Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.166
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541199

RESUMO

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Proteogenômica , Feminino , Humanos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
2.
Cell ; 173(7): 1755-1769.e22, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29754820

RESUMO

High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Antígenos CD8/metabolismo , Análise por Conglomerados , Feminino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Perda de Heterozigosidade , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/imunologia , Polimorfismo de Nucleotídeo Único , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Sequenciamento Completo do Genoma , Adulto Jovem
3.
Mol Cell ; 82(10): 1894-1908.e5, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35390275

RESUMO

miR-10b is silenced in normal neuroglial cells of the brain but commonly activated in glioma, where it assumes an essential tumor-promoting role. We demonstrate that the entire miR-10b-hosting HOXD locus is activated in glioma via the cis-acting mechanism involving 3D chromatin reorganization and CTCF-cohesin-mediated looping. This mechanism requires two interacting lncRNAs, HOXD-AS2 and LINC01116, one associated with HOXD3/HOXD4/miR-10b promoter and another with the remote enhancer. Knockdown of either lncRNA in glioma cells alters CTCF and cohesin binding, abolishes chromatin looping, inhibits the expression of all genes within HOXD locus, and leads to glioma cell death. Conversely, in cortical astrocytes, enhancer activation is sufficient for HOXD/miR-10b locus reorganization, gene derepression, and neoplastic cell transformation. LINC01116 RNA is essential for this process. Our results demonstrate the interplay of two lncRNAs in the chromatin folding and concordant regulation of miR-10b and multiple HOXD genes normally silenced in astrocytes and triggering the neoplastic glial transformation.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Annu Rev Genet ; 53: 483-503, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794268

RESUMO

The human brain contains a vast number of cells and shows extraordinary cellular diversity to facilitate the many cognitive and automatic commands governing our bodily functions. This complexity arises partly from large-scale structural variations in the genome, evolutionary processes to increase brain size, function, and cognition. Not surprisingly given recent technical advances, low-grade gliomas (LGGs), which arise from the glia (the most abundant cell type in the brain), have undergone a recent revolution in their classification and therapy, especially in the pediatric setting. Next-generation sequencing has uncovered previously unappreciated diverse LGG entities, unraveling genetic subgroups and multiple molecular alterations and altered pathways, including many amenable to therapeutic targeting. In this article we review these novel entities, in which oncogenic processes show striking age-related neuroanatomical specificity (highlighting their close interplay with development); the opportunities they provide for targeted therapies, some of which are already practiced at the bedside; and the challenges of implementing molecular pathology in the clinic.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/crescimento & desenvolvimento , Glioma/genética , Adulto , Fatores Etários , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Criança , Glioma/diagnóstico , Glioma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Isocitrato Desidrogenase/genética , Técnicas de Diagnóstico Molecular , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Quinases raf/genética
5.
Proc Natl Acad Sci U S A ; 120(8): e2209123120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780521

RESUMO

Academic achievement in the first year of college is critical for setting students on a pathway toward long-term academic and life success, yet little is known about the factors that shape early college academic achievement. Given the important role sleep plays in learning and memory, here we extend this work to evaluate whether nightly sleep duration predicts change in end-of-semester grade point average (GPA). First-year college students from three independent universities provided sleep actigraphy for a month early in their winter/spring academic term across five studies. Findings showed that greater early-term total nightly sleep duration predicted higher end-of-term GPA, an effect that persisted even after controlling for previous-term GPA and daytime sleep. Specifically, every additional hour of average nightly sleep duration early in the semester was associated with an 0.07 increase in end-of-term GPA. Sensitivity analyses using sleep thresholds also indicated that sleeping less than 6 h each night was a period where sleep shifted from helpful to harmful for end-of-term GPA, relative to previous-term GPA. Notably, predictive relationships with GPA were specific to total nightly sleep duration, and not other markers of sleep, such as the midpoint of a student's nightly sleep window or bedtime timing variability. These findings across five studies establish nightly sleep duration as an important factor in academic success and highlight the potential value of testing early academic term total sleep time interventions during the formative first year of college.


Assuntos
Duração do Sono , Sono , Humanos , Universidades , Estudantes , Escolaridade
6.
Genes Cells ; 29(3): 192-206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38269481

RESUMO

Low-grade neuroepithelial tumors are major causes of drug-resistant focal epilepsy. Clinically, these tumors are defined as low-grade epilepsy-associated neuroepithelial tumors (LEATs). The BRAF V600E mutation is frequently observed in LEAT and linked to poor seizure outcomes. However, its molecular role in epileptogenicity remains elusive. To understand the molecular mechanism underlying the epileptogenicity in LEAT with the BRAF V600E genetic mutation (BRAF V600E-LEAT), we conducted RNA sequencing (RNA-seq) analysis using surgical specimens of BRAF V600E-LEAT obtained and stored at a single institute. We obtained 21 BRAF V600E-LEAT specimens and 4 control specimens, including 24 from Japanese patients and 1 from a patient of Central Asian origin, along with comprehensive clinical data. We submitted the transcriptome dataset of 21 BRAF V600E-LEAT plus 4 controls, as well as detailed clinical information, to a public database. Preliminary bioinformatics analysis using this dataset identified 2134 differentially expressed genes between BRAF V600E-LEAT and control. Additionally, gene set enrichment analysis provided novel insights into the association between estrogen response-related pathways and the epileptogenicity of BRAF V600E-LEAT patients. Our datasets and findings will contribute toward the understanding of the pathology of epilepsy caused by LEAT and the identification of new therapeutic targets.


Assuntos
Neoplasias Encefálicas , Epilepsia , Neoplasias Neuroepiteliomatosas , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Epilepsia/genética , Epilepsia/complicações , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/metabolismo , Neoplasias Neuroepiteliomatosas/patologia , Transcriptoma , Mutação
7.
J Pathol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956451

RESUMO

Ovarian high-grade serous carcinoma (HGSC) originates in the fallopian tube, with secretory cells carrying a TP53 mutation, known as p53 signatures, identified as potential precursors. p53 signatures evolve into serous tubal intraepithelial carcinoma (STIC) lesions, which in turn progress into invasive HGSC, which readily spreads to the ovary and disseminates around the peritoneal cavity. We recently investigated the genomic landscape of early- and late-stage HGSC and found higher ploidy in late-stage (median 3.1) than early-stage (median 2.0) samples. Here, to explore whether the high ploidy and possible whole-genome duplication (WGD) observed in late-stage disease were determined early in the evolution of HGSC, we analysed archival formalin-fixed paraffin-embedded (FFPE) samples from five HGSC patients. p53 signatures and STIC lesions were laser-capture microdissected and sequenced using shallow whole-genome sequencing (sWGS), while invasive ovarian/fallopian tube and metastatic carcinoma samples underwent macrodissection and were profiled using both sWGS and targeted next-generation sequencing. Results showed highly similar patterns of global copy number change between STIC lesions and invasive carcinoma samples within each patient. Ploidy changes were evident in STIC lesions, but not p53 signatures, and there was a strong correlation between ploidy in STIC lesions and invasive ovarian/fallopian tube and metastatic samples in each patient. The reconstruction of sample phylogeny for each patient from relative copy number indicated that high ploidy, when present, occurred early in the evolution of HGSC, which was further validated by copy number signatures in ovarian and metastatic tumours. These findings suggest that aberrant ploidy, suggestive of WGD, arises early in HGSC and is detected in STIC lesions, implying that the trajectory of HGSC may be determined at the earliest stages of tumour development. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

8.
J Pathol ; 262(2): 129-136, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38013631

RESUMO

Trastuzumab has demonstrated clinical efficacy in the treatment of HER2-positive serous endometrial cancer (EC), which led to its incorporation into standard-of-care management of this aggressive disease. Acquired resistance remains an important challenge, however, and its underlying mechanisms in EC are unknown. To define the molecular changes that occur in response to anti-HER2 therapy in EC, targeted next-generation sequencing (NGS), HER2 immunohistochemistry (IHC), and fluorescence in situ hybridization (FISH) were performed on pre- and post-treatment tumour samples from 14 patients with EC treated with trastuzumab or trastuzumab emtansine. Recurrent tumours after anti-HER2 therapy acquired additional genetic alterations compared with matched pre-treatment ECs and frequently showed decreased HER2 protein expression by IHC (7/14, 50%). Complete/near-complete absence of HER2 protein expression (score 0/1+) observed post-treatment (4/14, 29%) was associated with retained HER2 gene amplification (n = 3) or copy number neutral status (n = 1). Whole-exome sequencing performed on primary and recurrent tumours from the latter case, which exhibited genetic heterogeneity of HER2 amplification in the primary tumour, revealed selection of an early HER2-non-amplified clone following therapy. Our findings demonstrate that loss of target expression, by selection of HER2-non-amplified clones or, more commonly, by downregulation of expression, may constitute a mechanism of resistance to anti-HER2 therapy in HER2-positive EC. © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias do Endométrio , Receptor ErbB-2 , Feminino , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Hibridização in Situ Fluorescente , Recidiva Local de Neoplasia/genética , Trastuzumab/uso terapêutico , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Amplificação de Genes
9.
Brain ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657204

RESUMO

Accumulating evidence suggests that the brain exhibits a remarkable capacity for functional compensation in response to neurological damage, a resilience potential that is deeply rooted in the malleable features of its underlying anatomo-functional architecture. This propensity is particularly exemplified by diffuse low-grade gliomas (DLGGs), a subtype of primary brain tumour. However, functional plasticity is not boundless, and surgical resections directed at structures with limited neuroplasticity may lead to incapacitating impairments. Yet, maximizing DLGG resections offers substantial oncological benefits, especially when the resection extends beyond the tumour margins (i.e., supra-tumour or supra-total resection). In this context, the primary objective of this study was to identify which cerebral structures were associated with less favourable cognitive outcomes after surgery, while accounting for intra-tumour and supra-tumour features of the surgical resections. To reach this objective, we leveraged a unique cohort of 400 DLGG patients who underwent surgery with awake cognitive mapping. Patients benefited from a neuropsychological assessment consisting of 18 subtests administered before and 3 months post-surgery. We analysed changes in performance and applied topography-focused and disconnection-focused multivariate lesion-symptom mapping (LSM) using support vector regressions with an attempt to capture resected cortico-subcortical structures less amenable to full cognitive compensations. The observed changes in performance were of a limited magnitude suggesting an overall recovery (13/18 tasks fully recovered despite a mean resection extent of 92.4%). Nevertheless, LSM analyses revealed that a lack of recovery in picture naming was linked to damage in the left inferior temporal gyrus and inferior longitudinal fasciculus. Similarly, for semantic fluency abilities, an association was established with damage to the left precuneus/posterior cingulate. For phonologic fluency abilities, the left dorso-medial frontal cortex and the frontal aslant tract were implicated. Moreover, difficulties in spatial exploration were associated with injury to the right dorsomedial prefrontal cortex and its underlying connectivity. An exploratory analysis suggested that supra-tumoral resections were associated with a less pronounced recovery following specific resection patterns, such as supra-tumour resections of the left uncinate fasciculus (picture naming), the left corticostriatal tract and the anterior corpus callosum (phonologic fluency), the hippocampus and para-hippocampus (episodic memory), and the right frontal-mesial areas (visuospatial exploration). Collectively, these patterns of results shed new light on both low-resilient neural systems and the prediction of cognitive recovery following glioma surgery. Furthermore, they indicate that supra-tumour resections were only occasionally less well-tolerated from a cognitive viewpoint. In doing so, they have deep implications for surgical planning and rehabilitation strategies.

10.
Brain ; 147(6): 2245-2257, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38243610

RESUMO

Advanced methods of imaging and mapping the healthy and lesioned brain have allowed for the identification of the cortical nodes and white matter tracts supporting the dual neurofunctional organization of language networks in a dorsal phonological and a ventral semantic stream. Much less understood are the anatomical correlates of the interaction between the two streams; one hypothesis being that of a subcortically mediated interaction, through crossed cortico-striato-thalamo-cortical and cortico-thalamo-cortical loops. In this regard, the pulvinar is the thalamic subdivision that has most regularly appeared as implicated in the processing of lexical retrieval. However, descriptions of its connections with temporal (language) areas remain scarce. Here we assess this pulvino-temporal connectivity using a combination of state-of-the-art techniques: white matter stimulation in awake surgery and postoperative diffusion MRI (n = 4), virtual dissection from the Human Connectome Project 3 and 7 T datasets (n = 172) and operative microscope-assisted post-mortem fibre dissection (n = 12). We demonstrate the presence of four fundamental fibre contingents: (i) the anterior component (Arnold's bundle proper) initially described by Arnold in the 19th century and destined to the anterior temporal lobe; (ii) the optic radiations-like component, which leaves the pulvinar accompanying the optical radiations and reaches the posterior basal temporal cortices; (iii) the lateral component, which crosses the temporal stem orthogonally and reaches the middle temporal gyrus; and (iv) the auditory radiations-like component, which leaves the pulvinar accompanying the auditory radiations to the superomedial aspect of the temporal operculum, just posteriorly to Heschl's gyrus. Each of those components might correspond to a different level of information processing involved in the lexical retrieval process of picture naming.


Assuntos
Pulvinar , Lobo Temporal , Humanos , Feminino , Masculino , Adulto , Lobo Temporal/fisiologia , Lobo Temporal/diagnóstico por imagem , Pulvinar/fisiologia , Pulvinar/diagnóstico por imagem , Vias Neurais/fisiologia , Conectoma , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Idioma , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
11.
Mol Ther ; 32(3): 722-733, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38311852

RESUMO

Oncolytic viruses are a promising treatment for patients with high-grade gliomas, but neutralizing antibodies can limit their efficacy in patients with prior virus exposure or upon repeated virus injections. Data from a previous clinical trial using the oncolytic adenovirus Delta-24-RGD showed that generation of anti-viral neutralizing antibodies may affect the long-term survival of glioma patients. Past studies have examined the effects of neutralizing antibodies during systemic virus injections, but largely overlooked their impact during local virus injections into the brain. We found that immunoglobulins colocalized with viral proteins upon local oncolytic virotherapy of brain tumors, warranting a strategy to prevent virus neutralization and maximize oncolysis. Thus, we generated a chimeric virus, Delta-24-RGD-H43m, by replacing the capsid protein HVRs from the serotype 5-based Delta-24-RGD with those from the rare serotype 43. Delta-24-RGD-H43m evaded neutralizing anti-Ad5 antibodies and conferred a higher rate of long-term survival than Delta-24-RGD in glioma-bearing mice. Importantly, Delta-24-RGD-H43m activity was significantly more resistant to neutralizing antibodies present in sera of glioma patients treated with Delta-24-RGD during a phase 1 clinical trial. These findings provide a framework for a novel treatment of glioma patients that have developed immunity against Delta-24-RGD.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Animais , Camundongos , Adenoviridae/genética , Anticorpos Neutralizantes , Glioma/terapia , Glioma/patologia , Neoplasias Encefálicas/patologia , Vírus Oncolíticos/genética , Anticorpos Antivirais , Oligopeptídeos/uso terapêutico
12.
Mol Cell Proteomics ; 22(3): 100502, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36669591

RESUMO

Ovarian cancer is one of the most lethal female cancers. For accurate prognosis prediction, this study aimed to investigate novel, blood-based prognostic biomarkers for high-grade serous ovarian carcinoma (HGSOC) using mass spectrometry-based proteomics methods. We conducted label-free liquid chromatography-tandem mass spectrometry using frozen plasma samples obtained from patients with newly diagnosed HGSOC (n = 20). Based on progression-free survival (PFS), the samples were divided into two groups: good (PFS ≥18 months) and poor prognosis groups (PFS <18 months). Proteomic profiles were compared between the two groups. Referring to proteomics data that we previously obtained using frozen cancer tissues from chemotherapy-naïve patients with HGSOC, overlapping protein biomarkers were selected as candidate biomarkers. Biomarkers were validated using an independent set of HGSOC plasma samples (n = 202) via enzyme-linked immunosorbent assay (ELISA). To construct models predicting the 18-month PFS rate, we performed stepwise selection based on the area under the receiver operating characteristic curve (AUC) with 5-fold cross-validation. Analysis of differentially expressed proteins in plasma samples revealed that 35 and 61 proteins were upregulated in the good and poor prognosis groups, respectively. Through hierarchical clustering and bioinformatic analyses, GSN, VCAN, SND1, SIGLEC14, CD163, and PRMT1 were selected as candidate biomarkers and were subjected to ELISA. In multivariate analysis, plasma GSN was identified as an independent poor prognostic biomarker for PFS (adjusted hazard ratio, 1.556; 95% confidence interval, 1.073-2.256; p = 0.020). By combining clinical factors and ELISA results, we constructed several models to predict the 18-month PFS rate. A model consisting of four predictors (FIGO stage, residual tumor after surgery, and plasma levels of GSN and VCAN) showed the best predictive performance (mean validated AUC, 0.779). The newly developed model was converted to a nomogram for clinical use. Our study results provided insights into protein biomarkers, which might offer clues for developing therapeutic targets.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Proteômica , Biomarcadores Tumorais , Cistadenocarcinoma Seroso/diagnóstico , Neoplasias Ovarianas/patologia , Proteínas Sanguíneas , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Endonucleases
13.
Proc Natl Acad Sci U S A ; 119(29): e2202015119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858326

RESUMO

Epigenetic dysregulation is a universal feature of cancer that results in altered patterns of gene expression that drive malignancy. Brain tumors exhibit subtype-specific epigenetic alterations; however, the molecular mechanisms responsible for these diverse epigenetic states remain unclear. Here, we show that the developmental transcription factor Sox9 differentially regulates epigenomic states in high-grade glioma (HGG) and ependymoma (EPN). Using our autochthonous mouse models, we found that Sox9 suppresses HGG growth and expands associated H3K27ac states, while promoting ZFTA-RELA (ZRFUS) EPN growth and diminishing H3K27ac states. These contrasting roles for Sox9 correspond with protein interactions with histone deacetylating complexes in HGG and an association with the ZRFUS oncofusion in EPN. Mechanistic studies revealed extensive Sox9 and ZRFUS promoter co-occupancy, indicating functional synergy in promoting EPN tumorigenesis. Together, our studies demonstrate how epigenomic states are differentially regulated in distinct subtypes of brain tumors, while revealing divergent roles for Sox9 in HGG and EPN tumorigenesis.


Assuntos
Neoplasias Encefálicas , Ependimoma , Epigênese Genética , Fatores de Transcrição SOX9 , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Ependimoma/genética , Ependimoma/patologia , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/fisiologia
14.
Proc Natl Acad Sci U S A ; 119(17): e2117065119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35467979

RESUMO

High-grade serous ovarian cancer (HGSOC) is a lethal malignancy characterized by an immunosuppressive tumor microenvironment containing few tumor infiltrating lymphocytes (TILs) and an insensitivity to checkpoint inhibitor immunotherapies. Gains in the PTK2 gene encoding focal adhesion kinase (FAK) at Chr8 q24.3 occur in ∼70% of HGSOC tumors, and elevated FAK messenger RNA (mRNA) levels are associated with poor patient survival. Herein, we show that active FAK, phosphorylated at tyrosine-576 within catalytic domain, is significantly increased in late-stage HGSOC tumors. Active FAK costained with CD155, a checkpoint receptor ligand for TIGIT (T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains), in HGSOC tumors and a selective association between FAK and TIGIT checkpoint ligands were supported by patient transcriptomic database analysis. HGSOC tumors with high FAK expression were associated with low CD3 mRNA levels. Accordingly, late-stage tumors showed elevated active FAK staining and significantly lower levels of CD3+ TILs. Using the KMF (Kras, Myc, FAK) syngeneic ovarian tumor model containing spontaneous PTK2 (FAK) gene gains, the effects of tumor intrinsic genetic or oral small molecule FAK inhibitior (FAKi; VS-4718) were evaluated in vivo. Blocking FAK activity decreased tumor burden, suppressed ascites KMF-associated CD155 levels, and increased peritoneal TILs. The combination of FAKi with blocking TIGIT antibody (1B4) maintained elevated TIL levels and reduced TIGIT+ T regulatory cell levels, prolonged host survival, increased CXCL13 levels, and led to the formation of omental tertiary lymphoid structures. Collectively, our studies support FAK and TIGIT targeting as a rationale immunotherapy combination for HGSOC.


Assuntos
Neoplasias Ovarianas , Animais , Carcinoma Epitelial do Ovário , Feminino , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Terapia de Imunossupressão , Ligantes , Camundongos , Neoplasias Ovarianas/patologia , Receptores Imunológicos/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(41): e2209589119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36197997

RESUMO

Environmental enteric dysfunction (EED) is an inflammatory syndrome postulated to contribute to stunted child growth and to be associated with intestinal dysbiosis and nutrient malabsorption. However, the small intestinal contributions to EED remain poorly understood. This study aimed to assess changes in the proximal and distal intestinal microbiota in the context of stunting and EED and to test for a causal role of these bacterial isolates in the underlying pathophysiology. We performed a cross-sectional study in two African countries recruiting roughly 1,000 children aged 2 to 5 years and assessed the microbiota in the stomach, duodenum, and feces. Upper gastrointestinal samples were obtained from stunted children and stratified according to stunting severity. Fecal samples were collected. We then investigated the role of clinical isolates in EED pathophysiology using tissue culture and animal models. We find that small intestinal bacterial overgrowth (SIBO) is extremely common (>80%) in stunted children. SIBO is frequently characterized by an overgrowth of oral bacteria, leading to increased permeability and inflammation and to replacement of classical small intestinal strains. These duodenal bacterial isolates decrease lipid absorption in both cultured enterocytes and mice, providing a mechanism by which they may exacerbate EED and stunting. Further, we find a specific fecal signature associated with the EED markers fecal calprotectin and alpha-antitrypsin. Our study shows a causal implication of ectopic colonization of oral bacterial isolated from the small intestine in nutrient malabsorption and gut leakiness in vitro. These findings have important therapeutic implications for modulating the microbiota through microbiota-targeted interventions.


Assuntos
Microbioma Gastrointestinal , Transtornos do Crescimento , Intestino Delgado , Lipídeos , Boca , Animais , Bactérias , Pré-Escolar , Estudos Transversais , Transtornos do Crescimento/etiologia , Humanos , Complexo Antígeno L1 Leucocitário , Metabolismo dos Lipídeos , Síndromes de Malabsorção , Camundongos , Modelos Teóricos , Boca/microbiologia
16.
J Infect Dis ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658353

RESUMO

In Norway, single cohort vaccination with quadrivalent HPV (qHPV) vaccine targeting 12-year-old girls took place from 2009-2016. In 2020, the oldest vaccinated cohort was 23 years old and had approached the age where risk of being diagnosed with cervical intraepithelial lesion grade 2 or worse (CIN2+) increases rapidly. The aim of this cohort study was to assess direct qHPV vaccine effectiveness (VE) against CIN2+ among Norwegian women aged 16-30 in 2007-2020. By using population-based health registries and individual-level data on vaccination status and potential subsequent CIN2+ incidence, we found 82% qHPV VE among women vaccinated before the age of 17.

17.
J Proteome Res ; 23(2): 749-759, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266179

RESUMO

High-grade serous ovarian carcinoma (HGSC) is the most prevalent subtype of epithelial ovarian cancer. The combination of a high rate of recurrence and novel therapies in HGSC necessitates an accurate assessment of the disease. Currently, HGSC response to treatment and recurrence are monitored via immunoassay of serum levels of the glycoprotein CA125. CA125 levels predictably rise at HGSC recurrence; however, it is likely that the disease is progressing even before it is detectable through CA125. This may explain why treating solely based on CA125 increase has not been associated with improved outcomes. Thus, additional biomarkers that monitor HGSC progression and cancer recurrence are needed. For this purpose, we developed a scheduled parallel reaction monitoring mass spectrometry (PRM-MS) assay for the quantification of four previously identified HGSC-derived glycopeptides (from proteins FGL2, LGALS3BP, LTBP1, and TIMP1). We applied the assay to quantify their longitudinal expression profiles in 212 serum samples taken from 34 HGSC patients during disease progression. Analyses revealed that LTBP1 best-mirrored tumor load, dropping as a result of cancer treatment in 31 out of 34 patients and rising at HGSC recurrence in 28 patients. Additionally, LTBP1 rose earlier during remission than CA125 in 11 out of 25 platinum-sensitive patients with an average lead time of 116.4 days, making LTBP1 a promising candidate for monitoring of HGSC recurrence.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Biomarcadores Tumorais , Cistadenocarcinoma Seroso/patologia , Recidiva Local de Neoplasia , Glicoproteínas , Espectrometria de Massas , Fibrinogênio , Proteínas de Ligação a TGF-beta Latente
18.
J Cell Mol Med ; 28(8): e18149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613361

RESUMO

Patients with high-grade gliomas are at high risk of venous thromboembolism (VTE). MicroRNAs (miRNAs) are small non-coding RNAs with multiple roles in tumour biology, haemostasis and platelet function. Their association with VTE risk in high-grade glioma has not been comprehensively mapped so far. We thus conducted a nested case-control study within 152 patients with WHO grade IV glioma that had been part of a prospective cohort study on VTE risk factors. At inclusion a single blood draw was taken, and patients were thereafter followed for a maximum of 2 years. During that time, 24 patients (16%) developed VTE. Of the other 128 patients, we randomly selected 24 age- and sex-matched controls. After quality control, the final group size was 21 patients with VTE during follow-up and 23 without VTE. Small RNA next-generation sequencing of plasma was performed. We observed that hsa-miR-451a was globally the most abundant miRNA. Notably, 51% of all miRNAs showed a correlation with platelet count. The analysis of miRNAs differentially regulated in VTE patients-with and without platelet adjustment-identified potential VTE biomarker candidates such as has-miR-221-3p. Therewith, we here provide one of the largest and deepest peripheral blood miRNA datasets of high-grade glioma patients so far, in which we identified first VTE biomarker candidates that can serve as the starting point for future research.


Assuntos
Glioma , MicroRNAs , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Estudos de Casos e Controles , Estudos Prospectivos , MicroRNAs/genética , Glioma/genética , Biomarcadores
19.
Breast Cancer Res ; 26(1): 90, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831336

RESUMO

BACKGROUND: Nottingham histological grade (NHG) is a well established prognostic factor in breast cancer histopathology but has a high inter-assessor variability with many tumours being classified as intermediate grade, NHG2. Here, we evaluate if DeepGrade, a previously developed model for risk stratification of resected tumour specimens, could be applied to risk-stratify tumour biopsy specimens. METHODS: A total of 11,955,755 tiles from 1169 whole slide images of preoperative biopsies from 896 patients diagnosed with breast cancer in Stockholm, Sweden, were included. DeepGrade, a deep convolutional neural network model, was applied for the prediction of low- and high-risk tumours. It was evaluated against clinically assigned grades NHG1 and NHG3 on the biopsy specimen but also against the grades assigned to the corresponding resection specimen using area under the operating curve (AUC). The prognostic value of the DeepGrade model in the biopsy setting was evaluated using time-to-event analysis. RESULTS: Based on preoperative biopsy images, the DeepGrade model predicted resected tumour cases of clinical grades NHG1 and NHG3 with an AUC of 0.908 (95% CI: 0.88; 0.93). Furthermore, out of the 432 resected clinically-assigned NHG2 tumours, 281 (65%) were classified as DeepGrade-low and 151 (35%) as DeepGrade-high. Using a multivariable Cox proportional hazards model the hazard ratio between DeepGrade low- and high-risk groups was estimated as 2.01 (95% CI: 1.06; 3.79). CONCLUSIONS: DeepGrade provided prediction of tumour grades NHG1 and NHG3 on the resection specimen using only the biopsy specimen. The results demonstrate that the DeepGrade model can provide decision support to identify high-risk tumours based on preoperative biopsies, thus improving early treatment decisions.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Gradação de Tumores , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Pessoa de Meia-Idade , Biópsia , Medição de Risco/métodos , Prognóstico , Idoso , Adulto , Suécia/epidemiologia , Período Pré-Operatório , Redes Neurais de Computação , Mama/patologia , Mama/cirurgia
20.
Lab Invest ; 104(1): 100281, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924948

RESUMO

Several nomenclature and grading systems have been proposed for conjunctival melanocytic intraepithelial lesions (C-MIL). The fourth "WHO Classification of Eye Tumors" (WHO-EYE04) proposed a C-MIL classification, capturing the progression of noninvasive neoplastic melanocytes from low- to high-grade lesions, onto melanoma in situ (MIS), and then to invasive melanoma. This proposal was revised to the WHO-EYE05 C-MIL system, which simplified the high-grade C-MIL, whereby MIS was subsumed into high-grade C-MIL. Our aim was to validate the WHO-EYE05 C-MIL system using digitized images of C-MIL, stained with hematoxylin and eosin and immunohistochemistry. However, C-MIL cases were retrieved from 3 supraregional ocular pathology centers. Adequate conjunctival biopsies were stained with hematoxylin and eosin, Melan-A, SOX10, and PReferentially expressed Antigen in Melanoma. Digitized slides were uploaded on the SmartZoom platform and independently scored by 4 ocular pathologists to obtain a consensus score, before circulating to 14 expert eye pathologists for independent scoring. In total, 105 cases from 97 patients were evaluated. The initial consensus diagnoses using the WHO-EYE04 C-MIL system were as follows: 28 benign conjunctival melanoses, 13 low-grade C-MIL, 37 high-grade C-MIL, and 27 conjunctival MIS. Using this system resulted in 93% of the pathologists showing only fair-to-moderate agreement (kappa statistic) with the consensus score. The WHO-EYE05 C-MIL system (with high-grade C-MIL and MIS combined) improved consistency between pathologists, with the greatest level of agreement being seen with benign melanosis (74.5%) and high-grade C-MIL (85.4%). Lowest agreements remained between pathologists for low-grade C-MIL (38.7%). Regarding WHO-EYE05 C-MIL scoring and clinical outcomes, local recurrences of noninvasive lesions developed in 8% and 34% of the low- and high-grade cases. Invasive melanoma only occurred in 47% of the cases that were assessed as high-grade C-MIL. This extensive international collaborative study is the first to undertake a comprehensive review of the WHO-EYE05 C-MIL scoring system, which showed good interobserver agreement and reproducibility.


Assuntos
Melanoma , Melanose , Neoplasias Cutâneas , Humanos , Melanoma/diagnóstico , Melanoma/patologia , Prognóstico , Reprodutibilidade dos Testes , Amarelo de Eosina-(YS) , Hematoxilina , Melanócitos , Neoplasias Cutâneas/patologia , Melanose/patologia , Organização Mundial da Saúde , Estudos Multicêntricos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA