Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
J Clin Microbiol ; 62(1): e0116123, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38112529

RESUMO

Candida parapsilosis is a common cause of non-albicans candidemia. It can be transmitted in healthcare settings resulting in serious healthcare-associated infections and can develop drug resistance to commonly used antifungal agents. Following a significant increase in the percentage of fluconazole (FLU)-nonsusceptible isolates from sterile site specimens of patients in two Ontario acute care hospital networks, we used whole genome sequence (WGS) analysis to retrospectively investigate the genetic relatedness of isolates and to assess potential in-hospital spread. Phylogenomic analysis was conducted on all 19 FLU-resistant and seven susceptible-dose dependent (SDD) isolates from the two hospital networks, as well as 13 FLU susceptible C. parapsilosis isolates from the same facilities and 20 isolates from patients not related to the investigation. Twenty-five of 26 FLU-nonsusceptible isolates (resistant or SDD) and two susceptible isolates from the two hospital networks formed a phylogenomic cluster that was highly similar genetically and distinct from other isolates. The results suggest the presence of a persistent strain of FLU-nonsusceptible C. parapsilosis causing infections over a 5.5-year period. Results from WGS were largely comparable to microsatellite typing. Twenty-seven of 28 cluster isolates had a K143R substitution in lanosterol 14-α-demethylase (ERG11) associated with azole resistance. As the first report of a healthcare-associated outbreak of FLU-nonsusceptible C. parapsilosis in Canada, this study underscores the importance of monitoring local antimicrobial resistance trends and demonstrates the value of WGS analysis to detect and characterize clusters and outbreaks. Timely access to genomic epidemiological information can inform targeted infection control measures.


Assuntos
Candida parapsilosis , Fluconazol , Humanos , Fluconazol/farmacologia , Estudos Retrospectivos , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Genômica , Hospitais , Ontário
2.
Int Microbiol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940863

RESUMO

BACKGROUND: Candida auris (C. auris) is an emerging aggressive pathogen that causes severe infections in critically ill patients. Therefore, the assessment of this pathogen, characterized by inclination for biofilm formation, elevated colonization rate, and resistance to multiple drugs, holds a paramount importance. There is no data regarding the isolation of C. auris in our tertiary care hospitals' intensive care units (ICUs). The current case study was arranged to assess the incidence of C. auris central line-associated bloodstream infection (CLABSI) problem in our (ICUs). METHODS: Specimens of central venous catheter blood, peripheral blood, and catheter tips were collected from 301 critically ill patients with suspected (CLABSI). Microbiological cultures were utilized to diagnose bacterial and fungal superinfections. The fungal species identification and antifungal susceptibility testing were conducted using the Brilliance Chrome agar, VITEK® 2 compact system, and MALDI-TOF MS. RESULTS: All included specimens (100%) yielded significant growth. Only 14 specimens (4.7%) showed fungal growth in the form of different Candida species. When comparing the identification of C. auris, MALDI-TOF MS is considered the most reliable method. Brilliance CHROMagar demonstrated a sensitivity of 100%, whereas VITEK only showed a sensitivity of approximately 33%. All recovered isolates of C. auris were fluconazole resistant. CONCLUSION: C. auris is a highly resistant emerging pathogen in our ICUs that is often overlooked in identification using conventional methods.

3.
Mycoses ; 67(8): e13776, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086009

RESUMO

OBJECTIVES: The investigation of Candida auris outbreaks is needed to provide insights into its population structure and transmission dynamics. We genotypically and phenotypically characterised a C. auris nosocomial outbreak occurred in Consorcio Hospital General Universitario de Valencia (CHGUV), Spain. METHODS: Data and isolates were collected from CHGUV from September 2017 (first case) until September 2021. Thirty-five isolates, including one from an environmental source, were randomly selected for whole genome sequencing (WGS), and the genomes were analysed along with a database with 335 publicly available genomes, assigning them to one of the five major clades. In order to identify polymorphisms associated with drug resistance, we used the fully susceptible GCA_003014415.1 strain as reference sequence. Known mutations in genes ERG11 and FKS1 conferring resistance to fluconazole and echinocandins, respectively, were investigated. Isolates were classified into aggregating or non-aggregating. RESULTS: All isolates belonged to clade III and were from an outbreak with a single origin. They clustered close to three publicly available genomes from a hospital from where the first patient was transferred, being the probable origin. The mutation VF125AL in the ERG11 gene, conferring resistance to fluconazole, was present in all the isolates and one isolate also carried the mutation S639Y in the FKS1 gene. All the isolates had a non-aggregating phenotype (potentially more virulent). CONCLUSIONS: Isolates are genotypically related and phenotypically identical but one with resistance to echinocandins, which seems to indicate that they all belong to an outbreak originated from a single isolate, remaining largely invariable over the years. This result stresses the importance of implementing infection control practices as soon as the first case is detected or when a patient is transferred from a setting with known cases.


Assuntos
Antifúngicos , Candida auris , Candidíase , Infecção Hospitalar , Surtos de Doenças , Farmacorresistência Fúngica , Genótipo , Fenótipo , Sequenciamento Completo do Genoma , Humanos , Espanha/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Candidíase/microbiologia , Candidíase/epidemiologia , Antifúngicos/farmacologia , Candida auris/genética , Candida auris/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Mutação , Masculino , Fluconazol/farmacologia , Feminino , Equinocandinas/farmacologia , Pessoa de Meia-Idade , Candida/genética , Candida/efeitos dos fármacos , Candida/classificação , Candida/isolamento & purificação
4.
Mycoses ; 67(3): e13706, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438313

RESUMO

BACKGROUND: Fluconazole-resistant Candida parapsilosis is a matter of concern. OBJECTIVES: To describe fluconazole-resistant C. parapsilosis genotypes circulating across hospitals in Spain and Rome and to study their azole-resistance profile associated with ERG11p substitutions. PATIENTS/METHODS: We selected fluconazole-resistant C. parapsilosis isolates (n = 528 from 2019 to 2023; MIC ≥8 mg/L according to EUCAST) from patients admitted to 13 hospitals located in five Spanish cities and Rome. Additionally, we tested voriconazole, posaconazole, isavuconazole, amphotericin B, micafungin, anidulafungin and ibrexafungerp susceptibility. RESULTS: Of the 53 genotypes found, 49 harboured the Y132F substitution, five of which were dominating city-specific genotypes involving almost half the isolates. Another genotype involved isolates harbouring the G458S substitution. Finally, we found two genotypes with the wild-type ERG11 gene sequence and one with the R398I substitution. All isolates were fully susceptible/wild-type to amphotericin B, anidulafungin, micafungin and ibrexafungerp. The azole-resistance patterns found were: voriconazole-resistant (74.1%) or voriconazole-intermediate (25.2%), posaconazole-resistant (10%) and isavuconazole non-wild-type (47.5%). Fluconazole-resistant and voriconazole non-wild-type isolates were likely to harbour substitution Y132F if posaconazole was wild type; however, if posaconazole was non-wild type, substitution G458S was indicated if isavuconazole MIC was >0.125 mg/L or substitution Y132F if isavuconazole MIC was ≤0.125 mg/L. CONCLUSIONS: We detected a recent clonal spread of fluconazole-resistant C. parapsilosis across some cities in Spain, mostly driven by dominating city-specific genotypes, which involved a large number of isolates harbouring the Y132F ERG11p substitution. Isolates harbouring substitution Y132F can be suspected because they are non-susceptible to voriconazole and rarely posaconazole-resistant.


Assuntos
Azóis , Fluconazol , Glicosídeos , Nitrilas , Piridinas , Triazóis , Triterpenos , Humanos , Azóis/farmacologia , Fluconazol/farmacologia , Candida parapsilosis/genética , Cidades , Voriconazol/farmacologia , Anfotericina B , Anidulafungina , Micafungina , Itália , Hospitais , Genótipo
5.
Antimicrob Agents Chemother ; 67(3): e0113022, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36853002

RESUMO

We report the first identification of a fluconazole-resistant Candida parapsilosis (FR-Cp) strain in our hospital, which subsequently caused an outbreak involving 17 patients (12 deaths) within a 26-bed French intensive care unit. Microsatellite genotyping confirmed that all FR-Cp isolates belonged to the same clone. Given recent reports of rapid dissemination of these emerging clones, routine testing of azole susceptibility for all Candida parapsilosis isolates should be encouraged, at least in ICU patients.


Assuntos
Candida parapsilosis , Fluconazol , Humanos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida parapsilosis/genética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Unidades de Terapia Intensiva , Surtos de Doenças , Hospitais
6.
Med Mycol ; 61(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496203

RESUMO

The RNAi machinery has been extensively studied in plant and animal cells for their crucial roles in the regulation of genome function. However, the potential roles of RNAi in controlling fungal growth and development have been poorly studied, especially in the basidiomycetous yeast Cryptococcus deneoformans. To characterize the biological functions of RNAi in the pathogenic fungus, a comparative analysis of mRNA profiles using high-throughput sequencing technology was performed for the wild type and the RNAi mutants of C. deneoformans. The results revealed a clear difference in the expression of genes associated with metabolic processes in the RNAi mutants. Besides, the growth under nutrient-limited conditions was significantly reduced in the ago2Δ mutant, suggesting the essential roles of Ago2 in nutrient metabolism. Further investigations revealed the differentially expressed transporters in the RNAi mutants, in which transporters involved in fluconazole efflux were significantly up-regulated. More importantly, on account of the upregulated transporters, RNAi mutant strains developed resistance to fluconazole. By disrupting AFR1 gene using the 'suicide' CRISPR-Cas9 system, we verified that the upregulated ABC transporter Afr1 in the RNAi mutants contributed to the fluconazole resistance. In summary, our data demonstrate that in C. deneoformans the RNAi pathway participates in nutrient metabolism and plays a role in the repression of fluconazole resistance, which provides a deep insight into RNAi mechanisms in Cryptococcus and brings great hints for the clinical treatment of cryptococcosis.


Transcriptome sequencing reveals biological functions of RNAi in C. deneoformans. Nutritional metabolism is deficient due to the AGO2 disruption. RNAi mechanism inhibits fluconazole resistance by regulating the expression of transporters.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Fluconazol/uso terapêutico , Cryptococcus neoformans/genética , Interferência de RNA , Criptococose/microbiologia , Criptococose/veterinária , Proteínas de Membrana Transportadoras/genética , Antifúngicos/uso terapêutico
7.
Med Mycol ; 61(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37777835

RESUMO

Candida tropicalis, a human conditionally pathogenic yeast, is distributed globally, especially in Asia-Pacific. The increasing morbidity and azole resistance of C. tropicalis have made clinical treatment difficult. The correlation between clonality and antifungal susceptibility of clinical C. tropicalis isolates has been reported. To study the putative correlation in C. tropicalis isolated from normally sterile body fluid specimens and explore the distinct clonal complex (CC) in Hefei, 256 clinical C. tropicalis isolates were collected from four teaching hospitals during 2016-2019, of which 30 were fluconazole-resistant (FR). Genetic profiles of 63 isolates, including 30 FR isolates and 33 fluconazole-susceptible (FS) isolates, were characterized using multilocus sequence typing (MLST). Phylogenetic analysis of the data was conducted using UPGMA (unweighted pair group method with arithmetic averages) and the minimum spanning tree algorithm. MLST clonal complexes (CCs) were analyzed using the goeBURST package. Among 35 differentiated diploid sequence types (DSTs), 16 DSTs and 1 genotype were identified as novel. A total of 35 DSTs were assigned to five major CCs based on goeBURST analysis. CC1 (containing DST376, 505, 507, 1221, 1222, 1223, 1226, and 1229) accounted for 86.7% (26/30) of the FR isolates. However, the genetic relationships among the FS isolates were relatively decentralized. The local FR CC1 belongs to a large fluconazole non-susceptible CC8 in global isolates, of which the putative founder genotype was DST225. The putative correlation between MLST types and antifungal susceptibility of clinical C. tropicalis isolates in Hefei showed that DSTs are closely related to FR clones.


A local prevalent FR CC1, accounted for 86.7% of the FR isolates in Hefei, China, which showed that fluconazole resistance is closely related to the genetic background, a finding of great value to local medical treatment and possible reasons for the increase in azole resistance of Candida tropicalis.


Assuntos
Líquidos Corporais , Fluconazol , Humanos , Fluconazol/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida tropicalis/genética , Tipagem de Sequências Multilocus/veterinária , Filogenia , Farmacorresistência Fúngica , China , Células Clonais , Testes de Sensibilidade Microbiana/veterinária
8.
Mycopathologia ; 188(1-2): 169-171, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36287321

RESUMO

Candida palmioleophila belongs to the Saccharomycetales. This opportunistic yeast which has been associated with invasive infections in human and animals, warrants a specific attention as it is frequently misidentified and display reduced susceptibility to fluconazole. Here, we report the first draft genome of C. palmioleophila, obtained from a clinical isolate.


Assuntos
Candida , Fluconazol , Animais , Humanos , Fluconazol/farmacologia , Candida/genética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Saccharomyces cerevisiae , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica
9.
Antimicrob Agents Chemother ; 66(11): e0088922, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36226945

RESUMO

We investigated the evolution of fluconazole resistance mechanisms and clonal types of Candida parapsilosis isolates from a tertiary care hospital in South Korea. A total of 45 clinical isolates, including 42 collected between 2017 and 2021 and 3 collected between 2012 and 2013, were subjected to antifungal susceptibility testing, sequencing of fluconazole resistance genes (ERG11, CDR1, TAC1, and MRR1), and microsatellite typing. Twenty-two isolates carried Y132F (n = 21; fluconazole MIC = 2 to >256 mg/L) or Y132F+R398I (n = 1; fluconazole MIC = 64 mg/L) in ERG11 and four isolates harbored N1132D in CDR1 (fluconazole MIC = 16 to 64 mg/L). All 21 Y132F isolates exhibited similar microsatellite profiles and formed a distinct group in the dendrogram. All four N1132D isolates displayed identical microsatellite profiles. Fluconazole MIC values of the Y132F isolates varied depending on their MRR1 mutation status (number of isolates, year of isolation, and MIC): K177N (n = 8, 2012 to 2020, 2 to 8 mg/L); K177N + heterozygous G982R (n = 1, 2017, 64 mg/L); K177N + heterozygous S614P (n = 2, 2019 to 2020, 16 mg/L); and K177N + homozygous S614P (n = 10, 2020 to 2021, 64 to > 256 mg/L). Our study revealed that Y132F in ERG11 and N1132D in CDR1 were the major mechanisms of fluconazole resistance in C. parapsilosis isolates. Furthermore, our results suggested that the clonal evolution of Y132F isolates persisting and spreading in hospital settings for several years occurred with the acquisition of heterozygous or homozygous MRR1 mutations associated with a gradual increase in fluconazole resistance.


Assuntos
Candida parapsilosis , Fluconazol , Fluconazol/farmacologia , Candida parapsilosis/genética , Farmacorresistência Fúngica/genética , Centros de Atenção Terciária , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana
10.
Antimicrob Agents Chemother ; 66(8): e0071022, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35852369

RESUMO

We have been monitoring the antifungal resistance in Candida parapsilosis isolates collected from inpatients at Madrid metropolitan area hospitals for the last 3 years. The study aimed to elucidate the presence of fluconazole-resistant C. parapsilosis genotypes in Madrid. From January 2019 to December 2021, a total of 354 C. parapsilosis isolates (n = 346 patients) from blood (76.6%) or intraabdominal samples were collected and genotyped using species-specific microsatellite markers. Antifungal susceptibilities to amphotericin B, the triazoles, micafungin, anidulafungin, and ibrexafungerp were performed according to EUCAST E.Def 7.3.2; the ERG11 gene was sequenced in fluconazole-resistant isolates. A total of 13.6% (n = 48/354) isolates (one per patient) were found to be resistant to fluconazole and non-wild-type to voriconazole but fully susceptible to ibrexafungerp. Resistant isolates were mostly sourced from blood (n = 45/48, 93.8%) and were detected in five hospitals. Two hospitals accounted for a high proportion of resistant isolates (n = 41/48). Resistant isolates harbored either the Y132F ERG11p amino acid substitution (n = 43) or the G458S substitution (n = 5). Isolates harboring the Y132F substitution clustered into a clonal complex involving three genotypes (one genotype accounted for n = 39/43 isolates) that were found in four hospitals. Isolates harboring the G458S substitution clustered into another genotype found in a fifth hospital. C. parapsilosis genotypes demonstrating resistance to fluconazole have been spreading across hospitals in Madrid, Spain. Over the last 3 years, the frequency of isolation of such isolates and the number of hospitals affected is on the rise.


Assuntos
Candida parapsilosis , Fluconazol , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida parapsilosis/genética , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Genótipo , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Espanha/epidemiologia
11.
Antimicrob Agents Chemother ; 66(1): e0162421, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633842

RESUMO

ERG11 sequencing of 28 Candida auris clade III isolates revealed the presence of concomitant V125A and F126L substitutions. Heterologous expression of Erg11-V125A/F126L in Saccharomyces cerevisiae led to reduced fluconazole and voriconazole susceptibilities. Generation of single substitution gene variants through site-directed mutagenesis uncovered that F126L primarily contributes to the elevated triazole MICs. A similar yet diminished pattern of reduced susceptibility was observed with the long-tailed triazoles posaconazole and itraconazole for the V125A/F126L, F126L, Y132F, and K143R alleles.


Assuntos
Candida auris , Farmacorresistência Fúngica , Substituição de Aminoácidos , Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Candida auris/genética , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Triazóis/farmacologia
12.
Bioorg Med Chem ; 63: 116749, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35436747

RESUMO

Infections caused particularly by Candida glabrata are hard to treat due to the development of antifungal resistance that occurs mainly through the production of efflux pumps and biofilm. Thus, a promising strategy to overcome infections caused by C. glabrata could be to use a substance able to inhibit efflux pumps and eradicate biofilms. Lapachones are natural naphthoquinones that possess a variety of pharmacological properties. Previous studies show that these substances inhibit the growth, virulence factors and efflux pumps of C. albicans. The aim of the present study was to evaluate whether lapachones are able to inhibit efflux pumps related to antifungal resistance in C. glabrata and either prevent biofilm formation or affect mature biofilms. Assays were performed with Saccharomyces cerevisiae strains that overexpress C. glabrata transporters (CgCdr1p and CgCdr2p). One C. glabrata clinical isolate that overexpresses CgCdr1p was also used. Both ß-lapachone and ß-nor-lapachone affected the growth of S. cerevisiae and C. glabrata when combined to fluconazole, and this action was inhibited by ascorbic acid. Both lapachones stimulated ROS production, inhibited efflux activity, adhesion, biofilm formation and the metabolism of mature biofilms of C. glabrata. Data obtained on the present study point to the potential use of ß-lapachone and ß-nor-lapachone as antibiofilm agents and adjuvants on the antifungal therapy related to resistant infections caused by C. glabrata.


Assuntos
Candida glabrata , Naftoquinonas , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Biofilmes , Candida albicans , Proteínas de Membrana Transportadoras/metabolismo , Naftoquinonas/metabolismo , Naftoquinonas/farmacologia , Saccharomyces cerevisiae
13.
Mycoses ; 65(11): 989-1000, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35713604

RESUMO

BACKGROUND: Candida tropicalis is a human pathogenic yeast frequently isolated in Latin America and Asian-Pacific regions, although recent studies showed that it is also becoming increasingly widespread throughout several African and south-European countries. Nevertheless, relatively little is known about its global patterns of genetic variation as most of existing multilocus sequence typing (MLST) data come from Asia and there are no genotyped African isolates. OBJECTIVES: We report detailed genotyping data from a large set of C. tropicalis isolates recovered from different clinical sources in Italy, Egypt and Cameroon in order to expand the allele/genotype library of MLST database (https://pubmlst.org/ctropicalis), and to explore the genetic diversity in this species. METHODS: A total of 103 C. tropicalis isolates were genotyped using the MLST scheme developed for this species. All isolates were also tested for in vitro susceptibility to various antifungals to assess whether certain genotypes were associated with drug-resistance. RESULTS AND CONCLUSIONS: A total of 104 different alleles were detected across the MLST-loci investigated. The allelic diversity found at these loci resulted in 51 unique MLST genotypes of which 36 (70.6%) were novel. Global optimal eBURST analysis identified 18 clonal complexes (CCs) and confirm the existence of a specific Italian-cluster (CC36). Three CCs were also statistically associated with fluconazole resistance, which was elevated in Cameroon and Egypt. Our data show high genetic diversity in our isolates suggesting that the global population structure of C. tropicalis is still poorly understood. Moreover, its clinical impact in Italy, Egypt and Cameroon appears to be relevant and should be carefully considered.


Assuntos
Candida tropicalis , Candidíase , Antifúngicos/farmacologia , Camarões , Candida tropicalis/genética , Candidíase/epidemiologia , Farmacorresistência Fúngica , Fluconazol , Variação Genética , Genótipo , Humanos , Tipagem de Sequências Multilocus/métodos
14.
Bioorg Chem ; 107: 104515, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33272708

RESUMO

Nineteen indole alkaloids including eleven new ones, taberdines A-K (1-11), were isolated from Tabernaemontana divaricata. Their structures were assigned by MS, NMR, single crystal X-ray diffractions, and ECD analyses. Alkaloid 1 is an aspidosperma-type monoterpenoid indole alkaloid and possesses a rearranged pyrrolidine moiety due to C-3 degradation, and 4 has a rare 1,3-oxazolidine moiety within iboga-type alkaloids. Alkaloids 2, 4, 6, and 11-19 combined with 5 µg/mL fluconazole exhibited significant activity to reverse fluconazole resistance in Candida albicans strains while no one used alone showed any activities against the resistant strain.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Alcaloides Indólicos/farmacologia , Tabernaemontana/química , Testes de Sensibilidade Microbiana , Folhas de Planta/química
15.
Mycoses ; 64(8): 823-830, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33934400

RESUMO

BACKGROUND: Candida parapsilosis complex consists of three species, the prevalence and geographical distribution of which might vary. Increasing rates of fluconazole resistance among C. parapsilosis complex were reported from various centres. OBJECTIVES: Aim of this study was to identify invasive C. parapsilosis complex strains up to species level, explore rates and molecular mechanisms of azole resistance and analyse temporal changes at a single centre. METHODS: Isolates from blood cultures from 1997 to 2017 were included. Species were identified using RFLP of the SADH gene and confirmed with ITS sequencing when needed. In vitro susceptibility to fluconazole, voriconazole and posaconazole was tested and evaluated using EUCAST guidelines. Sequences of ERG11 and MRR1 genes were analysed for fluconazole non-susceptible isolates. RESULTS: A total of 283 isolates from 181 patients were tested for azole susceptibility. All were C. parapsilosis sensu stricto, except one C. orthopsilosis. All three azoles were effective against 213 of the isolates from 135 patients, including one C. orthopsilosis. Fluconazole resistance was 13.3% (24/181 patients). While the first fluconazole-resistant isolates were detected in 2004, increase was evident after 2011. In ERG11, Y132F mutation was the most common among fluconazole non-susceptible isolates (71.7%), followed by G458S (10.9%) and D421N (4.3%). In MRR1, R405K (56.5%) and G927C (8.7%) were detected. However, association of these mutations to azole resistance is yet to be investigated. CONCLUSIONS: Rising azole resistance rates in C. parapsilosis sensu stricto isolates particularly after 2011 were of concern. The well-known Y132F mutation was the predominant mechanism of azole resistance while accompanied with other genetic mutations.


Assuntos
Antifúngicos/farmacologia , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/genética , Candidíase/microbiologia , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Substituição de Aminoácidos , Candida parapsilosis/patogenicidade , Candidemia , Humanos , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único , Centros de Atenção Terciária/estatística & dados numéricos , Fatores de Tempo , Turquia
16.
Mycoses ; 64(6): 651-655, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33609301

RESUMO

BACKGROUND: Ravuconazole is an extended-spectrum triazole agent that is efficient in vitro against Candida spp. and has been approved to work as an oral formulae for onychomycosis in Japan in 2018. However, nobody had determined the MIC of ravuconazole against the Candida auris, which is known as an emerging multidrug-resistant yeast. Meanwhile, rare is known of the in vitro activity of ravuconazole against vaginal Candida isolates. OBJECTIVES: To investigate the activity of ravuconazole against C. auris and vaginal Candida isolates of China and assess the feasibility of ravuconazole in the treatment of candidiasis caused by C. auris and other Candida spp. METHODS: We determined the in vitro activity of ravuconazole and 9 comparators against 15 C. auris isolates and determined the MIC of ravuconazole on 525 vaginal Candida isolates (Candida albicans, Candida tropicalis, Candida glabrata and Candida parapsilosis) from 9 provinces of China by Clinical and Laboratory Standards Institute (CLSI) methodology. RESULTS: The MICs of fluconazole and amphotericin B on C. auris were much higher than second-generation azoles and echinocandins. Ravuconazole was active against all the C. auris isolates and as effective as isavuconazole, posaconazole and echinocandins while showed a better antifungal activity than itraconazole, voriconazole to C. auris. For vaginal Candida isolates, the proportion of ravuconazole-resistant isolates is 0.19% (1/525). CONCLUSIONS: Ravuconazole was in good active against C. auris and vaginal Candida isolates, which suggested ravuconazole could be used in the treatment of drug-resistant candidiasis.


Assuntos
Candida/efeitos dos fármacos , Tiazóis/farmacologia , Triazóis/farmacologia , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida/isolamento & purificação , Candidíase/tratamento farmacológico , Farmacorresistência Fúngica , Feminino , Humanos , Técnicas In Vitro , Testes de Sensibilidade Microbiana , Vagina/microbiologia
17.
Indian J Crit Care Med ; 25(11): 1258-1262, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34866822

RESUMO

BACKGROUND: Blood cultures are the most significant samples received in a microbiology laboratory. Good quality control of pre-analytic, analytic, and post-analytic stages can have a significant impact on patient outcomes. Here, we present the improvements brought about by reviewing blood culture data with clinicians at a tertiary care institute in India. METHODS: Four-year blood culture data (phase I-February 2014-February 2018) were shared with clinicians in the clinical grand round. Several take-home messages were discussed in a quiz format, and a number of holistic quality control measures were implemented at different levels. Based on observable changes in blood culture reports, another dataset was analyzed and compared in phase II (April 2018-April 2019). RESULTS: In phase II, the blood culture contamination rate improved from 6 to 2% along with four times reduction in ICU isolates and three times increased isolation of salmonellae and pneumococci. The development of resistance in Klebsiella pneumoniae to carbapenems and piperacillin-tazobactam was reduced. Colistin resistance in ICU isolates hovered around 15%. Vaccine-preventable pneumococcal serotypes were predominant in the under-five age-group. Typhoidal salmonellae were more commonly isolated from adults with 50% showing sensitivity to pefloxacin and 97% to ampicillin, chloramphenicol, and cotrimoxazole. Candida parapsilosis was the leading non-albicans Candida (NAC). Fluconazole resistance was observed in 50% of NAC. CONCLUSION: Reviewing blood culture data with clinicians mutually helped us to improve the overall quality of blood culture reports. It had a major impact on epidemiological trends and thus, found to be superior to just sharing an antibiogram with the clinicians. HOW TO CITE THIS ARTICLE: Sharma A, Samaddar A, Maurya A, Hada V, Narula H, Shrimali T, et al. Analysis of Blood Culture Data Influences Future Epidemiology of Bloodstream Infections: A 5-year Retrospective Study at a Tertiary Care Hospital in India. Indian J Crit Care Med 2021;25(11):1258-1262.

18.
Chembiochem ; 21(21): 3112-3119, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32578299

RESUMO

Fungal infections, including those caused by antifungal-resistant Candida, are a very challenging health problem worldwide. Whereas different ruthenium complexes were previously studied for their anti-Candida potential, Ru-cyclopentadienyl complexes were overlooked. Here, we report an antifungal activity assessment of three Ru-cyclopentadienyl complexes with some insights into their potential mode of action. Among these complexes, only the cationic species [Ru-ACN]+ and [Ru-ATZ]+ displayed a significant antifungal activity against different Candida strains, notably against the ones that did not respond to one of the most currently used antifungal drugs fluconazole (FCZ). However, no apparent activity was observed for the neutral species, Ru-Cl, thus indicating the important role of the cationic backbone of these complexes in their biological activity. We suggest that reactive oxygen species (ROS) generation might be involved in the mechanism of action of these complexes as, unlike neutral Ru-Cl, [Ru-ACN]+ and [Ru-ATZ]+ could generate intracellular concentration-dependent ROS. We also observed a correlation between the ruthenium cellular uptake, ROS generation and fungal growth inhibitory activity of the compounds. Furthermore, docking simulations showed that the CYP51 enzyme can form more energetically favorable complexes with [Ru-ATZ]+ than fluconazole (FCZ); this suggests that CYP51 inhibition could also be considered as a potential mode of action.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Ciclopentanos/farmacologia , Rutênio/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Candida/metabolismo , Cátions/síntese química , Cátions/química , Cátions/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ciclopentanos/química , Cinética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química , Especificidade da Espécie
19.
BMC Infect Dis ; 20(1): 55, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31952505

RESUMO

BACKGROUND: Candidaemia is the most common form of invasive candidiasis. Resistant Candida blood stream infection (BSI) is rising, with limitations on the development of broader-spectrum antifungal agents worldwide. Our study aimed to identify the occurrence of antifungal-resistant candidaemia and the distribution of these species, determine the risk factors associated with antifungal resistance and evaluate the association of antifungal-resistant candidaemia with the length of intensive care unit (ICU) and hospital stay and with 30-day mortality. METHODS: A retrospective cohort study was conducted at King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia. Adult patients diagnosed with candidaemia from January 2006 to December 2017 were included. RESULTS: A total of 196 BSIs were identified in 94 males (49.74%) and 95 females (50.26%). C. glabrata was the most commonly isolated Candida species, with 59 (30%), followed by C. albicans with 46 (23%). Susceptibility data were available for 122/189 patients, of whom 26/122 (21%) were resistant to one or more antifungals. C. parapsilosis with available sensitivity data were found in 30/122 isolates, of which 10/30 (33%) were resistant to fluconazole. Risk factors significantly associated with antifungal-resistant candidaemia included previous echinocandin exposure (odds ratio (OR) =1.38; 95% confidence interval (CI) (1.02-1.85); P = 0.006) and invasive ventilation (OR = 1.3; 95% CI (1.08-1.57); P = 0.005). The median length of ICU stay was 29 days [range 12-49 days] in the antifungal-resistant group and 18 days [range 6.7-37.5 days] in the antifungal-sensitive group (P = 0.28). The median length of hospital stay was 51 days [range 21-138 days] in the antifungal-resistant group and 35 days [range 17-77 days] in the antifungal-sensitive group (P = 0.09). Thirty-day mortality was 15 (57.7%) and 54 (56.25%) among the antifungal-resistant and antifungal-sensitive groups, respectively (OR = 1.01; 95% CI (0.84-1.21); P = 0.89). CONCLUSIONS: Our results indicate a high frequancy of non- C. albicans candidaemia. The rise in C. parapsilosis resistance to fluconazole is alarming. Further studies are required to confirm this finding.


Assuntos
Candidemia/diagnóstico , Farmacorresistência Fúngica , Adulto , Idoso , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/isolamento & purificação , Candida glabrata/efeitos dos fármacos , Candida glabrata/isolamento & purificação , Candidemia/tratamento farmacológico , Candidemia/microbiologia , Feminino , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Humanos , Unidades de Terapia Intensiva , Tempo de Internação , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Arábia Saudita
20.
Bioorg Chem ; 105: 104402, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130347

RESUMO

ATP-Binding Cassette (ABC) transporters are the main class of transmembrane transporters involved in pathogenic fungal resistance against chemotherapeutic agents. Herein we report results which show that batzelladine D (1) and norbatzelladine L (2) reverse the fluconazole resistance phenotype mediated by Pdr5p transporter on Saccharomyces cerevisiae. Both alkaloids were able to chemosensitize the Pdr5p-overexpressing strain by synergistic interaction with fluconazole. Both compounds also showed an inhibitory effect on the catalytic activity and on the intracellular accumulation of rhodamine 6G, and did not show significant in vitro mammalian cells toxicity.


Assuntos
Alcaloides/farmacologia , Fluconazol/farmacologia , Poríferos/química , Pirimidinas/farmacologia , Rodaminas/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Pirimidinas/química , Pirimidinas/isolamento & purificação , Rodaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA