established. We hypothesized that VDAC1 is an essential regulator of oxidative stress-induced cell death in H9c2 cells. METHODS: We knocked out VDAC1 in this rat cardiomyoblast cell line with CRISPR-Cas9 genome editing technique to produce VDAC1-/- H9c2 cells, and determined if VDAC1 is critical in promoting cell death via oxidative stress induced by tert-butylhydroperoxide (tBHP), an organic peroxide, or rotenone (ROT), an inhibitor of mitochondrial complex I by measuring cell viability with MTT assay, cell death with TUNEL stain and LDH release. The mitochondrial and glycolytic stress were examined by measuring O2 consumption rate (OCR) and extracellular acidification rate (ECAR) with a Seahorse XFp analyzer. RESULTS: We found that under control conditions, VDAC1-/- did not affect H9c2 cell proliferation or mitochondrial respiration. However, compared to the wildtype (WT) cells, exposure to either tBHP or ROT enhanced the production of ROS, ECAR, and the proton (H+) production rate (PPR) from glycolysis, as well as promoted apoptotic cell death in VDAC1-/- H9c2 cells. VDAC1-/- H9c2 cells also exhibited markedly reduced mitochondria-bound hexokinase II (HKII) and Bax. Restoration of VDAC1 in VDAC1-/- H9c2 cells reinstated mitochondria-bound HKII and concomitantly decreased tBHP and ROT-induced ROS production and cell death. Interestingly, mitochondrial respiration remained the same after tBHP treatment in VDAC1-/- and WT H9c2 cells. CONCLUSION: Our results suggest that VDAC1-/- in H9c2 cells enhances oxidative stress-mediated cell apoptosis that is directly linked to the reduction of mitochondria-bound HKII and concomitantly associated with enhanced ROS production, ECAR, and PPR.


Assuntos
Apoptose/fisiologia , Hexoquinase/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/imunologia , Técnicas de Inativação de Genes , Glicólise , Mitocôndrias/enzimologia , Membranas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Transdução de Sinais , Canal de Ânion 1 Dependente de Voltagem/genética , terc-Butil Hidroperóxido/farmacologia
10.
Biochem Biophys Res Commun ; 526(4): 920-926, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32279993

RESUMO

Ovarian cancer G protein-coupled receptor 1 (OGR1), also known as GPR68, is a proton-sensing G protein-coupled receptor (GPCR) coupling to Gq/11/phospholipase C/Ca2+ signaling pathways. The specific histidine residues at the extracellular surface of OGR1 are suggested to be involved in the proton sensing. Later, some metal ions, including nickel ion (Ni2+), are also indicated to be OGR1 ligands. OGR1 polymorphic variants have recently been found in three families with amelogenesis imperfecta, which suggested that OGR1 is required for the process of dental enamel formation. One of these families possesses a missense mutation from leucine to proline at 74 (L74P) of OGR1. In the present study, we characterized HEK293 cells with L74P OGR1 (L74P-OGR1) and hemagglutinin (HA)-tag, as compared with cells with wild-type OGR1 (WT-OGR1) and HA-tag. We found that either acidic pH or NiCl2 induced intracellular Ca2+ mobilization and morphological change in WT-OGR1-transfected cells; however, the extracellular stimulus-induced actions were severely damaged in L74P-OGR1-transfected cells. We further confirmed that either WT-OGR1 or L74P-OGR1 is localized mainly in the surface of the cells, but only WT-OGR1 is internalized in response to acidification or NiCl2. Thus, the L74P-OGR1 protein may be distributed in the plasma membranes but severely damaged in the receptor functions. We speculate that L74P in the second transmembrane domain in OGR1 may result in conformational changes in the receptor, thereby disturbing the sensing extracellular signals, i.e., protons or metal ions, and/or transducing them to the intracellular signaling machinery through G proteins.


Assuntos
Amelogênese Imperfeita/genética , Amelogênese Imperfeita/metabolismo , Mutação de Sentido Incorreto/genética , Receptores Acoplados a Proteínas G/genética , Sinalização do Cálcio , Forma Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Lisofosfolipídeos/farmacologia , Níquel/toxicidade , Estrutura Secundária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
11.
J Reprod Dev ; 66(2): 175-180, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31956173

RESUMO

Hormone-secreting pituitary adenomas show unregulated hormonal hypersecretion and cause hyperpituitarism. However, the mechanism of the unregulated hormone production and secretion has not yet been fully elucidated. Solid tumors show reduced extracellular pH, partly due to lactate secretion from anaerobic glycolysis. It is known that extracellular acidification affects hormone secretion. However, whether and how the extracellular acidification influences the unregulated hormone production and secretion remain unknown. In the present study, we found that GPR4, a proton-sensing G protein-coupled receptor, was highly expressed in MtT/S cells, a growth hormone-producing and prolactin-producing pituitary tumor cell line. When we reduced the extracellular pH, growth hormone and prolactin mRNA expressions increased in the cells. Both increased expressions were partially suppressed by a GPR4 antagonist. We also found that extracellular acidification enhanced growth hormone-releasing factor-induced growth hormone secretion from MtT/S cells. These results suggest that GPR4 may play a role in hypersecretion of the hormone from hormone-producing pituitary tumors. A GPR4 antagonist will be a useful tool for preventing the hypersecretion.


Assuntos
Hormônio do Crescimento/metabolismo , Hipófise/metabolismo , Prolactina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular Tumoral , Hormônio do Crescimento/genética , Concentração de Íons de Hidrogênio , Camundongos , Prolactina/genética , Ratos , Receptores Acoplados a Proteínas G/genética
12.
J Cell Physiol ; 234(9): 16178-16190, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30786006

RESUMO

Ovarian cancer resistance to available medicines is a huge challenge in dire need of a solution, which makes its recurrence and mortality rate further exacerbated. A promising approach to overcome chemoresistance is drug screening from natural products. Here, we report that NK007, a (±)-tylophorine malate isolated from the Asclepiadaceae family, selectively inhibited the proliferation of A2780 and A2780 (Taxol) cells and migration of paclitaxel-sensitive and -resistant ovarian cancer cells. Interestingly, the decline of cell viability, including cell multiplication, clonality, and migration capacity was independent on cell apoptosis. At the molecular level, NK007 considerably induced G1/S arrest and upregulated the expression of phospho-p38 mitogen-activated protein kinase (p-p38MAPK). In addition, hexokinase 2 (HK2) protein degradation was considerably elevated in the presence of NK007, which resulted in the reduction of oxygen consumption rate and extracellular acidification rate. Altogether, our results indicate that NK007, an analog of tylophorine, can overcome paclitaxel (PTX) resistance through p38MAPK activation and HK2 degradation. As an effective, alternative antiresistance agent, NK007 exhibits a promising potential to treat PTX-resistant ovarian cancer.

13.
J Cell Biochem ; 120(3): 3853-3860, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30321450

RESUMO

Forkhead box class O6 (FOXO6) is an important member of FOXO family, which has been demonstrated to be implicated in tumor development. However, the role of FOXO6 in colorectal cancer (CRC) is still unclear. The study aimed to investigate the potential roles of FOXO6 in the development of CRC. Our results showed that FOXO6 was overexpressed in CRC tissues and cell lines. FOXO6 knockdown inhibited cell proliferation, as well as repressed the migration and invasion of CRC cells. Additionally, we found that FOXO6 knockdown altered cellular metabolism by inhibiting glycolysis and promoting mitochondrial respiration. Furthermore, FOXO6 knockdown inhibited the activation of PI3K/Akt/mTOR pathway in CRC cells. The results herein indicated that FOXO6 knockdown inhibited cell proliferation, migration, invasion, and glycolysis in CRC cells. PI3K/Akt/mTOR pathway was involved in the effects of FOXO6 on CRC cells. These findings suggested that FOXO6 might be a potential target for the CRC therapy.


Assuntos
Neoplasias Colorretais/genética , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , Células CACO-2 , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Glicólise/genética , Células HCT116 , Células HT29 , Humanos , Invasividade Neoplásica , Oligomicinas/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
14.
Biochem Biophys Res Commun ; 517(4): 636-641, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400852

RESUMO

Extracellular acidification regulates endocrine cell functions. Ovarian cancer G protein-coupled receptor 1 (OGR1), also known as GPR68, is a proton-sensing G protein-coupled receptor and is activated by extracellular acidification, resulting in the activation of multiple intracellular signaling pathways. In the present study, we found that OGR1 was expressed in some gonadotropic cells in rat anterior pituitary and in LßΤ2 cells, which are used as a model of gonadotropic cells. When we reduced extracellular pH, a transient intracellular Ca2+ increase was detected in LßT2 cells. The Ca2+ increase was inhibited by a Gq/11 inhibitor and Cu2+, which is known as an OGR1 antagonist. We also found that extracellular acidification enhanced GnRH-induced Gaussia luciferase secretion from LßT2 cells. These results suggest that OGR1 may play a role in the regulation of gonadotropic cell function such as its hormone secretion.


Assuntos
Ácidos/metabolismo , Cálcio/metabolismo , Espaço Extracelular/metabolismo , Espaço Intracelular/metabolismo , Animais , Células Cultivadas , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Luciferases/metabolismo , Hormônio Luteinizante/metabolismo , Adeno-Hipófise/citologia , Ratos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Tempo
15.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950419

RESUMO

The flexible regulation of cellular metabolic pathways enables cellular adaptation to changes in energy demand under conditions of stress such as posed by a virus infection. To analyze such an impact on cellular metabolism, rubella virus (RV) was used in this study. RV replication under selected substrate supplementation with glucose, pyruvate, and glutamine as essential nutrients for mammalian cells revealed its requirement for glutamine. The assessment of the mitochondrial respiratory (based on the oxygen consumption rate) and glycolytic (based on the extracellular acidification rate) rate and capacity by respective stress tests through Seahorse technology enabled determination of the bioenergetic phenotype of RV-infected cells. Irrespective of the cellular metabolic background, RV infection induced a shift of the bioenergetic state of epithelial cells (Vero and A549) and human umbilical vein endothelial cells to a higher oxidative and glycolytic level. Interestingly there was a RV strain-specific, but genotype-independent demand for glutamine to induce a significant increase in metabolic activity. While glutaminolysis appeared to be rather negligible for RV replication, glutamine could serve as donor of its amide nitrogen in biosynthesis pathways for important metabolites. This study suggests that the capacity of RVs to induce metabolic alterations could evolve differently during natural infection. Thus, changes in cellular bioenergetics represent an important component of virus-host interactions and could complement our understanding of the viral preference for a distinct host cell population.IMPORTANCE RV pathologies, especially during embryonal development, could be connected with its impact on mitochondrial metabolism. With bioenergetic phenotyping we pursued a rather novel approach in virology. For the first time it was shown that a virus infection could shift the bioenergetics of its infected host cell to a higher energetic state. Notably, the capacity to induce such alterations varied among different RV isolates. Thus, our data add viral adaptation of cellular metabolic activity to its specific needs as a novel aspect to virus-host evolution. In addition, this study emphasizes the implementation of different viral strains in the study of virus-host interactions and the use of bioenergetic phenotyping of infected cells as a biomarker for virus-induced pathological alterations.


Assuntos
Metabolismo Energético , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Vírus da Rubéola/metabolismo , Células A549 , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Glucose/metabolismo , Glucose/farmacologia , Glutamina/farmacologia , Homeostase , Humanos , Cinurenina/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/metabolismo , Nucleotídeos/biossíntese , Oxirredução , Estresse Oxidativo , Consumo de Oxigênio/efeitos dos fármacos , Fenótipo , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacologia , Replicação Viral/efeitos dos fármacos
16.
Sensors (Basel) ; 19(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671716

RESUMO

Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.


Assuntos
Bactérias/metabolismo , Técnicas Biossensoriais , Luz , Potenciometria , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Calibragem , Contagem de Colônia Microbiana , Eletrodos , Glucose/farmacologia
17.
Br J Nutr ; 119(2): 163-175, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29249211

RESUMO

Cell membrane fatty acids influence fundamental properties of the plasma membrane, including membrane fluidity, protein functionality, and lipid raft signalling. Evidence suggests that dietary n-3 PUFA may target the plasma membrane of immune cells by altering plasma membrane lipid dynamics, thereby regulating the attenuation of immune cell activation and suppression of inflammation. As lipid-based immunotherapy might be a promising new clinical strategy for the treatment of inflammatory disorders, we conducted in vitro and in vivo experiments to examine the effects of n-3 PUFA on CD4+ T cell membrane order, mitochondrial bioenergetics and lymphoproliferation. n-3 PUFA were incorporated into human primary CD4+ T cells phospholipids in vitro in a dose-dependent manner, resulting in a reduction in whole cell membrane order, oxidative phosphorylation and proliferation. At higher doses, n-3 PUFA induced unique phase separation in T cell-derived giant plasma membrane vesicles. Similarly, in a short-term human pilot study, supplementation of fish oil (4 g n-3 PUFA/d) for 6 weeks in healthy subjects significantly elevated EPA (20 : 5n-3) levels in CD4+ T cell membrane phospholipids, and reduced membrane lipid order. These results demonstrate that the dynamic reshaping of human CD4+ T cell plasma membrane organisation by n-3 PUFA may modulate down-stream clonal expansion.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/ultraestrutura , Membrana Celular/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Idoso , Idoso de 80 Anos ou mais , Membrana Celular/química , Membrana Celular/fisiologia , Gorduras na Dieta/administração & dosagem , Suplementos Nutricionais , Ácido Eicosapentaenoico/sangue , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/sangue , Feminino , Óleos de Peixe/administração & dosagem , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Lipídeos de Membrana/sangue , Lipídeos de Membrana/química , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfolipídeos/sangue , Fosfolipídeos/química , Projetos Piloto
18.
J Dairy Sci ; 101(6): 4853-4863, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550120

RESUMO

Previous studies have demonstrated that the anti-tumor α-lactalbumin-oleic acid complex (α-LA-OA) may target the glycolysis of tumor cells. However, few data are available regarding the effects of α-LA-OA on energy metabolism. In this study, we measured glycolysis and mitochondrial functions in HeLa cells in response to α-LA-OA using the XF flux analyzer (Seahorse Bioscience, North Billerica, MA). The gene expression of enzymes involved in glycolysis, tricarboxylic acid cycle, electron transfer chain, and ATP synthesis were also evaluated. Our results show that α-LA-OA significantly enhanced the basal glycolysis and glycolytic capacity. Mitochondrial oxidative phosphorylation, including the basal respiration, maximal respiration, spare respiratory capacity and ATP production were also improved in response to α-LA-OA. The enhanced mitochondrial functions maybe partly due to the increased capacity of utilizing fatty acids and glutamine as the substrate. However, the gene expressions of pyruvate kinase M2, lactate dehydrogenase A, aconitate hydratase, and isocitrate dehydrogenase 1 were inhibited, suggesting an insufficient ability for the glycolysis process and the tricarboxylic acid cycle. The increased expression of acetyl-coenzyme A acyltransferase 2, a central enzyme involved in the ß-oxidation of fatty acids, would enhance the unbalance due to the decreased expression of electron transfer flavoprotein ß subunit, which acts as the electron acceptor. These results indicated that α-LA-OA may induce oxidative stress due to conditions in which the ATP production is exceeding the energy demand. Our results may help clarify the mechanism of apoptosis induced by reactive oxygen species and mitochondrial destruction.


Assuntos
Metabolismo Energético , Lactalbumina/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Ácido Oleico/metabolismo , Aconitato Hidratase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Glicólise , Células HeLa , Humanos , Isocitrato Desidrogenase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Fosforilação Oxidativa , Piruvato Quinase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Sensors (Basel) ; 18(2)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438275

RESUMO

In this study, we developed fluorescent dual pH and oxygen sensors loaded in multi-well plates for in-situ and high-throughput monitoring of oxygen respiration and extracellular acidification during microbial cell growth for understanding metabolism. Biocompatible PHEMA-co-PAM materials were used as the hydrogel matrix. A polymerizable oxygen probe (OS2) derived from PtTFPP and a polymerizable pH probe (S2) derived from fluorescein were chemically conjugated into the matrix to solve the problem of the probe leaching from the matrix. Gels were allowed to cure directly on the bottom of 96-well plates at room-temperature via redox polymerization. The influence of matrix's composition on the sensing behaviors was investigated to optimize hydrogels with enough robustness for repeatable use with good sensitivity. Responses of the dual sensing hydrogels to dissolved oxygen (DO) and pH were studied. These dual oxygen-pH sensing plates were successfully used for microbial cell-based screening assays, which are based on the measurement of fluorescence intensity changes induced by cellular oxygen consumption and pH changes during microbial growth. This method may provide a real-time monitoring of cellular respiration, acidification, and a rapid kinetic assessment of multiple samples for cell viability as well as high-throughput drug screening. All of these assays can be carried out by a conventional plate reader.


Assuntos
Oxigênio/análise , Hidrogel de Polietilenoglicol-Dimetacrilato , Hidrogéis , Concentração de Íons de Hidrogênio , Consumo de Oxigênio , Espectrometria de Fluorescência
20.
Tumour Biol ; 39(2): 1010428317694314, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28240052

RESUMO

Paclitaxel (Tx) is one of the first-line chemotherapeutic drugs used against lung cancer, but acquired resistance to this drug is a major challenge against successful chemotherapy. In this work, we have focused on the chronological changes of various cellular parameters and associated effect on Tx (10 nM) resistance development in A549 cell line. It was observed, at initial stage, the cell death percentage due to drug treatment had increased up to 20 days, and thereafter, it started declining and became completely resistant by 40 days. Expressions of ßIII tubulin and drug efflux pumps also increased over the period of resistance development. Changes in cellular autophagy and reactive oxygen species generation showed a biphasic pattern and increased gradually over the course of upto 20 days, thereafter declined gradually; however, their levels remained higher than untreated cells when resistance was acquired. Increase in extracellular acidification rates and oxygen consumption rates was found to be directly correlated with acquisition of resistance. The depolarisation of mitochondrial membrane potential was also biphasic; first, it increased with increase of cell death up to 20 days, thereafter, it gradually decreased to normal level along with resistance development. Increase in activity of catalase, glutathione peroxidase and glutathione content over these periods may attribute in bringing down the reactive oxygen species levels and normalisation of mitochondrial membrane potential in spite of comparatively higher reactive oxygen species production by the Tx-resistant cells.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Paclitaxel/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Antineoplásicos Fitogênicos/farmacologia , Autofagia , Caspase 3/metabolismo , Ciclo Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético , Humanos , Neoplasias Pulmonares/patologia , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA