RESUMO
BACKGROUND: Cisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs). METHODS: CSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays. RESULTS: CSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an 'initial burst effect' followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells. CONCLUSION: The nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.
RESUMO
We study for the first time whether triphenylphosphonium (TPP) moiety can improve cellular delivery and redox properties of amphipathic cationic peptides based on YRFK/YrFK cell-penetrating and cytoprotective motif. TPP moiety was found to increase reducing activity of both stereoisomeric peptides in solution and on electrode surface in association with TPP-mediated intramolecular interactions. Among TPP-conjugated peptides, newly synthesized TPP3-YrFK featured both increased antioxidant efficacy and proteolytic resistance. TPP-conjugated peptides preferably mitigated endogenic ROS in mitochondria and cytoplasm of model glioblastoma cells with increased oxidative status. This anti-ROS effect was accompanied by mild reversible decrease of reduced glutathione level in the cells with relatively weak change in glutathione redox forms ratio. Such low interference with cell redox status is in accordance with non-cytotoxic nature of the compounds. Intracellular concentrations of label-free peptides were analyzed by LC-MS/MS, which showed substantial TPP-promoted penetration of YrFK motif across cell plasma membrane. However, according to ΔΨm analysis, TPP moiety did not profoundly enhance peptide interaction with mitochondrial inner membrane. Our study clarifies the role of TPP moiety in cellular delivery of amphipathic cationic oligopeptides. The results suggest TPP moiety as a multi-functional modifier for the oligopeptides which is capable of improving cellular pharmacokinetics and antioxidant activity as well as targeting increased ROS levels. The results encourage further investigation of TPP3-YrFK as a peptide antioxidant with multiple benefits.
RESUMO
Lophatherum gracile (L. gracile) has long been used as a functional food and herbal medicine. Previous studies have demonstrated that extracts of L. gracile attenuate inflammatory response and inhibit SARS-CoV-2 replication; however, the underlying active constituents have yet to be identified. This study investigated the bioactive components of L. gracile. Flavone C-glycosides of L. gracile were found to dominate both anti-inflammatory and antiviral effects. A simple chromatography-based method was developed to obtain flavone C-glycoside-enriched extract (FlavoLG) from L. gracile. FlavoLG and its major flavone C-glycoside isoorientin were shown to restrict respiratory bursts and the formation of neutrophil extracellular traps in activated human neutrophils. FlavoLG and isoorientin were also shown to inhibit SARS-CoV-2 pseudovirus infection by interfering with the binding of the SARS-CoV-2 spike on ACE2. These results provide scientific evidence indicating the efficacy of L. gracile as a potential supplement for treating neutrophil-associated COVID-19.
RESUMO
Indigo naturalis, a herbal medicine purified from indigo-containing plants, such as Strobilanthes cusia, Isatis tinctoria, and Polygonum tinctorium, has been reported to be useful in the treatment of ulcerative colitis by activating the aryl hydrocarbon receptor. However, the aryl hydrocarbon receptor pathway causes crucial side effects, such as pulmonary arterial hypertension. Although P. tinctorium is one of the plant derivatives of indigo naturalis, it is not identical to it. To date, the pure leaves of P. tinctorium have not been reported to ameliorate ulcerative colitis. Therefore, we investigated the effect of pure P. tinctorium leaves, which are consumed in some regions, on experimental colitis induced in mice using sodium dextran sulfate. We found that P. tinctorium leaves ameliorated weight loss (P < 0.01) and pathological inflammatory changes in the colon (P < 0.05), enhanced mRNA expression of interleukin-10 (P < 0.05), and decreased expression of tumor necrosis factor-in colonic tissues (P < 0.05), as determined using quantitative real-time reverse transcription polymerase chain reaction. The intraperitoneal administration of an aryl hydrocarbon receptor antagonist did not antagonize the inhibition of mucosal destruction, whereas an anti-interleukin-10 receptor antibody did. These results suggest that P. tinctorium ameliorate sodium dextran sulfate-induced intestinal inflammation via interleukin-10-related pathway, independent of the aryl hydrocarbon receptor pathway. P. tinctorium leaves have the potential to be a new, safe treatment for ulcerative colitis.
RESUMO
Chronic administration of a high-fat diet in mice has been established to influence the generation and trafficking of immune cells such as neutrophils in the bone marrow, the dysregulation of which may contribute to a wide range of diseases. However, no studies have tested the hypothesis that a short-term, high-fat diet could early modulate the neutrophil release from bone marrow at fasting and at postprandial in response to a high-fat meal challenge, and that the predominant type of fatty acids in dietary fats could play a role in both context conditions. Based on these premises, we aimed to establish the effects of different fats [butter, enriched in saturated fatty acids (SFAs), olive oil, enriched in monounsaturated fatty acids (MUFAs), and olive oil supplemented with eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] on neutrophil navigation from bone marrow to blood in mice. The analysis of cellular models for mechanistic understanding and of postprandial blood samples from healthy volunteers for translational purposes was assessed. The results revealed a powerful effect of dietary SFAs in promotion the neutrophil traffic from bone marrow to blood via the CXCL2-CXCR2 axis. Dietary SFAs, but not MUFAs or EPA and DHA, were also associated with increased neutrophil apoptosis and bone marrow inflammation. Similar dietary fatty-acid-induced postprandial neutrophilia was observed in otherwise healthy humans. Therefore, dietary MUFAs might preserve bone marrow health and proper migration of bone marrow neutrophils early in the course of high-fat diets even after the intake of high-fat meals.
RESUMO
The complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer's disease (AD). Tacrine, a potent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD. Tacrine is also a low affinity antagonist of N-methyl-D-aspartate receptor (NMDAR). However, tacrine was withdrawn from its clinical use later due to its hepatotoxicity. With an aim to develop novel high affinity multi-target directed ligands (MTDLs) against AChE and NMDAR, with reduced hepatotoxicity, we performed in silico structure-based modifications on tacrine, chemical synthesis of the derivatives and in vitro validation of their activities. Nineteen such derivatives showed inhibition with IC50 values in the range of 18.53 ± 2.09 - 184.09 ± 19.23 nM against AChE and 0.27 ± 0.05 - 38.84 ± 9.64 µM against NMDAR. Some of the selected compounds also protected rat primary cortical neurons from glutamate induced excitotoxicity. Two of the tacrine derived MTDLs, 201 and 208 exhibited in vivo efficacy in rats by protecting against behavioral impairment induced by administration of the excitotoxic agent, monosodium glutamate. Additionally, several of these synthesized compounds also exhibited promising inhibitory activitiy against butyrylcholinesterase. MTDL-201 was also devoid of hepatotoxicity in vivo. Given the therapeutic potential of MTDLs in disease-modifying therapy, our studies revealed several promising MTDLs among which 201 appears to be a potential candidate for immediate preclinical evaluations.
RESUMO
Mineralization of bone is achieved by the sequential maturation of the immature amorphous calcium phase to mature hydroxyapatite (HA) and is central in the process of bone development and repair. To study normal and dysregulated mineralization in vitro, substrates are often coated with poly-l-lysine (PLL) which facilitates cell attachment. This study has used Raman spectroscopy to investigate the effect of PLL coating on osteoblast (OB) matrix composition during differentiation, with a focus on collagen specific proline and hydroxyproline and precursors of HA. Deconvolution analysis of murine derived long bone OB Raman spectra revealed collagen species were 4.01-fold higher in OBs grown on PLL. Further, an increase of 1.91-fold in immature mineral species (amorphous calcium phosphate) was coupled with a 9.32-fold reduction in mature mineral species (carbonated apatite) on PLL versus controls. These unique low mineral signatures identified in OBs were linked with reduced alkaline phosphatase enzymatic activity, reduced Alizarin Red staining and altered osteogenic gene expression. The promotion of immature mineral species and restriction of mature mineral species of OB grown on PLL were linked to increased cell viability and pro-angiogenic vascular endothelial growth factor (VEGF) production. These results demonstrate the utility of Raman spectroscopy to link distinct matrix signatures with OB maturation and VEGF release. Importantly, Raman spectroscopy could provide a label-free approach to clinically assess the angiogenic potential of bone during fracture repair or degenerative bone loss.
RESUMO
The technical difficulty to isolate microglia, astrocytes and infiltrating immune cells from mouse brain is nowadays a limiting factor in the study of neuroinflammation. Brain isolation requirements are cell-type and animal-age dependent, but current brain dissociation procedures are poorly standardized. This lack of comprehensive studies hampers the selection of optimized methodologies. Thus, we present here a comparative analysis of dissociation methods and Percoll-based separation to identify the most efficient procedure for the combined isolation of healthy microglia, astrocytes and infiltrated leukocytes; distinguishing neonatal and adult mouse brain. Gentle mechanical dissociation and DNase I incubation was supplemented with papain or collagenase II. Dispase II digestion was also used alone or in combination. In addition, cell separation efficiency of 30 % and 30-70 % Percoll gradients was compared. In these experiments, cell yield and integrity of freshly dissociated cells was measured by flow cytometry. We found that papain digestion in combination with dispase II followed by 30 % Percoll separation is the most balanced method to obtain a mixture of microglia, astrocytes and infiltrated immune cells; while addition of dispase II was not an advantage for neonatal brain. These dissociation conditions allowed flow cytometry detection of a slight glial activation triggered by sublethal LPS injection. In conclusion, the enzymes and Percoll density gradients tested here affected differently resting microglia, activated microglia/macrophages, astrocytes and infiltrated lymphocytes. Also, newborn and adult brain showed contrasting reactions to digestion. Our study highlights the strength of flow cytometry for the simultaneous analysis of neuroimmune cell populations once extraction is optimized.
RESUMO
Background & Aims: Psoriasis and inflammatory bowel disease (IBD) are both chronic inflammatory diseases occurring in the skin and gut, respectively. It is well established that psoriasis and IBD have high concordance rates, and similar changes in immune cells and microbiome composition have been reported in both conditions. To study this connection, we used a combination murine model of psoriatic dermatitis and colitis in which mice were treated topically with the Toll-like receptor 7 agonist imiquimod (IMQ) and fed dextran sulfate sodium (DSS). Methods: We applied IMQ topically to B6 mice (IMQ mice) and subsequently fed them 2% DSS in their drinking water. Disease activity and immune cell phenotypes were analyzed, and the microbial composition of fecal samples was investigated using 16S ribosomal RNA sequencing. We transplanted feces from IMQ mice to germ-free IQI/Jic (IQI) mice and fed them DSS to assess the effect of the gut microbiome on disease. Results: We first confirmed that IMQ mice showed accelerated DSS colitis. IMQ mice had decreased numbers of IgD+ and IgM+ B cells and increased numbers of non-cytokine-producing macrophages in the gut. Moreover, the gut microbiomes of IMQ mice were perturbed, with significant reductions of Lactobacillus johnsonii and Lactobacillus reuteri populations. Germ-free mice transplanted with feces from IMQ mice, but not with feces from untreated mice, also developed exacerbated DSS colitis. Conclusions: These results suggest that skin inflammation may contribute to pathogenic conditions in the gut via immunologic and microbiological changes. Our finding of a novel potential skin-gut interaction provides new insights into the coincidence of psoriasis and IBD.
Assuntos
Colite/imunologia , Colite/microbiologia , Dermatite/complicações , Microbioma Gastrointestinal , Receptor 7 Toll-Like/agonistas , Animais , Linfócitos B/imunologia , Movimento Celular , Colite/induzido quimicamente , Colite/patologia , Dermatite/imunologia , Sulfato de Dextrana , Progressão da Doença , Transplante de Microbiota Fecal , Feminino , Células-Tronco Hematopoéticas/metabolismo , Imiquimode/efeitos adversos , Imunoglobulina D/metabolismo , Imunoglobulina M/metabolismo , Intestinos/imunologia , Intestinos/patologia , Lactobacillus/fisiologia , Linfonodos/patologia , Depleção Linfocítica , Camundongos Endogâmicos C57BL , Permeabilidade , Psoríase/complicações , Psoríase/imunologiaRESUMO
BACKGROUND & AIMS: Gastric Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) cells exert important functions during injury and homeostasis. Bone morphogenetic protein (BMP) signaling regulates gastric inflammation and epithelial homeostasis. We investigated if BMP signaling controls the fate of Lgr5+ve cells during inflammation. METHODS: The H+/K+-adenosine triphosphatase ß-subunit promoter was used to express the BMP inhibitor noggin (Nog) in the stomach (H+/K+-Nog mice). Inhibition of BMP signaling in Lgr5 cells was achieved by crossing Lgr5-EGFP-ires-CreERT2 (Lgr5-Cre) mice to mice with floxed alleles of BMP receptor 1A (Lgr5-Cre;Bmpr1aflox/flox mice). Lgr5/GFP+ve cells were isolated using flow cytometry. Lineage tracing studies were conducted by crossing Lgr5-Cre mice to mice that express Nog and tdTomato (Lgr5-Cre;H+/K+-Nog;Rosa26-tdTom). Infection with Helicobacter felis was used to induce inflammation. Morphology of the mucosa was analyzed by H&E staining. Distribution of H+/K+-adenosine triphosphatase-, IF-, Ki67-, CD44-, CD44v9-, and bromodeoxyuridine-positive cells was analyzed by immunostaining. Expression of neck and pit cell mucins was determined by staining with the lectins Griffonia (Bandeiraea) simplicifolia lectin II and Ulex europaeus agglutinin 1, respectively. Id1, Bmpr1a, Lgr5, c-Myc, and Cd44 messenger RNAs were measured by quantitative reverse-transcription polymerase chain reaction. RESULTS: Lgr5-Cre;Bmpr1aflox/flox mice showed diminished expression of Bmpr1a in Lgr5/GFP+ve cells. Infection of Lgr5-Cre;Bmpr1aflox/flox mice with H felis led to enhanced inflammation, increased cell proliferation, parietal cell loss, and to the development of metaplasia and dysplasia. Infected Lgr5-Cre;H+/K+-Nog;Rosa26-tdTom mice, but not control mice, showed the presence of tomato+ve glands lining the lesser curvature that stained positively with Griffonia (Bandeiraea) simplicifolia lectin II and Ulex europaeus agglutinin 1, and with anti-IF, -CD44, -CD44v9, and -bromodeoxyuridine antibodies. CONCLUSIONS: Inflammation and inhibition of BMP signaling activate Lgr5+ve cells, which give rise to metaplastic, dysplastic, proliferating lineages that express markers of mucus neck and zymogenic cell differentiation.
RESUMO
Dimethyl sulfoxide (DMSO) is an effective solvent and cytoprotectant agent that can induce diverse actions in experimental settings, ranging from metabolic stress to cytotoxic effects depending on the concentration used. Therefore, for the quality of experiments and reproducibility of results it is essential to establish a precise and non-toxic dose of DMSO within a specific cell system. 3T3-L1 adipocytes, represent a well-established in vitro cell model used to assess the anti-obesity potential of extracts and compounds. Although DMSO is commonly used as a solvent for these experiments, there is limited data available on the compounding effects of using DMSO. The purpose of this study was to assess a concentration-dependent effect of DMSO on lipid content, cell viability and oxidative damage in 3T3-L1 adipocytes. Results showed that DMSO at doses ≥ 0.1% increased mitochondrial membrane potential as measured by JC-1 fluorescent staining, while doses ≥â¯10% reduced the lipid content in matured adipocytes. Consistently, higher doses significantly reduced cell viability, elevated reactive oxygen species levels, depleted intracellular glutathione levels, and accelerated apoptosis and cell necrosis. An interesting finding was that a DMSO dose of 0.01% improved glutathione content of 3T3-L1 adipocytes and had minimal effects on cell viability, apoptosis or and necrosis, supporting its antioxidant effect. Therefore, this study provides compelling evidence that precaution should be taken when assessing compounds dissolved in DMSO, particularly doses ≥1% that were shown to induce oxidative stress in 3T3-L1 adipocytes.
RESUMO
BACKGROUND & AIMS: Continual renewal of the intestinal epithelium is dependent on active- and slow-cycling stem cells that are confined to the crypt base. Tight regulation of these stem cell populations maintains homeostasis by balancing proliferation and differentiation to support critical intestinal functions. The hierarchical relation of discrete stem cell populations in homeostasis or during regenerative epithelial repair remains controversial. Although recent studies have supported a model for the active-cycling leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)+ intestinal stem cell (ISC) functioning upstream of the slow-cycling B lymphoma Mo-MLV insertion region 1 homolog (Bmi1)-expressing cell, other studies have reported the opposite relation. Tools that facilitate simultaneous analyses of these populations are required to evaluate their coordinated function. METHODS: We used novel monoclonal antibodies (mAbs) raised against murine intestinal epithelial cells in conjunction with ISC-green fluorescent protein (GFP) reporter mice to analyze relations between ISC populations by microscopy. Ex vivo 3-dimensional cultures, flow cytometry, and quantitative reverse-transcription polymerase chain reaction analyses were performed. RESULTS: Two novel mAbs recognized distinct subpopulations of the intestinal epithelium and when used in combination permitted isolation of discrete Lgr5GFP and Bmi1GFP-enriched populations with stem activity. Growth from singly isolated Lgr5GFP ISCs gave rise to small spheroids. Spheroids did not express Lgr5GFP and instead up-regulated Bmi1GFP expression. Conversely, Bmi1-derived spheroids initiated Lgr5GFP expression as crypt domains were established. CONCLUSIONS: These data showed the functional utility of murine mAbs in the isolation and investigation of Lgr5GFP and Bmi1GFP ISC-enriched populations. Ex vivo analyses showed hierarchical plasticity between different ISC-expressing states; specifically Lgr5GFP ISCs gave rise to Bmi1GFP cells, and vice versa. These data highlight the impact of temporal and physiological context on unappreciated interactions between Lgr5GFP and Bmi1GFP cells during crypt formation.
RESUMO
Nowadays, nanoparticles (NPs) of titanium dioxide (TiO2) are abundantly produced. TiO2 NPs are present in various food products, in paints, cosmetics, sunscreens and toothpastes. However, the toxicity of TiO2 NPs on the central nervous system has been poorly investigated until now. The aim of this study was to evaluate the toxicity of TiO2 NPs on the central nervous system in vitro and in vivo. In cell cultures derived from embryonic cortical brain of rats, a significant decrease in neuroblasts was observed after 24 to 96 h of incubation with TiO2 NPs (5 to 20 µg/ml). This phenomenon resulted from an inhibition of neuroblast proliferation and a concomitant increase in apoptosis. In the same time, a gliosis, characterized by an increase in proliferation of astrocytes and the hypertrophy of microglial cells, occurred. The phagocytosis of TiO2 NPs by microgliocytes was also observed. In vivo, after intraperitoneal injection, the TiO2 NPs reached the brain through the blood brain barrier and the nanoparticles promoted various histological injuries such as cellular lysis, neuronal apoptosis, and inflammation. A reduction of astrocyte population was observed in some brain area such as plexiform zone, cerebellum and subependymal area. An oxidative stress was also detected by immunohistochemistry in neurons of hippocampus, cerebellum and in subependymal area. In conclusion, our study demonstrated clearly the toxic impact of TiO2 NPs on rat brain and neuronal cells and pointed about not yet referenced toxicity impacts of TiO2 such as the reduction of neuroblast proliferation both in vitro and in vivo.
RESUMO
Background & Aims: Chronic inflammation is a predisposing condition for colorectal cancer. Many studies to date have focused on proinflammatory signaling pathways in the colon. Understanding the mechanisms that suppress inflammation, particularly in epithelial cells, is critical for developing therapeutic interventions. Here, we explored the roles of transforming growth factor ß (TGFß) family signaling through SMAD4 in colonic epithelial cells. Methods: The Smad4 gene was deleted specifically in adult murine intestinal epithelium. Colitis was induced by 3 rounds of dextran sodium sulfate in drinking water, after which mice were observed for up to 3 months. Nontransformed mouse colonocyte cell lines and colonoid cultures and human colorectal cancer cell lines were analyzed for responses to TGFß1 and bone morphogenetic protein 2. Results: Dextran sodium sulfate treatment was sufficient to drive carcinogenesis in mice lacking colonic Smad4 expression, with resulting tumors bearing striking resemblance to human colitis-associated carcinoma. Loss of SMAD4 protein was observed in 48% of human colitis-associated carcinoma samples as compared with 19% of sporadic colorectal carcinomas. Loss of Smad4 increased the expression of inflammatory mediators within nontransformed mouse colon epithelial cells in vivo. In vitro analysis of mouse and human colonic epithelial cell lines and organoids indicated that much of this regulation was cell autonomous. Furthermore, TGFß signaling inhibited the epithelial inflammatory response to proinflammatory cytokines. Conclusions: TGFß suppresses the expression of proinflammatory genes in the colon epithelium, and loss of its downstream mediator, SMAD4, is sufficient to initiate inflammation-driven colon cancer. Transcript profiling: GSE100082.
Assuntos
Carcinoma/imunologia , Colite/imunologia , Neoplasias Colorretais/imunologia , Inflamação/imunologia , Proteína Smad4/imunologia , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Carcinoma/etiologia , Carcinoma/patologia , Linhagem Celular , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colite/complicações , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Sulfato de Dextrana/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/complicações , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Smad4/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismoRESUMO
BACKGROUND & AIMS: Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs), it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule), is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination. METHODS: Here we tested this hypothesis by analyzing a CD166-/- mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture. RESULTS: We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166-/- Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear ß-catenin. CONCLUSIONS: These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC-niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment.
RESUMO
BACKGROUND & AIMS: Crohn's Disease (CD) is a chronic inflammatory disease of the gastrointestinal tract. Fibrosis, a serious complication of CD, occurs when activated intestinal fibroblasts deposit excessive amounts of extracellular matrix (ECM) in affected areas. A major component of the ECM is high-molecular-weight hyaluronan (HA) that, when depolymerized to low-molecular-weight fragments, becomes proinflammatory and profibrotic. Mechanisms for HA degradation are incompletely understood, but the novel protein KIAA1199 recently was discovered to degrade HA. We hypothesized that KIAA1199 protein is increased in CD colon fibroblasts and generates HA fragments that foster inflammation and fibrosis. METHODS: Fibroblasts were isolated from explants of surgically resected colon tissue from CD and non-inflammatory bowel disease control (ND) patients. Protein levels and tissue distribution of KIAA1199 were assessed by immunoblot and immunostaining, and functional HA degradation was measured biochemically. RESULTS: Increased levels of KIAA1199 protein were produced and deposited in the ECM by cultured CD fibroblasts compared with controls. Treatment of fibroblasts with the proinflammatory cytokine interleukin (IL) 6 increased deposition of KIAA1199 in the ECM. CD fibroblasts also produce significantly higher levels of IL6 compared with controls, and antibody blockade of IL6 receptors in CD colon fibroblasts decreased the level of KIAA1199 protein in the ECM. Colon fibroblasts degrade HA, however, small interfering RNA silencing of KIAA1199 abrogated that ability. CONCLUSIONS: CD fibroblasts produce increased levels of KIAA1199 primarily through an IL6-driven autocrine mechanism. This leads to excessive degradation of HA and the generation of proinflammatory HA fragments, which contributes to maintenance of gut inflammation and fibrosis.
RESUMO
BACKGROUND & AIMS: Interleukin (IL)33 is a recently described alarmin that is highly expressed in the gastric mucosa and potently activates Th2 immunity. It may play a pivotal role during Helicobacter pylori infection. Here, we delineate the role of IL33 in the normal gastric mucosa and in response to gastropathy. METHODS: IL33 expression was evaluated in mice and human biopsy specimens infected with H pylori and in mice after dosing with aspirin. IL33 expression was localized in the gastric mucosa using immunofluorescence. Mice were given 1 or 7 daily doses of recombinant IL33 (1 µg/dose), and the stomach and the spleen responses were quantified morphologically, by flow cytometry and using quantitative reverse-transcription polymerase chain reaction and immunoblotting. RESULTS: In mice, the IL33 protein was localized to the nucleus of a subpopulation of surface mucus cells, and co-localized with the surface mucus cell markers Ulex Europaeus 1 (UEA1), and Mucin 5AC (Muc5AC). A small proportion of IL33-positive epithelial cells also were Ki-67 positive. IL33 and its receptor Interleukin 1 receptor-like 1 (ST2) were increased 4-fold after acute (1-day) H pylori infection, however, this increase was not apparent after 7 days and IL33 expression was reduced 2-fold after 2 months. Similarly, human biopsy specimens positive for H pylori had a reduced IL33 expression. Chronic IL33 treatment in mice caused systemic activation of innate lymphoid cell 2 and polarization of macrophages to the M2 phenotype. In the stomach, IL33-treated mice developed transmural inflammation and mucous metaplasia that was mediated by Th2/signal transducer and activator of transcription 3 signaling. Rag-1-/- mice, lacking mature lymphocytes, were protected from IL33-induced gastric pathology. CONCLUSIONS: IL33 is highly expressed in the gastric mucosa and promotes the activation of T helper 2-cytokine-expressing cells. The loss of IL33 expression after prolonged H pylori infection may be permissive for the T helper 1-biased immune response observed during H pylori infection and subsequent precancerous progression.
RESUMO
Lowering the isoelectric point (pI) through engineering the variable region or framework of an IgG can improve its exposure and half-life via a reduction in clearance mediated through non-specific interactions. As such, net charge is a potentially important property to consider in developing therapeutic IgG molecules having favorable pharmaceutical characteristics. Frequently, it may not be possible to shift the pI of monoclonal antibodies (mAbs) dramatically without the introduction of other liabilities such as increased off-target interactions or reduced on-target binding properties. In this report, we explored the influence of more subtle modifications of molecular charge on the in vivo properties of an IgG1 and IgG4 monoclonal antibody. Molecular surface modeling was used to direct residue substitutions in the complementarity-determining regions (CDRs) to disrupt positive charge patch regions, resulting in a reduction in net positive charge without affecting the overall pI of the mAbs. The effect of balancing the net positive charge on non-specific binding was more significant for the IgG4 versus the IgG1 molecule that we examined. This differential effect was connected to the degree of influence on cellular degradation in vitro and in vivo clearance, distribution and metabolism in mice. In the more extreme case of the IgG4, balancing the charge yielded an â¼7-fold improvement in peripheral exposure, as well as significantly reduced tissue catabolism and subsequent excretion of proteolyzed products in urine. Balancing charge on the IgG1 molecule had a more subtle influence on non-specific binding and yielded only a modest alteration in clearance, distribution and elimination. These results suggest that balancing CDR charge without affecting the pI can lead to improved mAb pharmacokinetics, the magnitude of which is likely dependent on the relative influence of charge imbalance and other factors affecting the molecule's disposition.
Assuntos
Anticorpos Monoclonais Humanizados , Especificidade de Anticorpos/genética , Regiões Determinantes de Complementaridade , Imunoglobulina G , Modelos Moleculares , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/farmacologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Regiões Determinantes de Complementaridade/farmacologia , Células HEK293 , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Ponto Isoelétrico , CamundongosRESUMO
Telomere dysfunction plays a complex role in tumorigenesis. While dysfunctional telomeres can block the proliferation of incipient cancer clones by inducing replicative senescence, fusion of dysfunctional telomeres can drive genome instability and oncogenic genomic rearrangements. Therefore, it is important to define the regulatory pathways that guide these opposing effects. Recent work has shown that the autophagy pathway regulates both senescence and genome instability in various contexts. Here, we apply models of acute telomere dysfunction to determine whether autophagy modulates the resulting genome instability and senescence responses. While telomere dysfunction rapidly induces autophagic flux in human fibroblast cell lines, inhibition of the autophagy pathway does not have a significant impact upon the transition to senescence, in contrast to what has previously been reported for oncogene-induced senescence. Our results suggest that this difference may be explained by disparities in the development of the senescence-associated secretory phenotype. We also show that chromosome fusions induced by telomere dysfunction are comparable in autophagy-proficient and autophagy-deficient cells. Altogether, our results highlight the complexity of the senescence-autophagy interface and indicate that autophagy induction is unlikely to play a significant role in telomere dysfunction-driven senescence and chromosome fusions.
Assuntos
Autofagia , Senescência Celular , Instabilidade Genômica , Telômero/ultraestrutura , Animais , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Proliferação de Células , Cromossomos/ultraestrutura , Reparo do DNA , Ensaio de Imunoadsorção Enzimática , Fibroblastos/metabolismo , Genômica , Humanos , Hibridização in Situ Fluorescente , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , Complexo Shelterina , Proteínas de Ligação a TelômerosRESUMO
The Salmonella type III secretory system secretes virulence proteins, called effectors. Effectors are responsible for the alteration of tight junctions (TJ) and epithelial functions in intestinal infection and inflammation. In a previous study, we have demonstrated that a bacterial effector AvrA plays a role in stabilizing TJs and balancing the opposing action of other bacterial effectors. However, the molecular mechanisms by which AvrA-modulates TJ protein expression remain unknown. AvrA possesses acetyltransferase activity toward specific mitogen-activated protein kinase kinases (MAPKKs) and potently inhibits the c-Jun N-terminal kinase (JNK) pathway in inflammation. Inhibition of the JNK pathway is known to inhibit the TJ protein disassemble. Therefore, we hypothesize that AvrA stabilizes intestinal epithelial TJs via c-Jun and JNK pathway blockage. Using both in vitro and in vivo models, we showed that AvrA targets the c-Jun and JNK pathway that in turn stabilizes TJ protein ZO-1. Inhibition of JNK abolished the effect of AvrA on ZO-1. We further determined that AvrA suppressed the transcription factor activator protein-1, which was regulated by activated JNK. Moreover, we identified the functional domain of AvrA that directly regulated TJs using a series of AvrA mutants. The role of AvrA represents a highly refined bacterial strategy that helps the bacteria survive in the host and dampens the inflammatory response of the host. Our findings have uncovered a novel role of the bacterial protein AvrA in suppressing the inflammatory response of the host through JNK-regulated blockage of epithelial cell barrier function.