Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 844
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(14): 2469-2477.e13, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803245

RESUMO

Autoantibodies targeting neuronal membrane proteins can cause encephalitis, seizures, and severe behavioral abnormalities. While antibodies for several neuronal targets have been identified, structural details on how they regulate function are unknown. Here we determined cryo-electron microscopy structures of antibodies derived from an encephalitis patient bound to the γ-aminobutyric acid type A (GABAA) receptor. These antibodies induced severe encephalitis by directly inhibiting GABAA function, resulting in nervous-system hyperexcitability. The structures reveal mechanisms of GABAA inhibition and pathology. One antibody directly competes with a neurotransmitter and locks the receptor in a resting-like state. The second antibody targets the subunit interface involved in binding benzodiazepines and antagonizes diazepam potentiation. We identify key residues in these antibodies involved in specificity and affinity and confirm structure-based hypotheses for functional effects using electrophysiology. Together these studies define mechanisms of direct functional antagonism of neurotransmission underlying autoimmune encephalitis in a human patient.


Assuntos
Encefalite , Receptores de GABA-A , Autoanticorpos , Microscopia Crioeletrônica , Doença de Hashimoto , Humanos , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico
2.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564184

RESUMO

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Assuntos
Hormônios Hipotalâmicos , Privação do Sono , Ratos , Masculino , Humanos , Animais , Hormônio Liberador de Prolactina/farmacologia , Hormônio Liberador de Prolactina/metabolismo , Privação do Sono/metabolismo , Transtornos do Humor/etiologia , Qualidade de Vida , Ratos Wistar , Hormônios Hipotalâmicos/metabolismo , Sono/fisiologia , Neurônios/fisiologia , Norepinefrina/metabolismo
3.
Bioorg Med Chem Lett ; 110: 129854, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914347

RESUMO

C9-methylated quazepam 1 was prepared, and its physicochemical properties were investigated. The atropisomers of 1 were isolated as (a1R, a2S) and (a1S, a2R) isomers. Their absolute configurations were determined based on ECD spectra in comparison with those calculated using the time-dependent density functional theory. Preliminary examination of affinity for the GABAA receptor revealed that the (a1R, a2S) isomer of 1 possessed higher activity than its antipode (a1S, a2R) isomer. The active configuration of C9-methylated quazepam 1 is the same as that of 1,4-benzodiazepin-2-ones.

4.
Metab Brain Dis ; 39(1): 67-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966694

RESUMO

Brain damage caused by ethanol abuse may lead to permanent damage, including severe dementia. The aim of this study was to investigate the effects of ginger powder on ethanol-induced cognitive disorders by examining oxidative damage and inflammation status, and the gene expression of N-methyl-D-aspartate (NMDA) and γ-Aminobutyric acid (GABA)-A receptors in the hippocampus of male rats. 24 adult male Sprague-Dawley rats were allocated randomly to four groups as follows control, ethanol (4g/kg/day, by gavage), ginger (1g/kg/day, by gavage), and ginger-ethanol. At the end of the study, memory and learning were evaluated by the shuttle box test. Moreover, to explore mechanisms involved in ethanol-induced cognitive impairment and the protective effect of ginger, the expression of Nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), NMDA receptor, and GABA-A receptor was measured along with inflammatory and oxidative biomarkers in the hippocampus tissue. The results showed that ethanol could induce cognitive impairment in the ethanol group, while pretreatment with ginger could reverse it. The gene expression of the NF-κB/ Tumor necrosis factor (TNF)-α/Interleukin (IL)-1ß pathway and NMDA and GABA-A receptors significantly increased in the ethanol group compared to the control group. While pretreatment with ginger could significantly improve ethanol-induced cognitive impairment through these pathways in the ginger-ethanol group compared to the ethanol group (P < 0.05). It can be concluded that ginger powder could ameliorate ethanol-induced cognitive impairment by modulating the expression of NMDA and GABA-A receptors and inhibiting oxidative damage and the NF-κB/TNF-α/IL-1ß pathway in the rat hippocampus.


Assuntos
Disfunção Cognitiva , Zingiber officinale , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Etanol/toxicidade , NF-kappa B/metabolismo , Receptores de GABA/metabolismo , Pós/metabolismo , Pós/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Hipocampo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619082

RESUMO

Encephalitis associated with antibodies against the neuronal gamma-aminobutyric acid A receptor (GABAA-R) is a rare form of autoimmune encephalitis. The pathogenesis is still unknown but autoimmune mechanisms were surmised. Here we identified a strongly expanded B cell clone in the cerebrospinal fluid of a patient with GABAA-R encephalitis. We expressed the antibody produced by it and showed by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry that it recognizes the GABAA-R. Patch-clamp recordings revealed that it tones down inhibitory synaptic transmission and causes increased excitability of hippocampal CA1 pyramidal neurons. Thus, the antibody likely contributed to clinical disease symptoms. Hybridization to a protein array revealed the cross-reactive protein LIM-domain-only protein 5 (LMO5), which is related to cell-cycle regulation and tumor growth. We confirmed LMO5 recognition by immunoprecipitation and ELISA and showed that cerebrospinal fluid samples from two other patients with GABAA-R encephalitis also recognized LMO5. This suggests that cross-reactivity between GABAA-R and LMO5 is frequent in GABAA-R encephalitis and supports the hypothesis of a paraneoplastic etiology.


Assuntos
Antígenos de Neoplasias/imunologia , Autoanticorpos/imunologia , Reações Cruzadas/imunologia , Suscetibilidade a Doenças , Encefalite/etiologia , Receptores de GABA-A/imunologia , Autoantígenos/imunologia , Doenças Autoimunes do Sistema Nervoso/etiologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Autoimunidade , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Suscetibilidade a Doenças/imunologia , Encefalite/metabolismo , Encefalite/patologia , Humanos , Células Piramidais/imunologia , Células Piramidais/metabolismo
6.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825137

RESUMO

This study characterized the sleep activity, sleep mechanism, and active peptides of whey protein hydrolysates selected through behavioral analysis of fruit-flies (Drosophila melanogaster). Sleep-inducing whey protein (WP) hydrolysate was selected through fruit fly behavior analysis, and sleep activity was measured using a pentobarbital model and electroencephalographic analysis. The mechanism of action was confirmed using a γ-aminobutyric acid (GABA) receptor antagonist, and the active peptide was identified using liquid chromatography-mass spectroscopy. Whey protein hydrolysate, prepared using Alcalase and Prozyme (WP-AP), increased sleep time in a dose-dependent manner. WP-AP significantly increased not only sleep time but also slow-wave sleep and showed an insomnia-alleviating effect in a caffeine-induced insomnia mouse model. In addition, the gene and protein expression levels of GABA sub-type A (GABAA) receptors increased in the brains of mice orally administered with WP-AP. Through peptide analysis, the mixture of DIQK, VPPF peptide, and GABA contained in WP-AP was estimated to exhibit sleep activity, and due to its high content, DIQK was speculated to be the main sleep -inducing ingredient. These results indicate that WP-AP has the potential to be used as a new ingredient to improve sleep quality.

7.
Int J Neurosci ; : 1-11, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38289414

RESUMO

OBJECTIVE: The primary objective of this study is to address the challenge posed by the increasing number of variants of unknown clinical significance (VUS) within the GABRD gene, which encodes the δ subunit of γ-Aminobutyric acid type A receptors. The focus is on predicting the most pathogenic GABRD VUS to enhance precision medicine and improve our understanding of relevant pathophysiology. METHODS: The study employs a combination of in silico algorithms to analyze 82 variants of unknown clinical significance of GABRD gene sourced from the ClinVar database. Initially, separate algorithms based on sequence homology are utilized to assess this variant set. Subsequently, consensus variants predicted as pathogenic undergo further evaluation through a web server employing an algorithm based on structural homology. The resulting 11 variants are then validated using in silico tools that assess variant effects based on genetic and molecular data. The evaluation includes consideration of disease association and protein stability due to amino acid substitutions. RESULTS: The study identifies specific variants (L111R, R114C, D123N, G150S, and L243P) in the coding region of the GABRD gene, which are predicted as deleterious by multiple algorithms. These variants are evolutionarily conserved, mapped onto the extracellular domain of the δ subunit, and associated with idiopathic generalized epilepsy. CONCLUSIONS: The findings suggest structural or functional consequences that lead to pathogenicity, offering valuable insights for wet-lab experimentation. Besides, the findings contribute to the validation of clinically significant genetic variants in the GABRD gene, which is critical for epilepsy precision medicine.

8.
J Biol Chem ; 298(10): 102423, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030824

RESUMO

Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory neurotransmitter-gated ion channels in the mammalian central nervous system. Maintenance of GABAA receptor protein homeostasis (proteostasis) in cells utilizing its interacting proteins is essential for the function of GABAA receptors. However, how the proteostasis network orchestrates GABAA receptor biogenesis in the endoplasmic reticulum is not well understood. Here, we employed a proteomics-based approach to systematically identify the interactomes of GABAA receptors. We carried out a quantitative immunoprecipitation-tandem mass spectrometry analysis utilizing stable isotope labeling by amino acids in cell culture. Furthermore, we performed comparative proteomics by using both WT α1 subunit and a misfolding-prone α1 subunit carrying the A322D variant as the bait proteins. We identified 125 interactors for WT α1-containing receptors, 105 proteins for α1(A322D)-containing receptors, and 54 overlapping proteins within these two interactomes. Our bioinformatics analysis identified potential GABAA receptor proteostasis network components, including chaperones, folding enzymes, trafficking factors, and degradation factors, and we assembled a model of their potential involvement in the cellular folding, degradation, and trafficking pathways for GABAA receptors. In addition, we verified endogenous interactions between α1 subunits and selected interactors by using coimmunoprecipitation in mouse brain homogenates. Moreover, we showed that TRIM21 (tripartite motif containing-21), an E3 ubiquitin ligase, positively regulated the degradation of misfolding-prone α1(A322D) subunits selectively. This study paves the way for understanding the molecular mechanisms as well as fine-tuning of GABAA receptor proteostasis to ameliorate related neurological diseases such as epilepsy.


Assuntos
Proteostase , Receptores de GABA-A , Animais , Camundongos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proteômica , Receptores de GABA-A/metabolismo
9.
Neurobiol Dis ; 185: 106248, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536384

RESUMO

Benzodiazepine (BZ) drugs treat seizures, anxiety, insomnia, and alcohol withdrawal by potentiating γ2 subunit containing GABA type A receptors (GABAARs). BZ clinical use is hampered by tolerance and withdrawal symptoms including heightened seizure susceptibility, panic, and sleep disturbances. Here, we investigated inhibitory GABAergic and excitatory glutamatergic plasticity in mice tolerant to benzodiazepine sedation. Repeated diazepam (DZP) treatment diminished sedative effects and decreased DZP potentiation of GABAAR synaptic currents without impacting overall synaptic inhibition. While DZP did not alter γ2-GABAAR subunit composition, there was a redistribution of extrasynaptic GABAARs to synapses, resulting in higher levels of synaptic BZ-insensitive α4-containing GABAARs and a concomitant reduction in tonic inhibition. Conversely, excitatory glutamatergic synaptic transmission was increased, and NMDAR subunits were upregulated at synaptic and total protein levels. Quantitative proteomics further revealed cortex neuroadaptations of key pro-excitatory mediators and synaptic plasticity pathways highlighted by Ca2+/calmodulin-dependent protein kinase II (CAMKII), MAPK, and PKC signaling. Thus, reduced inhibitory GABAergic tone and elevated glutamatergic neurotransmission contribute to disrupted excitation/inhibition balance and reduced BZ therapeutic power with benzodiazepine tolerance.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Camundongos , Animais , Diazepam/farmacologia , Receptores de GABA-A/metabolismo , Benzodiazepinas/farmacologia , Encéfalo/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/farmacologia , Transmissão Sináptica
10.
J Intern Med ; 294(3): 281-294, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37518841

RESUMO

The prevalence of cognitive dysfunction, dementia, and neurodegenerative disorders such as Alzheimer's disease (AD) is increasing in parallel with an aging population. Distinct types of chronic stress are thought to be instrumental in the development of cognitive impairment in central nervous system (CNS) disorders where cognitive impairment is a major unmet medical need. Increased GABAergic tone is a mediator of stress effects but is also a result of other factors in CNS disorders. Positive GABA-A receptor modulating stress and sex steroids (steroid-PAMs) such as allopregnanolone (ALLO) and medroxyprogesterone acetate can provoke impaired cognition. As such, ALLO impairs memory and learning in both animals and humans. In transgenic AD animal studies, continuous exposure to ALLO at physiological levels impairs cognition and increases degenerative AD pathology, whereas intermittent ALLO injections enhance cognition, indicating pleiotropic functions of ALLO. We have shown that GABA-A receptor modulating steroid antagonists (GAMSAs) can block the acute negative cognitive impairment of ALLO on memory in animal studies and in patients with cognitive impairment due to hepatic encephalopathy. Here we describe disorders affected by steroid-PAMs and opportunities to treat these adverse effects of steroid-PAMs with novel GAMSAs.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Neuroesteroides , Animais , Humanos , Idoso , Receptores de GABA-A , Neuroesteroides/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Pregnanolona/farmacologia , Doença de Alzheimer/tratamento farmacológico , Ácido gama-Aminobutírico/farmacologia
11.
Eur Radiol ; 33(5): 3396-3406, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36692596

RESUMO

OBJECTIVES: To determine whether fructose-1,6-bisphosphatase 1 (FBP1) expression is associated with [18F]FDG PET uptake and postsurgical outcomes in patients with mesial temporal lobe epilepsy (mTLE) and to investigate whether the molecular mechanism involving gamma-aminobutyric acid type A receptor (GABAAR), glucose transporter-3 (GLUT-3), and hexokinase-II (HK-II). METHODS: Forty-three patients with mTLE underwent [18F]FDG PET/CT. Patients were divided into Ia (Engel class Ia) and non-Ia (Engel class Ib-IV) groups according to more than 1 year of follow-up after surgery. The maximum standard uptake value (SUVmax) and asymmetry index (AI) of hippocampus were measured. The relationship among the SUVmax, AI, prognosis, and FBP1 expression was analyzed. A lithium-pilocarpine acute mTLE rat model was subjected to [18F]FDG micro-PET/CT. Hippocampal SUVmax and FBP1, GABAAR, GLUT-3, and HK-II expression were analyzed. RESULTS: SUVmax was higher in the Ia group than in the non-Ia group (7.31 ± 0.97 vs. 6.56 ± 0.96, p < 0.05) and FBP1 expression was lower in the Ia group (0.24 ± 0.03 vs. 0.27 ± 0.03, p < 0.01). FBP1 expression was negatively associated with SUVmax and AI (p < 0.01). In mTLE rats, the hippocampal FBP1 increased (0.26 ± 0.00 vs. 0.17 ± 0.00, p < 0.0001), and SUVmax, GLUT-3 and GABAAR levels decreased significantly (0.73 ± 0.12 vs. 1.46 ± 0.23, 0.20 ± 0.01 vs. 0.32 ± 0.05, 0.26 ± 0.02 vs. 0.35 ± 0.02, p < 0.05); no significant difference in HK-II levels was observed. In mTLE patients and rats, FBP1 negatively correlated with SUVmax and GLUT-3 and GABAAR levels (p < 0.05). CONCLUSION: FBP1 expression was inversely associated with SUVmax in mTLE, which might inhibit [18F]FDG uptake by regulating GLUT-3 expression. High FBP1 expression was indicative of low GABAAR expression and poor prognosis. KEY POINTS: • It is of paramount importance to explore the deep pathophysiological mechanisms underlying the pathogenesis of mesial temporal lobe epilepsy and find potential therapeutic targets. • [18F]FDG PET has demonstrated low metabolism in epileptic regions during the interictal period, and hypometabolism may be associated with prognosis, but the pathomechanism of this association remains uncertain. • Our results support the possibility that FBP1 might be simultaneously involved in the regulation of glucose metabolism levels and the excitability of neurons and suggest that targeting FBP1 may be a viable strategy in the diagnosis and treatment of mesial temporal lobe epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Fluordesoxiglucose F18 , Animais , Ratos , Fluordesoxiglucose F18/metabolismo , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Frutose-Bifosfatase/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Tomografia por Emissão de Pósitrons/métodos , Ácido gama-Aminobutírico
12.
Bioorg Med Chem Lett ; 80: 129107, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549396

RESUMO

Initial optimization of a series of novel imidazo[1,5-a]quinoxaline compounds originated from a heuristic approach combining two known structural moieties towards α5-GABAA receptor is shown. This work reveals one-digit nanomolar active compounds as well as positive and negative allosteric modulators resulted from our exploratory approach. To deepen our understanding, their diverse mechanistic nature resulted from in silico modeling is also disclosed.


Assuntos
Quinoxalinas , Receptores de GABA-A , Quinoxalinas/farmacologia
13.
Brain ; 145(1): 224-236, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34245244

RESUMO

In patients with Parkinson's disease, beta (ß) and gamma (γ) oscillations are altered in the basal ganglia, and this abnormality contributes to the pathophysiology of bradykinesia. However, it is unclear whether ß and γ rhythms at the primary motor cortex (M1) level influence bradykinesia. Transcranial alternating current stimulation (tACS) can modulate cortical rhythms by entraining endogenous oscillations. We tested whether ß- and γ-tACS on M1 modulate bradykinesia in patients with Parkinson's disease by analysing the kinematic features of repetitive finger tapping, including movement amplitude, velocity and sequence effect, recorded during ß-, γ- and sham tACS. We also verified whether possible tACS-induced bradykinesia changes depended on modifications in specific M1 circuits, as assessed by short-interval intracortical inhibition and short-latency afferent inhibition. Patients were studied OFF and ON dopaminergic therapy. Results were compared to those obtained in a group of healthy subjects. In patients, movement velocity significantly worsened during ß-tACS and movement amplitude improved during γ-tACS, while the sequence effect did not change. In addition, short-latency afferent inhibition decreased (reduced inhibition) during ß-tACS and short-interval intracortical inhibition decreased during both γ- and ß-tACS in Parkinson's disease. The effects of tACS were comparable between OFF and ON sessions. In patients OFF therapy, the degree of short-interval intracortical inhibition modulation during ß- and γ-tACS correlated with movement velocity and amplitude changes. Moreover, there was a positive correlation between the effect of γ-tACS on movement amplitude and motor symptoms severity. Our results show that cortical ß and γ oscillations are relevant in the pathophysiology of bradykinesia in Parkinson's disease and that changes in inhibitory GABA-A-ergic interneuronal activity may reflect compensatory M1 mechanisms to counteract bradykinesia. In conclusion, abnormal oscillations at the M1 level of the basal ganglia-thalamo-cortical network play a relevant role in the pathophysiology of bradykinesia in Parkinson's disease.


Assuntos
Córtex Motor , Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Potencial Evocado Motor/fisiologia , Ritmo Gama/fisiologia , Humanos , Hipocinesia/etiologia , Doença de Parkinson/complicações , Estimulação Transcraniana por Corrente Contínua/métodos
14.
Mol Cell Neurosci ; 122: 103769, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35988854

RESUMO

The 22q11.2 hemizygous deletion confers high risk for multiple neurodevelopmental disorders. Inhibitory signaling, largely regulated through GABAA receptors, is suggested to serve a multitude of brain functions that are disrupted in the 22q11.2 deletion syndrome. We investigated the putative deficit of GABAA receptors and the potential substrates contributing to the inhibitory and excitatory dysregulations in hippocampal networks of the Df(h22q11)/+ mouse model of the 22q11.2 hemizygous deletion. The Df(h22q11)/+ mice exhibited impairments in several hippocampus-related functional domains, represented by impaired spatial memory and sensory gating functions. Autoradiography using the [3H]muscimol tracer revealed a significant reduction in GABAA receptor binding in the CA1 and CA3 subregions, together with a loss of GAD67+ interneurons in CA1 of Df(h22q11)/+ mice. Furthermore, electrophysiology recordings exhibited significantly higher neuronal activity in CA3, in response to the GABAA receptor antagonist, bicuculline, as compared with wild type mice. Density and volume of dendritic spines in pyramidal neurons were reduced and Sholl analysis also showed a reduction in the complexity of basal dendritic tree in CA1 and CA3 subregions of Df(h22q11)/+ mice. Overall, our findings demonstrate that hemizygous deletion in the 22q11.2 locus leads to dysregulations in the inhibitory circuits, involving reduced binding levels of GABAA receptors, in addition to functional and structural modulations of the excitatory networks of hippocampus.


Assuntos
Hipocampo , Receptores de GABA-A , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Muscimol/metabolismo , Muscimol/farmacologia , Células Piramidais/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(12): 6831-6835, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152102

RESUMO

Glutamate is the major excitatory neurotransmitter in the brain, and photochemical release of glutamate (or uncaging) is a chemical technique widely used by biologists to interrogate its physiology. A basic prerequisite of these optical probes is bio-inertness before photolysis. However, all caged glutamates are known to have strong antagonism toward receptors of γ-aminobutyric acid, the major inhibitory transmitter. We have developed a caged glutamate probe that is inert toward these receptors at concentrations that are effective for photolysis with violet light. Pharmacological tests in vitro revealed that attachment of a fifth-generation (G5) dendrimer (i.e., cloaking) to the widely used 4-methoxy-7-nitro-indolinyl(MNI)-Glu probe prevented such off-target effects while not changing the photochemical properties of MNI-Glu significantly. G5-MNI-Glu was used with optofluidic delivery to stimulate dopamine neurons of the ventral tegmental area of freely moving mice in a conditioned place-preference protocol so as to mediate Pavlovian conditioning.


Assuntos
Glutamatos/farmacologia , Indóis/farmacologia , Aprendizagem/fisiologia , Microfluídica , Neurônios/fisiologia , Neurotransmissores/farmacologia , Animais , Aprendizagem/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neuroquímica , Neurônios/efeitos dos fármacos , Fotoquímica , Fotólise , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
16.
Stroke ; 53(10): 3153-3163, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35862203

RESUMO

BACKGROUND: Studies using animal experiments have shown secondary neuronal degeneration in the thalamus after cerebral infarction. Neuroimaging studies in humans have revealed changes in imaging parameters in the thalamus, remote to the infarction. However, few studies have directly demonstrated neuronal changes in the thalamus in vivo. The purpose of this study was to determine whether secondary thalamic neuronal damage may manifest as a decrease in central benzodiazepine receptors in patients with cerebral infarction and internal carotid artery or middle cerebral artery disease. METHODS: We retrospectively analyzed the data of 140 patients with unilateral cerebral infarction ipsilateral to internal carotid artery or middle cerebral artery disease. All patients had quantitative measurements of 11C-flumazenil binding potential (FMZ-BP), cerebral blood flow, and cerebral metabolic rate of oxygen using positron emission tomography in the chronic stage. Region of interest analysis was performed using NeuroFlexer-an automated region of interest analysis software using NEUROSTAT. RESULTS: In the thalamus ipsilateral to the infarcts, the values of FMZ-BP, cerebral blood flow, and cerebral metabolic rate of oxygen were significantly lower than those in the contralateral thalamus. Significant correlations were found between the ipsilateral-to-contralateral ratio of FMZ-BP and the ipsilateral-to-contralateral ratio of cerebral blood flow or cerebral metabolic rate of oxygen in the thalamus. Patients with corona radiata infarcts and striatocapsular infarcts had significantly decreased ipsilateral-to-contralateral FMZ-BP ratio in the thalamus compared with those without. The ipsilateral-to-contralateral ratio of FMZ-BP in the thalamus was significantly correlated with the ipsilateral-to-contralateral cerebral metabolic rate of oxygen ratio in the frontal cortex and showed a significant negative correlation with the number of perseverative errors on the Wisconsin Card Sorting Test. CONCLUSIONS: Secondary thalamic neuronal damage may manifest as a decrease in central benzodiazepine receptors in patients with cerebral infarction and internal carotid artery or middle cerebral artery disease, which may be associated with frontal lobe dysfunction.


Assuntos
Doenças Arteriais Cerebrais , Flumazenil , Animais , Infarto Cerebral/diagnóstico por imagem , Flumazenil/metabolismo , Humanos , Oxigênio/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA-A/metabolismo , Estudos Retrospectivos , Tálamo/diagnóstico por imagem , Tomografia Computadorizada por Raios X
17.
Neurobiol Dis ; 168: 105718, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35390481

RESUMO

Dystrophinopaties, e.g., Duchenne muscular dystrophy (DMD), Becker muscular dystrophy and X-linked dilated cardiomyopathy are inherited neuromuscular diseases, characterized by progressive muscular degeneration, which however associate with a significant impact on general system physiology. The more severe is the pathology and its diversified manifestations, the heavier are its effects on organs, systems, and tissues other than muscles (skeletal, cardiac and smooth muscles). All dystrophinopaties are characterized by mutations in a single gene located on the X chromosome encoding dystrophin (Dp427) and its shorter isoforms, but DMD is the most devasting: muscular degenerations manifests within the first 4 years of life, progressively affecting motility and other muscular functions, and leads to a fatal outcome between the 20s and 40s. To date, after years of studies on both DMD patients and animal models of the disease, it has been clearly demonstrated that a significant percentage of DMD patients are also afflicted by cognitive, neurological, and autonomic disorders, of varying degree of severity. The anatomical correlates underlying neural functional damages are established during embryonic development and the early stages of postnatal life, when brain circuits, sensory and motor connections are still maturing. The impact of the absence of Dp427 on the development, differentiation, and consolidation of specific cerebral circuits (hippocampus, cerebellum, prefrontal cortex, amygdala) is significant, and amplified by the frequent lack of one or more of its lower molecular mass isoforms. The most relevant aspect, which characterizes DMD-associated neurological disorders, is based on morpho-functional alterations of selective synaptic connections within the affected brain areas. This pathological feature correlates neurological conditions of DMD to other severe neurological disorders, such as schizophrenia, epilepsy and autistic spectrum disorders, among others. This review discusses the organization and the role of the dystrophin-dystroglycan complex in muscles and neurons, focusing on the neurological aspect of DMD and on the most relevant morphological and functional synaptic alterations, in both central and autonomic nervous systems, described in the pathology and its animal models.


Assuntos
Cardiomiopatia Dilatada , Distrofia Muscular de Duchenne , Animais , Distrofina/genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Neurônios/patologia , Isoformas de Proteínas
18.
Biol Chem ; 403(1): 73-87, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33878252

RESUMO

Artemisinins, a group of plant-derived sesquiterpene lactones, are efficient antimalarial agents. They also share anti-inflammatory and anti-viral activities and were considered for treatment of neurodegenerative disorders like Alzheimer's disease (AD). Additionally, artemisinins bind to gephyrin, the multifunctional scaffold of GABAergic synapses, and modulate inhibitory neurotransmission in vitro. We previously reported an increased expression of gephyrin and GABAA receptors in early pre-symptomatic stages of an AD mouse model (APP-PS1) and in parallel enhanced CDK5-dependent phosphorylation of gephyrin at S270. Here, we studied the effects of artemisinin on gephyrin in the brain of young APP-PS1 mice. We detected an additional increase of gephyrin protein level, elevated gephyrin phosphorylation at Ser270, and an increased amount of GABAAR-γ2 subunits after artemisinin-treatment. Interestingly, the CDK5 activator p35 was also upregulated. Moreover, we demonstrate decreased density of postsynaptic gephyrin and GABAAR-γ2 immunoreactivities in cultured hippocampal neurons expressing gephyrin with alanine mutations at two CDK5 phosphorylation sites. In addition, the activity-dependent modulation of synaptic protein density was abolished in neurons expressing gephyrin lacking one or both of these phosphorylation sites. Thus, our results reveal that artemisinin modulates expression as well as phosphorylation of gephyrin at sites that might have important impact on GABAergic synapses in AD.


Assuntos
Artemisininas , Proteínas de Transporte , Proteínas de Membrana , Animais , Artemisininas/farmacologia , Proteínas de Transporte/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Camundongos , Fosforilação , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
Arch Biochem Biophys ; 729: 109380, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36027937

RESUMO

Due to the importance of benzodiazepine drugs in clinical practice, such as the treatment of anxiety disorders, depression, and insomnia and the side effects of classical benzodiazepines, the study of new benzodiazepine agonists has received much attentions. In this work, we used in silico methods to explore the molecular mechanism of 1,2,4-triazolo [1,5-a] pyrimidinone derivatives in the modulation of α1ß2γ2 subtype of GABAA receptor. To this aim, molecular docking, molecular dynamics simulation (MD), post-MD analysis, binding free energy calculation, and prediction of ADME properties were performed. Results showed that all new compounds have a better binding affinity for the Benzodiazepine (BZD) site of the receptor than diazepam and compound 4c had the highest affinity among them. Moreover, a good agreement was observed between the calculated ΔGbinding and experimental IC50 values. Also, we noticed that residues in loop regions (particularly loop C and D-F in α1 and γ2 subunits, respectively) forming BZD binding site, take part in forming several H-bonds between the agonists and the receptor. Ser205, Thr207, Tyr160, and His102 of α1 subunit and Thr207 of γ2 subunit are mainly involved in forming H-bonds. Also, the orientation of agonists in the BZD binding site leads to π-π interactions with hydrophobic residues in loops A-F. Based on the DCCM analysis, the correlated motions in the γ2 subunit residues are greater than those of α1 subunit residues. Further, predicted ADME results indicated that all agonists meet the criteria. The triplicate MD simulation showed the reproducibility of the results and strengthened the study. Our results provide a comprehensive insight into the receptor-agonist interactions and clues for designing future BZD agonists.


Assuntos
Benzodiazepinas , Receptores de GABA-A , Benzodiazepinas/química , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacologia , Sítios de Ligação , Diazepam/farmacologia , Simulação de Acoplamento Molecular , Purinas , Pirimidinonas/farmacologia , Receptores de GABA-A/metabolismo , Reprodutibilidade dos Testes
20.
Brain Behav Immun ; 101: 153-164, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34998939

RESUMO

Interferon-γ (IFN-γ), an important mediator of the antiviral immune response, can also act as a neuromodulator. CNS IFN-γ levels rise acutely in response to infection and therapeutically applied IFN-γ provokes CNS related side effects. Moreover, IFN-γ plays a key role in neurophysiological processes and a variety of chronic neurological and neuropsychiatric conditions. To close the gap between basic research, behavioral implications and clinical applicability, knowledge of the mechanism behind IFN-γ related changes in brain function is crucial. Here, we studied the underlying mechanism of acutely augmented neocortical inhibition by IFN-γ (1.000 IU ml-1) in layer 5 pyramidal neurons of male Wistar rats. We demonstrate postsynaptic mediation of IFN-γ augmented inhibition by pressure application of GABA and analysis of paired pulse ratios. IFN-γ increases membrane presence of GABAAR γ2, as quantified by cell surface biotinylation and functional synaptic GABAAR number, as determined by peak-scaled non-stationary noise analysis. The increase in functional receptor number was comparable to the increase in underlying miniature inhibitory postsynaptic current (mIPSC) amplitudes. Blockage of putative intracellular mediators, namely phosphoinositide 3-kinase and protein kinase C (PKC) by Wortmannin and Calphostin C, respectively, revealed PKC-dependency of the pro-inhibitory IFN-γ effect. This was corroborated by increased serine phosphorylation of P-serine PKC motifs on GABAAR γ2 upon IFN-γ application. GABAAR single channel conductance, intracellular chloride levels and GABAAR driving force are unlikely to contribute to the effect, as shown by single channel recordings and chloride imaging. The effect of IFN-γ on mIPSC amplitudes was similar in female and male rats, suggesting a gender-independent mechanism of action. Collectively, these results indicate a novel mechanism for the regulation of inhibition by IFN-γ, which could impact on neocortical function and therewith behavior.


Assuntos
Neocórtex , Receptores de GABA-A , Animais , Cloretos/metabolismo , Feminino , Interferon gama/metabolismo , Interferon gama/farmacologia , Masculino , Neocórtex/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Serina/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA