Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Recept Signal Transduct Res ; 41(6): 558-565, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33121311

RESUMO

Hypertension is a disease, which in spite of existing treatments continues to have high morbidity and mortality, which suggests that there are other mechanisms involved in this pathology. In this sense, the orphan receptors are G protein-coupled receptor associated with various pathologies such as GPR99 which has been linked to mice develop left ventricular hypertrophy induced by blood pressure overload while GPR107 with patients with idiopathic pulmonary arterial hypertension. For this reason, the aim of this work was to study if the expression of the orphan receptors GPR99 and GPR107 are modified by arterial hypertension. Male SHR and WKY rats of 6-8 and 10-12 weeks old were used. The weight, systolic blood pressure and heart rate were measured, as well as the mRNA of the receptors GPR99 and GPR107 in the aorta, kidney, heart and brain by RT-PCR, also was realized an in silico analysis to predict which G protein could be coupled the orphan receptor GPR107. Our results showed that receptors GPR99 and GPR107 are expressed in the analyzed tissues and their expression profile tends to change at different ages and with the development of hypertension, for the other hand, the bioinformatics analysis for GPR107 showed that is coupled to Gi protein. Therefore, we do not rule out that GPR99 and GPR107 could be involved in the pathophysiology of hypertension and could be used as targets therapeutic in hypertension.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipertensão/patologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Pressão Sanguínea , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Acoplados a Proteínas G/genética , Receptores Purinérgicos P2/genética
2.
J Cell Sci ; 127(Pt 18): 3916-27, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24849652

RESUMO

GPR107 is a type III integral membrane protein that was initially predicted to be a member of the family of G-protein-coupled receptors. This report shows that deletion of Gpr107 leads to an embryonic lethal phenotype that is characterized by a reduction in cubilin transcript abundance and a decrease in the representation of multiple genes implicated in the cubilin-megalin endocytic receptor complex (megalin is also known as LRP2). Gpr107-null fibroblast cells exhibit reduced transferrin internalization, decreased uptake of low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) cargo and resistance to toxins. Colocalization studies and proteomic analyses suggest that GPR107 associates with clathrin and the retromer protein VPS35 and that GPR107 might be responsible for the return of receptors to the plasma membrane from endocytic compartments. The highly selective deficits observed in Gpr107-null cells indicate that GPR107 interacts directly or indirectly with a limited subset of surface receptors.


Assuntos
Endocitose , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Feminino , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Am J Physiol Regul Integr Comp Physiol ; 310(2): R143-55, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26561648

RESUMO

Neuronostatin (NST) is a recently described peptide that is produced from the somatostatin preprohormone in pancreatic δ-cells. NST has been shown to increase glucagon secretion from primary rat pancreatic islets in low-glucose conditions. Here, we demonstrate that NST increases proglucagon message in α-cells and identify a potential mechanism for NST's cellular activities, including the phosphorylation of PKA following activation of the G protein-coupled receptor, GPR107. GPR107 is abundantly expressed in the pancreas, particularly, in rodent and human α-cells. Compromise of GPR107 in pancreatic α-cells results in failure of NST to increase PKA phosphorylation and proglucagon mRNA levels. We also demonstrate colocalization of GPR107 and NST on both mouse and human pancreatic α-cells. Taken together with our group's observation that NST infusion in conscious rats impairs glucose clearance in response to a glucose challenge and that plasma levels of the peptide are elevated in the fasted compared with the fed or fasted-refed state, these studies support the hypothesis that endogenous NST regulates islet cell function by interacting with GPR107 and initiating signaling in glucagon-producing α-cells.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Proglucagon/genética , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/agonistas , Animais , Linhagem Celular , Células Secretoras de Glucagon/enzimologia , Humanos , Masculino , Camundongos , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Fosforilação , Interferência de RNA , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Somatostatina/metabolismo , Transfecção , Regulação para Cima
4.
J Biol Chem ; 289(35): 24005-18, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25031321

RESUMO

A number of toxins, including exotoxin A (PE) of Pseudomonas aeruginosa, kill cells by inhibiting protein synthesis. PE kills by ADP-ribosylation of the translation elongation factor 2, but many of the host factors required for entry, membrane translocation, and intracellular transport remain to be elucidated. A genome-wide genetic screen in human KBM7 cells was performed to uncover host factors used by PE, several of which were confirmed by CRISPR/Cas9-gene editing in a different cell type. Several proteins not previously implicated in the PE intoxication pathway were identified, including GPR107, an orphan G-protein-coupled receptor. GPR107 localizes to the trans-Golgi network and is essential for retrograde transport. It is cleaved by the endoprotease furin, and a disulfide bond connects the two cleaved fragments. Compromising this association affects the function of GPR107. The N-terminal region of GPR107 is critical for its biological function. GPR107 might be one of the long-sought receptors that associates with G-proteins to regulate intracellular vesicular transport.


Assuntos
ADP Ribose Transferases/toxicidade , Toxinas Bacterianas/toxicidade , Exotoxinas/toxicidade , Furina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Virulência/toxicidade , Rede trans-Golgi/metabolismo , ADP Ribose Transferases/genética , Toxinas Bacterianas/genética , Sequência de Bases , Primers do DNA , Endocitose , Exotoxinas/genética , Mutação , Reação em Cadeia da Polimerase , Transporte Proteico , Proteólise , Receptores Acoplados a Proteínas G/fisiologia , Fatores de Virulência/genética , Exotoxina A de Pseudomonas aeruginosa
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(11): 159018, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34332074

RESUMO

Neuronostatin is a peptide hormone encoded by the somatostatin gene. Biological effects of neuronostatin are mediated through activation of GPR107. There is evidence indicating that neuronostatin modulates energy homeostasis by suppressing food intake and insulin secretion, while stimulating glucagon secretion. While it was found that neuronostatin receptor is expressed in white adipose tissue, the role of neuronostatin in controlling adipose tissue formation is unknown. The aim of this study is to investigate the effects of neuronostatin on proliferation and differentiation of rat primary preadipocytes and 3T3-L1 cells. We found that neuronostatin receptor GPR107 is expressed in rat preadipocytes and 3T3-L1 cells. Neuronostatin promotes proliferation of preadipocytes via AKT activation. Downregulation of GPR107 mRNA expression and protein production results in an attenuation of neuronostatin-induced stimulation of preadipocyte proliferation. Moreover, neuronostatin reduces intracellular lipid content and the expression of adipogenesis-modulating genes C/ebpα, C/ebpß, Pparγ, and Fabp4. In summary, these results show that neuronostatin, AKT-dependently, stimulates the proliferation of preadipocytes via GPR107. In contrast, neuronostatin inhibits the differentiation of preadipocytes into mature adipocytes.


Assuntos
Adipócitos/metabolismo , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Somatostatina/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
6.
J Clin Med ; 9(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498336

RESUMO

Certain components of the somatostatin-system play relevant roles in Prostate Cancer (PCa), whose most aggressive phenotype (Castration-Resistant-PCa (CRPC)) remains lethal nowadays. However, neuronostatin and the G protein-coupled receptor 107 (GPR107), two novel members of the somatostatin-system, have not been explored yet in PCa. Consequently, we investigated the pathophysiological role of NST/GPR107-system in PCa. GPR107 expression was analyzed in well-characterized PCa patient's cohorts, and functional/mechanistic assays were performed in response to GPR107-silencing and NST-treatment in PCa cells (androgen-dependent (AD: LNCaP) and androgen-independent (AI: 22Rv1/PC-3), which are cell models of hormone-sensitive and CRPC, respectively), and normal prostate cells (RWPE-1 cell-line). GPR107 was overexpressed in PCa and associated with key clinical parameters (e.g., advance stage of PCa, presence of vascular invasion and metastasis). Furthermore, GPR107-silencing inhibited proliferation/migration rates in AI-PCa-cells and altered key genes and oncogenic signaling-pathways involved in PCa aggressiveness (i.e., KI67/CDKN2D/MMP9/PRPF40A, SST5TMD4/AR-v7/In1-ghrelin/EZH2 splicing-variants and AKT-signaling). Interestingly, NST treatment inhibited proliferation/migration only in AI-PCa cells and evoked an identical molecular response than GPR107-silencing. Finally, NST decreased GPR107 expression exclusively in AI-PCa-cells, suggesting that part of the specific antitumor effects of NST could be mediated through a GPR107-downregulation. Altogether, NST/GPR107-system could represent a valuable diagnostic and prognostic tool and a promising novel therapeutic target for PCa and CRPC.

7.
J Exp Clin Cancer Res ; 37(1): 121, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925408

RESUMO

BACKGROUND: With self-renewal and differentiation properties, liver tumor initiating cells (TICs) are the reasons for tumor initiation, metastasis and drug resistance. G protein coupled receptors (GPCR) are critical modulators in many physiological and pathological processes. While, their roles in liver TICs are unknown. METHODS: An unbiased screening was performed using online-available data dataset. Liver TICs were sorted by FACS with surface marker CD133, or enriched by oncosphere formation. TIC self-renewal was examined by oncosphere formation and tumor initiation assay. Loss of function and gain of function assays were performed to examine the role of lncRNA. RNA pulldown, RNA immunoprecipitation, ChIP, western blot and double FISH were used explore the molecular mechanism of lncRNA. RESULTS: We performed an unbiased screening for GPCR expression in liver cancers, and found GPR107 was the most highly expressed GPCR in liver cancer and liver TICs. GPR107 was essential for the self-renewal of liver TICs. The expression of GPR107 was regulated by a long noncoding RNA lncGPR107. LncGPR107 was also highly expressed in liver cancers and liver TICs. LncGPR107 drove the self-renewal of liver TICs through GPR107. Moreover, lncGPR107 recruited SRCAP complex to GPR107 promoter to drive its transcriptional activation. LncGPR107 depletion inhibited the binding of SRCAP complex and GPR107 promoter and subsequent GPR107 expression. Moreover, LncGPR107-SRCAP-GPR107 can be targeted for liver TIC elimination. CONCLUSION: GPR107 was the most highly expressed GPCR in liver cancer and liver TICs. LncGPR107 participated in the transcriptional regulation of GPR107 in cis, through recruiting SRCAP remodeling complex to GPR107 promoter. This work revealed the important role of GPCR signaling in liver TIC self-renewal and added a new layer for liver TIC and GPCR regulation.


Assuntos
Autorrenovação Celular/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante , Receptores Acoplados a Proteínas G/genética , Idoso , Animais , Biomarcadores Tumorais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA