Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(28): 16509-16515, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601200

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD), characterized by progressive muscle weakness and deterioration, is genetically linked to aberrant expression of DUX4 in muscle. DUX4, in its full-length form, is cytotoxic in nongermline tissues. Here, we designed locked nucleic acid (LNA) gapmer antisense oligonucleotides (AOs) to knock down DUX4 in immortalized FSHD myoblasts and the FLExDUX4 FSHD mouse model. Using a screening method capable of reliably evaluating the knockdown efficiency of LNA gapmers against endogenous DUX4 messenger RNA in vitro, we demonstrate that several designed LNA gapmers selectively and effectively reduced DUX4 expression with nearly complete knockdown. We also found potential functional benefits of AOs on muscle fusion and structure in vitro. Finally, we show that one of the LNA gapmers was taken up and induced effective silencing of DUX4 upon local treatment in vivo. The LNA gapmers developed here will help facilitate the development of FSHD therapies.


Assuntos
Terapia Genética , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/terapia , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Mioblastos/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo
2.
Am J Physiol Renal Physiol ; 323(6): F686-F699, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227097

RESUMO

Obesity is associated with increased risk for diabetes and damage to the kidneys. Evidence suggests that miR-379 plays a role in the pathogenesis of diabetic kidney disease. However, its involvement in obesity-induced kidney injury is not known and was therefore investigated in this study by comparing renal phenotypes of high-fat diet (HFD)-fed wild-type (WT) and miR-379 knockout (KO) mice. Male and female WT mice on the HFD for 10 or 24 wk developed obesity, hyperinsulinemia, and kidney dysfunction manifested by albuminuria and glomerular injuries. However, these adverse alterations in HFD-fed WT mice were significantly ameliorated in HFD-fed miR-379 KO mice. HFD feeding increased glomerular expression of miR-379 and decreased its target gene, endoplasmic reticulum (ER) degradation enhancing α-mannosidase-like protein 3 (Edem3), a negative regulator of ER stress. Relative to the standard chow diet-fed controls, expression of profibrotic transforming growth factor-ß1 (Tgf-ß1) was significantly increased, whereas Zeb2, which encodes ZEB2, a negative regulator of Tgf-ß1, was decreased in the glomeruli in HFD-fed WT mice. Notably, these changes as well as HFD-induced increased expression of other profibrotic genes, glomerular hypertrophy, and interstitial fibrosis in HFD-fed WT mice were attenuated in HFD-fed miR-379 KO mice. In cultured primary glomerular mouse mesangial cells (MMCs) isolated from WT mice, treatment with high insulin (mimicking hyperinsulinemia) increased miR-379 expression and decreased its target, Edem3. Moreover, insulin also upregulated Tgf-ß1 and downregulated Zeb2 in WT MMCs, but these changes were significantly attenuated in MMCs from miR-379 KO mice. Together, these experiments revealed that miR-379 deletion protects mice from HFD- and hyperinsulinemia-induced kidney injury at least in part through reduced ER stress.NEW & NOTEWORTHY miR-379 knockout mice are protected from high-fat diet (HFD)-induced kidney damage through key miR-379 targets associated with ER stress (Edem3). Mechanistically, treatment of mesangial cells with insulin (mimicking hyperinsulinemia) increased expression of miR-379, Tgf-ß1, miR-200, and Chop and decreases Edem3. Furthermore, TGF-ß1-induced fibrotic genes are attenuated by a GapmeR targeting miR-379. The results implicate a miR-379/EDEM3/ER stress/miR-200c/Zeb2 signaling pathway in HFD/obesity/insulin resistance-induced renal dysfunction. Targeting miR-379 with GapmeRs can aid in the treatment of obesity-induced kidney disease.


Assuntos
Nefropatias Diabéticas , Resistência à Insulina , MicroRNAs , Animais , Feminino , Masculino , Camundongos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Rim/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
3.
Chembiochem ; 23(15): e202200168, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35675170

RESUMO

We analyzed the effect of modified nucleotides within gapmer antisense oligonucleotides on RNase H mediated gene silencing. Additionally, short hairpins were introduced into antisense oligonucleotides as structural motifs, and their influence on biological and physicochemical properties of pre-structured gapmers was investigated for the first time. The results indicate that two LNA residues in specified positions of the gap flanking regions are sufficient and favorable for efficient knock-down of the ß-actin gene. Furthermore, the introduction of other modified nucleotides, i. e. glycyl-amino-LNA-T, 2'-O-propagyluridine, polyamine functionalized uridine, and UNA, in specified positions, also increases the inhibition of ß-actin expression. Importantly, the presence of hairpins within the gapmers improves their silencing properties.


Assuntos
Actinas , Oligonucleotídeos Antissenso , Expressão Gênica , Nucleotídeos , Oligonucleotídeos Antissenso/química , Ribonuclease H/genética , Ribonuclease H/metabolismo
4.
Mol Ther ; 29(2): 848-858, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33068777

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by a progressive, asymmetric weakening of muscles, starting with those in the upper body. It is caused by aberrant expression of the double homeobox protein 4 gene (DUX4) in skeletal muscle. FSHD is currently incurable. We propose to develop a therapy for FSHD using antisense 2'-O-methoxyethyl (2'-MOE) gapmers, to knock down DUX4 mRNA expression. Using immortalized patient-derived muscle cells and local intramuscular injections in the FLExDUX4 FSHD mouse model, we showed that our designed 2'-MOE gapmers significantly reduced DUX4 transcript levels in vitro and in vivo, respectively. Furthermore, in vitro, we observed significantly reduced expression of DUX4-activated downstream targets, restoration of FSHD signature genes by RNA sequencing, significant improvements in myotube morphology, and minimal off-target activity. This work facilitates the development of a promising candidate therapy for FSHD and lays down the foundation for in vivo systemic treatment studies.


Assuntos
Técnicas de Silenciamento de Genes , Inativação Gênica , Terapia Genética , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/terapia , Oligonucleotídeos Antissenso , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo
5.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745067

RESUMO

The development of oligonucleotide conjugates for in vivo targeting is one of the most exciting areas for oligonucleotide therapeutics. A major breakthrough in this field was the development of multifunctional GalNAc-oligonucleotides with high affinity to asialoglycoprotein receptors (ASGPR) that directed therapeutic oligonucleotides to hepatocytes. In the present study, we explore the use of G-rich sequences functionalized with one unit of GalNAc at the 3'-end for the formation of tetrameric GalNAc nanostructures upon formation of a parallel G-quadruplex. These compounds are expected to facilitate the synthetic protocols by providing the multifunctionality needed for the binding to ASGPR. To this end, several G-rich oligonucleotides carrying a TGGGGGGT sequence at the 3'-end functionalized with one molecule of N-acetylgalactosamine (GalNAc) were synthesized together with appropriate control sequences. The formation of a self-assembled parallel G-quadruplex was confirmed through various biophysical techniques such as circular dichroism, nuclear magnetic resonance, polyacrylamide electrophoresis and denaturation curves. Binding experiments to ASGPR show that the size and the relative position of the therapeutic cargo are critical for the binding of these nanostructures. The biological properties of the resulting parallel G-quadruplex were evaluated demonstrating the absence of the toxicity in cell lines. The internalization preferences of GalNAc-quadruplexes to hepatic cells were also demonstrated as well as the enhancement of the luciferase inhibition using the luciferase assay in HepG2 cell lines versus HeLa cells. All together, we demonstrate that tetramerization of G-rich oligonucleotide is a novel and simple route to obtain the beneficial effects of multivalent N-acetylgalactosamine functionalization.


Assuntos
Acetilgalactosamina , Quadruplex G , Acetilgalactosamina/química , Receptor de Asialoglicoproteína/metabolismo , Células HeLa , Hepatócitos , Humanos , Oligonucleotídeos/metabolismo
6.
Chembiochem ; 21(22): 3234-3243, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32662164

RESUMO

Oligonucleotides (ON) are promising therapeutic candidates, for instance by blocking endogenous mRNA (antisense mechanism). However, ON usually require structural modifications of the native nucleic acid backbone to ensure satisfying pharmacokinetic properties. One such strategy to design novel antisense oligonucleotides is to replace native phosphate diester units by positively charged artificial linkages, thus leading to (partially) zwitterionic backbone structures. Herein, we report a "gapmer" architecture comprised of one zwitterionic central segment ("gap") containing nucleosyl amino acid (NAA) modifications and two outer segments of locked nucleic acid (LNA). This NAA/LNA-gapmer approach furnished a partially zwitterionic ON with optimised properties: i) the formation of stable ON-RNA duplexes with base-pairing fidelity and superior target selectivity at 37 °C; and ii) excellent stability in complex biological media. Overall, the NAA/LNA-gapmer approach is thus established as a strategy to design partially zwitterionic ON for the future development of novel antisense agents.


Assuntos
Aminoácidos/química , Nucleosídeos/química , Oligonucleotídeos/química , Conformação de Ácido Nucleico
7.
Chemistry ; 26(6): 1368-1379, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31682037

RESUMO

Off-target effects remain a significant challenge in the therapeutic use of gapmer antisense oligonucleotides (AONs). Over the years various modifications have been synthesized and incorporated into AONs, however, precise control of RNase H-induced cleavage and target sequence selectivity has yet to be realized. Herein, the synthesis of the uracil and cytosine derivatives of a novel class of 2'-deoxy-2'-fluoro-3'-C-hydroxymethyl-ß-d-lyxo-configured nucleotides has been accomplished and the target molecules have been incorporated into AONs. Experiments on exonuclease degradation showed improved nucleolytic stability relative to the unmodified control. Upon the introduction of one or two of the novel 2'-fluoro-3'-C-hydroxymethyl nucleotides as modifications in the gap region of a gapmer AON was associated with efficient RNase H-mediated cleavage of the RNA strand of the corresponding AON:RNA duplex. Notably, a tailored single cleavage event could be engineered depending on the positioning of a single modification. The effect of single mismatched base pairs was scanned along the full gap region demonstrating that the modification enables a remarkable specificity of RNase H cleavage. A cell-based model system was used to demonstrate the potential of gapmer AONs containing the novel modification to mediate gene silencing.


Assuntos
Inativação Gênica , Nucleotídeos/química , Oligonucleotídeos Antissenso/química , Ribonuclease H/metabolismo , Sequência de Bases , Estabilidade Enzimática , Células HeLa , Humanos , Concentração Inibidora 50 , Desnaturação de Ácido Nucleico , Nucleotídeos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , RNA/química , RNA/metabolismo , Temperatura , Transfecção
8.
Curr Drug Deliv ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38918987

RESUMO

Nanoparticle-based delivery systems have emerged as promising tools in oligonucleotide therapeutics, facilitating precise and targeted delivery to address several disease conditions. The multifaceted landscape of nanoparticle-based oligonucleotide delivery encompasses the fundamental aspects of nanotechnology in delivery systems, various classes of oligonucleotides, and the growing field of ON-based therapeutics. These ON-based therapeutics are utilized to target specific genetic sequences within cells, offering promising avenues for treating various diseases by regulating gene expression or interfering with specific cellular processes. The integration of nanotechnology in delivery systems offers several advantages, given their intricate systems. Being a diverse class of agents, oligonucleotides provide a wide range of potential owed to each class of agents that support therapeutic interventions. Oligonucleotide-based platforms have demonstrated their versatility in molecular targeting and intervention strategies. Moreover, the complexities and delivery challenges in oligonucleotide therapeutics are expected to be overcome by the application of nanotechnology-based platforms.Because nanoparticles can overcome biological barriers and improve bioavailability, stability, and specificity, their role in developing oligonucleotide delivery systems is greatly valued. The innovative solutions facilitated by nanoparticles are efficient strategies to address the arduous barriers. These strategies beat obstacles like enzymatic degradation, cellular uptake, and immune response, which in turn paves the way for enhanced therapeutic efficacy. This review paper intends to explore the various applications of nanoparticle-mediated oligonucleotide delivery in a variety of diseases. It outlines the promising growth of therapies enabled by these systems, extending from cancer to genetic disorders, neurodegenerative diseases, etc. We have underscored the pivotal role of nanoparticle-based delivery systems in uncovering the full potential of oligonucleotide therapeutics, thereby fostering advancements in precision medicine and targeted therapies.

9.
Nucleic Acid Ther ; 33(6): 381-385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37782140

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused the current worldwide pandemic and the associated coronavirus disease 2019 with potentially lethal outcome. Although effective vaccines strongly contributed to reduce disease severity, establishing a toolbox to control current and newly emerging coronaviruses of epidemic concern requires the development of novel therapeutic compounds, to treat severely infected individuals and to prevent virus transmission. Here we present a therapeutic strategy targeting the SARS-CoV-2 RNA genome using antisense oligonucleotides (ASOs). We demonstrate that selected locked nucleic acid gapmers have the potency to reduce the in vitro intracellular viral load by up to 96%. Our promising results strongly support the case for further development of our preselected ASOs as therapeutic or prophylactic antiviral agents.


Assuntos
COVID-19 , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , SARS-CoV-2/genética , RNA Viral/genética , COVID-19/genética , COVID-19/terapia
10.
Biomolecules ; 13(11)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002341

RESUMO

Ribosomal frameshifting (RFS) at the slippery site of SARS-CoV-2 RNA is essential for the biosynthesis of the viral replication machinery. It requires the formation of a pseudoknot (PK) structure near the slippery site and can be inhibited by PK-disrupting oligonucleotide-based antivirals. We obtained and compared three types of such antiviral candidates, namely locked nucleic acids (LNA), LNA-DNA gapmers, and G-clamp-containing phosphorothioates (CPSs) complementary to PK stems. Using optical and electrophoretic methods, we showed that stem 2-targeting oligonucleotide analogs induced PK unfolding at nanomolar concentrations, and this effect was particularly pronounced in the case of LNA. For the leading PK-unfolding LNA and CPS oligonucleotide analogs, we also demonstrated dose-dependent RSF inhibition in dual luciferase assays (DLAs). Finally, we showed that the leading oligonucleotide analogs reduced SARS-CoV-2 replication at subtoxic concentrations in the nanomolar range in two human cell lines. Our findings highlight the promise of PK targeting, illustrate the advantages and limitations of various types of DNA modifications and may promote the future development of oligonucleotide-based antivirals.


Assuntos
COVID-19 , Mudança da Fase de Leitura do Gene Ribossômico , Humanos , Oligonucleotídeos Fosforotioatos/farmacologia , SARS-CoV-2/metabolismo , RNA Viral/metabolismo , Antivirais/farmacologia , DNA/metabolismo , Replicação Viral , Conformação de Ácido Nucleico
11.
Int J Mol Cell Med ; 12(1): 18-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942262

RESUMO

Acute myeloid leukemia (AML) is an invasive form of hematologic malignancies which results in the overproduction of myeloid cells in the bone marrow. Aberrant expression of piwi-interacting RNAs (piRNAs) which belong to small non-coding RNAs, play important roles in different cancer cells' progress. hsa- piR- 32877 is up-regulated in AML. Down regulation of hsa-piR-32877 by antisense LNA GapmeRs could be potential for suppression of myeloid cell proliferation and induce myeloid cell apoptosis. We have blocked the expression of hsa-piR-32877 by antisense LNA GapmeRs in human bone marrow blast cells, and the M-07e cell line. Samples were transfected with antisense LNA GapmeRs at 24, 48, and 72 hours. The Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed to investigate the expression of hsa-piR-32877, CASP3, and CASP9. Both CASP3 and CASP9 play important roles in apoptosis. Cell proliferation was studied via CFSE (carboxyfluorescein diacetate succinimidyl ester) assay. Results showed that hsa-piR-32877 was down-regulated by antisense LNA GapmeRs in the patient and cell line samples. Also, after transfection, cell proliferation and apoptosis decreased and increased, respectively. Our data suggested that hsa-piR-32877 suppression may act as a novel therapeutic method for the inhibition of human leukemic cells proliferation in AML.

12.
Methods Mol Biol ; 2587: 197-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36401032

RESUMO

The third most common muscular dystrophy in the world, facioscapulohumeral muscular dystrophy (FSHD), is an inherited disorder characterized by distinct asymmetric, progressive skeletal muscle weakness that begins in the upper body and spreads to other regions with age. It is caused by mutations that induce aberrant expression of the DUX4 gene in skeletal muscle. DUX4 is highly cytotoxic in skeletal muscle, dysregulating numerous signaling pathways as a result of its transcription factor activity. A promising set of approaches being developed to treat FSHD uses antisense oligonucleotides (AOs) to inhibit DUX4 transcript expression. Both steric-blocking and gapmer AOs have been shown to induce efficient DUX4 transcript knockdown in vitro and in vivo. Here, we describe a protocol that allows reliable screening of DUX4-targeting AOs through the evaluation of DUX4 transcript expression by quantitative real-time polymerase chain reaction. We also describe methods to assess the efficacy of these AOs by looking at their effect on the expression of DUX4 downstream target and potential off-target genes, as well as on the amelioration of in vitro muscle cell phenotypes.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/terapia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Genes Homeobox , Músculo Esquelético/metabolismo , Células Musculares/metabolismo
13.
Mol Ther Nucleic Acids ; 30: 115-130, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36250205

RESUMO

We investigated the role of microRNA (miR-379) in the pathogenesis of obesity, adipose tissue dysfunction, and insulin resistance (IR). We used miR-379 knockout (miR-379KO) mice to test whether loss of miR-379 affects high-fat diet (HFD)-induced obesity and IR via dysregulation of key miR-379 targets in adipose tissue. Increases in body weight, hyperinsulinemia, and IR in wild-type (WT)-HFD mice were significantly attenuated in miR-379KO-HFD mice with some sex differences. Relative to control chow-fed mice, in WT-HFD mice, expression of miR-379 and C/EBP homologous protein (Chop) (pro-endoplasmic reticulum [ER] stress) and inflammation in perigonadal white adipose tissue (gWAT) were increased, whereas adipogenic genes and miR-379 target genes (Vegfb and Edem3) were decreased. These changes, as well as key parameters of brown adipose tissue dysfunction (including mitochondrial defects), were significantly attenuated in miR-379KO-HFD mice. WAT from obese human subjects with and without type 2 diabetes showed increased miR-379 and decreased miR-379 target genes. In cultured 3T3L1 pre-adipocytes, miR-379 inhibitors increased miR-379 targets and adipogenic genes. These data suggest that miR-379 plays an important role in HFD-induced obesity through increased adipose inflammation, mitochondrial dysfunction, and ER stress as well as impaired adipogenesis and angiogenesis. miR-379 inhibitors may be developed as novel therapies for obesity and associated complications.

14.
Front Mol Biosci ; 9: 887678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406277

RESUMO

A colloidal synthesis' proof-of-concept based on the Bligh-Dyer emulsion inversion method was designed for integrating into lipid nanoparticles (LNPs) cell-permeating DNA antisense oligonucleotides (ASOs), also known as GapmeRs (GRs), for mRNA interference. The GR@LNPs were formulated to target brain border-associated macrophages (BAMs) as a central nervous system (CNS) therapy platform for silencing neuroinflammation-related genes. We specifically aim at inhibiting the expression of the gene encoding for lipocalin-type prostaglandin D synthase (L-PGDS), an anti-inflammatory enzyme expressed in BAMs, whose level of expression is altered in neuropsychopathologies such as depression and schizophrenia. The GR@LNPs are expected to demonstrate a bio-orthogonal genetic activity reacting with L-PGDS gene transcripts inside the living system without interfering with other genetic or biochemical circuitries. To facilitate selective BAM phagocytosis and avoid subsidiary absorption by other cells, they were functionalized with a mannosylated lipid as a specific MAN ligand for the mannose receptor presented by the macrophage surface. The GR@LNPs showed a high GR-packing density in a compact multilamellar configuration as structurally characterized by light scattering, zeta potential, and transmission electronic microscopy. As a preliminary biological evaluation of the mannosylated GR@LNP nanovectors into specifically targeted BAMs, we detected in vivo gene interference after brain delivery by intracerebroventricular injection (ICV) in Wistar rats subjected to gene therapy protocol. The results pave the way towards novel gene therapy platforms for advanced treatment of neuroinflammation-related pathologies with ASO@LNP nanovectors.

15.
Med ; 3(11): 740-759, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370694

RESUMO

Genome sequencing in the clinic often allows patients to receive a molecular diagnosis. However, variants are most often evaluated for pathogenicity, neglecting potential treatability and thus often yielding limited clinical benefit. Antisense oligonucleotides (ASOs), among others, offer attractive programmable and relatively safe platforms for customized therapy based upon the causative genetic variant. The landscape of ASO-treatable variants is largely uncharted, with new developments emerging for loss-of-function, haploinsufficient, and gain-of-function effects. ASOs can access the transcriptome to target splice-gain variants, poison exons, untranslated/regulatory regions, and naturally occurring antisense transcripts. Here we assess public variant databases and find that approximately half of pathogenic variants have one or more viable avenues for ASO therapy. The future might see medical teams considering "treatability" when interpreting genomic sequencing results to fully realize benefits for patients.


Assuntos
Oligonucleotídeos Antissenso , Farmacogenética , Medicina de Precisão , Humanos , Sequência de Bases , Éxons , Mutação , Oligonucleotídeos Antissenso/uso terapêutico
16.
Biomedicines ; 9(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068948

RESUMO

Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2'-O-methylation.

17.
Int J Mol Cell Med ; 10(4): 249-258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35875337

RESUMO

Recent improvements in molecular treatment and gene therapy led to discovering novel cancer remedies. Antisense LNA GapmeRs is a state-of-the-art molecular research field for diagnosing and treating various cancer types. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy defined by the rapid accumulation and malignant proliferation of immature myeloid progenitors. SOX12 is a new potential target for acute myeloid leukemia. In this study, SOX12 was blocked by antisense LNA GapmeRs (ALG) in human AML cell lines (KG1 and M07e). Cells were transfected with Gapmer anti-SOX12 at 24, 48, and 72 h post-transfection. Transfection efficiency was assessed by a fluorescent microscope. Furthermore, evaluation of SOX12, TWIST1, CTNNB1, CASP3, and CASP9 expression was performed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell viability was determined by MTT assay. SOX12 expression was decreased remarkably in the ALG group. Moreover, SOX12 knockdown was associated with a decrease in TWIST1 and CTNNB1 expression. Besides, downregulation of SOX12 in both cell lines could induce apoptosis, probably through upregulation of CASP3 and CASP9. The findings reveal that SOX12 knockdown could be a new target for reducing AML cells proliferation through antisense therapy approach.

18.
Methods Mol Biol ; 2300: 31-37, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33792869

RESUMO

The assessment of non-coding RNAs (ncRNAs) functions highly relies on loss of function studies. However, due to their exclusive or partial nuclear localization, many small and long ncRNAs are not efficiently silenced by RNA interference. Antisense LNA GapmeRs constitute a good alternative to RNAi. They allow an effective knockdown of ncRNAs with sizes greater than 80 nucleotides, regardless of their cellular localization. This chapter focuses on the silencing of two different nuclear ncRNAs (ANRIL and SATIII RNAs) in mammalian cells using antisense LNA GapmeRs with two different transfection methods: calcium phosphate-mediated transfection and LipofectamineTM 2000.


Assuntos
Oligonucleotídeos Antissenso/farmacologia , RNA Longo não Codificante/genética , Transfecção/métodos , Fosfatos de Cálcio/química , Inativação Gênica , Células HEK293 , Células HeLa , Humanos , Lipídeos/química
19.
Clin Transl Oncol ; 22(11): 2103-2110, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32406010

RESUMO

PURPOSE: Acute myeloblastic leukemia with minimally differentiation (AML-M0) is a subtype of acute leukemia with poor prognosis. The recent studies have shown that long non-coding RNAs (lncRNAs) play an important role in different cellular processes, such as cell cycle control and proliferation. Plasmacytoma variant translocation 1 (PVT1) is one of those lncRNAs that is significantly upregulated in AML. LncRNAs could be downregulated or blocked by locked nucleic acids (LNA) which are oligonucleotide strands. METHODS: In this study, lncRNA PVT1 was blocked by antisense LNA GapmeRs in human bone marrow cancerous blast cells. Cells were transfected with PVT1 antisense LNA GapmeRs at 24, 48, and 72 h post-transfection. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was accomplished to evaluate the PVT1 and c-Myc expression. Cell viability was evaluated by MTT assay, and apoptosis and necrosis were assessed by Annexin V/propidium iodide staining assay. RESULTS: The results of this study indicated that the downregulation of PVT1 in blast cells could induce apoptosis, and necrosis and reduce cell viability. The expression of c-Myc was downregulated by blockage of PVT1 and it shows that the expression of these two genes are correlated. CONCLUSION: The findings declare that inhibition of PVT1 could be a new target in the treatment of AML-M0 and help to approach more to treatments with fewer side effects.


Assuntos
Células da Medula Óssea/fisiologia , Leucemia Mieloide Aguda/patologia , RNA Longo não Codificante/antagonistas & inibidores , Apoptose , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/fisiologia , RNA Longo não Codificante/metabolismo
20.
Methods Mol Biol ; 2176: 177-184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32865791

RESUMO

This chapter describes the use of locked nucleic acid (LNA) GapmeRs for the in vivo knockdown of specific mRNAs in the mouse liver and phenotype analysis. LNA GapmeRs may be tested for efficacy by transfection in cultured cells. They are delivered into mice in vivo by intravenous tail injection .


Assuntos
Técnicas de Silenciamento de Genes/métodos , Fígado/fisiologia , Oligonucleotídeos/genética , Animais , Citocromo P-450 CYP2E1/genética , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica , Injeções Intravenosas , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Obesidade/etiologia , Obesidade/genética , Oligonucleotídeos/administração & dosagem , PTEN Fosfo-Hidrolase/genética , Sirtuína 1/genética , Cauda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA