Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142473

RESUMO

Obesity and its associated metabolic disease do serious harm to human health. The transcriptional cascade network with transcription factors as the core is the focus of current research on adipogenesis and its mechanism. Previous studies have found that HMG domain protein 20A (HMG20A) is highly expressed in the early stage of adipogenic differentiation of porcine intramuscular fat (IMF), which may be involved in regulating adipogenesis. In this study, HMG20A was found to play a key negative regulatory role in adipogenesis. Gain- and loss-of-function studies revealed that HMG20A inhibited the differentiation of SVF cells and C3H10T1/2 cells into mature adipocytes. RNA-seq was used to screen differentially expressed genes after HMG20A knockdown. qRT-PCR and ChIP-PCR confirmed that MEF2C was the real target of HMG20A, and HMG20A played a negative regulatory role through MEF2C. HMG20A binding protein LSD1 was found to alleviate the inhibitory effect of HMG20A on adipogenesis. Further studies showed that HMG20A could cooperate with LSD1 to increase the H3K4me2 of the MEF2C promoter and then increase the expression of MEF2C. Collectively, these findings highlight a role for HMG20A-dependent transcriptional and epigenetic regulation in adipogenesis.


Assuntos
Adipócitos , Adipogenia , Adipócitos/metabolismo , Adipogenia/genética , Animais , Diferenciação Celular/genética , Epigênese Genética , Proteínas de Grupo de Alta Mobilidade/genética , Histona Desmetilases/genética , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Suínos , Fatores de Transcrição/metabolismo
2.
Fish Shellfish Immunol ; 119: 499-507, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34687883

RESUMO

High-mobility group 20 A (HMG20A) has important biological functions, such as inhibiting the differentiation of red blood cells and nerve cells, promoting the proliferation and metastasis of cancer cells, and regulating inflammatory reaction. However, the role of HMG20A in the response to bacterial infection in the economic fish Nile tilapia (Oreochromis niloticus) remains unclear. In this study, a HMG20A homolog was successfully identified and characterized from Nile tilapia (On-HMG20A), and its expression model and biological effects on bacterial infection were analyzed. The open reading frame (ORF) of On-HMG20A was 876 bp in length, which encoded 291 amino acids and possessed a HMG domain (High mobility group domains) and coiled coil region. Results of the expression model showed that On-HMG20A was widely distributed in immune-related tissues of healthy tilapia and upregulated in a time-dependent manner after being challenged by Streptococcus agalactiae. Meanwhile, knocking down the expression of On-HMG20A can reduce the inflammatory response of tilapia and the degree of tissue damage caused by S. agalactiae. Moreover, knocking down the expression of On-HMG20A can reduce the bacterial load of tilapia tissues after being challenged by S. agalactiae and improve the survival rate. Collectively, these results showed that On-HMG20A may be related to the immune response of Nile tilapia against bacterial infection.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Sequência de Aminoácidos , Animais , Ciclídeos/genética , Ciclídeos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Imunidade Inata/genética , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/metabolismo , Tilápia/metabolismo
3.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921851

RESUMO

Diabetes is a chronic metabolic disease caused by an absolute or relative deficiency in functional pancreatic ß-cells that leads to defective control of blood glucose. Current treatments for diabetes, despite their great beneficial effects on clinical symptoms, are not curative treatments, leading to a chronic dependence on insulin throughout life that does not prevent the secondary complications associated with diabetes. The overwhelming increase in DM incidence has led to a search for novel antidiabetic therapies aiming at the regeneration of the lost functional ß-cells to allow the re-establishment of the endogenous glucose homeostasis. Here we review several aspects that must be considered for the development of novel and successful regenerative therapies for diabetes: first, the need to maintain the heterogeneity of islet ß-cells with several subpopulations of ß-cells characterized by different transcriptomic profiles correlating with differences in functionality and in resistance/behavior under stress conditions; second, the existence of an intrinsic islet plasticity that allows stimulus-mediated transcriptome alterations that trigger the transdifferentiation of islet non-ß-cells into ß-cells; and finally, the possibility of using agents that promote a fully functional/mature ß-cell phenotype to reduce and reverse the process of dedifferentiation of ß-cells during diabetes.


Assuntos
Ilhotas Pancreáticas/metabolismo , Medicina Regenerativa/métodos , Animais , Transdiferenciação Celular/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
4.
Cancer Cell Int ; 19: 338, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31889891

RESUMO

BACKGROUND/AIMS: The dysregulation of circABCB10 may play an critical role in tumor progression. However, its function in liver cancer (HCC) is still unclear. Therefore, this experimental design is based on circABCB10 to explore the pathogenesis of HCC. METHODS: The expression of circABCB10 and miR-670-3p in HCC tissues was detected by RT-qPCR. CCK-8, Brdu incorporation, colony formation and transwell assays were used to determine the effect of circABCB10 on HCC cell proliferation and migration. Target gene prediction and screening, luciferase reporter assays were used to validate downstream target genes of circABCB10 and miR-670-3p. HMG20A expression was detected by RT-qPCR and Western blotting. The tumor changes in mice were detected by in nude mice. RESULTS: CircABCB10 was significantly increased in HCC tissues and cell lines, and high CircABCB10 expression was directly associated with low survival in HCC patients. Silencing of circABCB10 inhibited proliferation and invasion of hepatocellular carcinoma. In addition, circABCB10 acted as a sponge of miR-670-3p to upregulate HMG20A expression. In addition, overexpression of miR-670-3p or knockdown of HMG20A reversed the carcinogenic effects of circABCB10 in HCC. There was a negative correlation between the expression of circABCB10 and miR-670-3p, and a positive correlation between the expression of circABCB10 and HMG20A in HCC tissues. CONCLUSION: circABCB10 promoted HCC progression by modulating the miR-670-3p/HMG20A axis, and circABCB10 may be a potential therapeutic target for HCC.Trail registration JL1H384739, registered at Sep 09, 2014.

5.
Int J Mol Sci ; 20(24)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817798

RESUMO

Gestational diabetes mellitus (GDM), a metabolic disease that develops with the increase in insulin resistance during late pregnancy, is currently one of the most common complications affecting pregnancy. The polygenic nature of GDM, together with the interplay between different genetic variants with nutritional and environmental factors has hindered the full understanding of the etiology of this disease. However, an important genetic overlap has been found with type 2 diabetes mellitus (T2DM) and, as in the case of T2DM, most of the identified loci are associated with ß-cell function. Early detection of GDM and adequate interventions to control the maternal glycemia are necessary to avoid the adverse outcomes for both the mother and the offspring. The in utero exposure to the diabetic milieu predispose these children for future diseases, among them T2DM, originating a vicious circle implicated in the increased prevalence of both GDM and T2DM. The involvement of inflammatory processes in the development of GDM highlights the importance of pancreatic ß-cell factors able to favor the adaptation processes required during gestation, concomitantly with the protection of the islets from an inflammatory milieu. In this regard, two members of the Pax family of transcription factors, PAX4 and PAX8, together with the chromatin remodeler factor HMG20A, have gained great relevance due to their involvement in ß-cell mass adaptation together with their anti-inflammatory properties. Mutations in these factors have been associated with GDM, highlighting these as novel candidates for genetic screening analysis in the identification of women at risk of developing GDM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Gestacional/metabolismo , Diabetes Gestacional/fisiopatologia , Ilhotas Pancreáticas/fisiologia , Glicemia/metabolismo , Feminino , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Fator de Transcrição PAX8/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Gravidez
6.
Mol Genet Genomics ; 292(3): 585-591, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28190082

RESUMO

Earlier studies have provided evidence that the gestational diabetes mellitus (GDM) and Type 2 diabetes mellitus (T2DM) share common genetic background. A recent genome wide association study (GWAS) showed a strong association of six novel gene variants with T2DM among south Asians but not with Europeans. The aim of this study was to investigate whether these variants that confer susceptibility to T2DM in Asian Indian population also correlate with GDM in Asian Indian population. In addition to these novel variants, three T2DM associated SNPs that were previously identified by GWAS in Caucasian populations, which also showed association with T2DM in south Indian population in our previous study were also evaluated for their susceptibility to GDM in our population. The study groups comprised unrelated pregnant women with GDM (n = 518) and pregnant women with normal glucose tolerance (NGT) (n = 1220). A total of nine SNPs in or near nine loci, namely AP3S2 (rs2028299), BAZ1B (rs12056034), CDKN2A/B (rs7020996), GRB14 (rs3923113), HHEX (rs7923837), HMG20A (rs7178572), HNF4A (rs4812829), ST6GAL1 (rs16861329) and VPS26A (rs1802295) were genotyped using the MassARRAY system. Among these nine SNPs that previously showed an association with T2DM in Asian Indians, HMG20A (rs7178572) and HNF4A (rs4812829) gene variants showed a significant association with GDM. The risk alleles of rs7178572 in HMG20A and rs4812829 in HNF4A gene conferred 1.24 and 1.28 times higher risk independently and about 1.44 and 1.97 times increased susceptibility to GDM for one and two risk genotypes, respectively. We report that the HMG20A (rs7178572) and HNF4A (rs4812829) variants that have previously shown a strong association with T2DM in Asian Indians also contributes significant risk to GDM in this population. This is the first report of the association of HMG20A (rs7178572) and HNF4A (rs4812829) variants with GDM.


Assuntos
Povo Asiático/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Gestacional/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Adulto , Alelos , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Índia , Gravidez
7.
J Pak Med Assoc ; 66(9 Suppl 1): S11-4, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27582142

RESUMO

Gestational diabetes mellitus (GDM) has now become a major public health problem because of its prevalence and its associated complications during pregnancy. Earlier studies have suggested that type 2 diabetes mellitus (T2DM) and GDM might have similar pathophysiology, such as increased insulin resistance, decreased insulin secretion resulting in hyperglycaemia. Evidence for a genetic basis of GDM has been poorly understood. To some extent, the current advancement in genomic techniques has thrown better light on the genetics of GDM. Based on the candidate gene approach and genome wide association studies, genetic loci in several genes that are responsible for insulin secretion, insulin resistance, lipid and glucose metabolism and other pathways have shown association with the GDM susceptibility. Understanding the possible underlying genetic factors of GDM would help us in gaining knowledge on the pathophysiologic mechanism of the disease.


Assuntos
Diabetes Gestacional/genética , Estudo de Associação Genômica Ampla , Diabetes Mellitus Tipo 2 , Feminino , Humanos , Hiperglicemia/genética , Resistência à Insulina/genética , Gravidez
8.
Biochim Biophys Acta ; 1833(12): 3436-3444, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23707952

RESUMO

Regulation of nuclear protein import is central to many cellular processes such as development, with a key mechanism being factors that retain cargoes in the cytoplasm that normally localize in the nucleus. The breast cancer antigen BRCA1-binding protein BRAP2 has been reported as a novel negative regulator of nuclear import of various nuclear localization signal (NLS)-containing viral and cellular proteins, but although implicated in differentiation pathways and highly expressed in tissues including testis, the gamut of targets for BRAP2 action in a developmental context is unknown. As a first step towards defining the BRAP2 interactome, we performed a yeast-2-hybrid screen to identify binding partners of BRAP2 in human testis. Here we report characterization for the first time of three of these: the high mobility group (HMG)-box-domain-containing chromatin component HMG20A, nuclear mitotic apparatus protein NuMA1 and synaptic nuclear envelope protein SYNE2. Co-immunoprecipitation experiments indicate association of BRAP2 with HMG20A, NuMA1, and SYNE2 in testis, underlining the physiological relevance of the interactions, with immunohistochemistry showing that where BRAP2 is co-expressed with HMG20A and NuMA1, both are present in the cytoplasm, in contrast to their nuclear localization in other testicular cell types. Importantly, quantitative confocal microscopic analysis of cultured cells indicates that ectopic expression of BRAP2 inhibits nuclear localization of HMG20A and NuMA1, and prevents nuclear envelope accumulation of SYNE2, the first report of BRAP2 altering localization of a non-nuclear protein. These results imply for the first time that BRAP2 may have an important role in modulating subcellular localization during testicular development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína BRCA1/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animais , Antígenos Nucleares/metabolismo , Células COS , Proteínas de Ciclo Celular , Chlorocebus aethiops , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Ligação Proteica , Transporte Proteico , Testículo/citologia , Testículo/metabolismo , Ubiquitina-Proteína Ligases
9.
Phytomedicine ; 118: 154923, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37352750

RESUMO

BACKGROUND: Continuous activation and inflammation of cardiac fibroblasts (CFs) are essential for myocardial fibrosis. Gentianella acuta (Michx.) Hiitonen (G. acuta), that contains xanthones with cardioprotective properties, a typical healthful herb extensively used to treat cardiovascular diseases in Inner Mongolia region of China. However, it remains unknown whether or not G. acuta-derived miRNAs can shield CFs from activation by inflammatory stimulation. Therefore, we tend to investigated the role and core mechanism of G. acuta-derived Gen-miR-1 in regulating fibrosis and inflammation induced by TGF-ß1. METHODS: An animal model for myocardial infarction was built by subcutaneous injections of ISO and treated with Gen-miR-1 using intragastric administration. The protective effect of Gen-miR-1 on the heart was assessed by pathomorphological analysis of myocardial fibrosis. Using loss- and gain-of-function approaches, Gen-miR-1 regulation of HAX1/HMG20A/Smads axis was investigated by utilizing luciferase assay, Western blot, co-immunoprecipitation, etc. RESULTS: Screened and identified Gen-miR-1 from G. acuta. Gen-miR-1 can enter the mouse body, and markedly inhibit myocardial infarction induced by ISO in mice, as well as suppresses fibrosis in CFs and attenuates the inflammatory response elicited by TGF-ß1 in vitro. Gen-miR-1 downregulates HCLS1-related Protein X-1 (HAX1) expression through direct binding to the 3' UTR of HAX1, which in turn relieves HAX1 from promoting the expression of high-mobility group protein 20A (HMG20A), whereas HMG20A downregulation restrains the activation of TGF-ß1/Smads signaling pathways, subsequently resulting in a decrease of fibrosis and in facilitating CFs anti-inflammatory effects induced by Gen-miR-1 in the context of CFs activation induced by TGF-ß1. CONCLUSIONS: Our results first uncovered unique bioactive components in G. acuta and elucidated the molecular mechanism by which G. acuta-derived Gen-miR-1 suppress inflammation and myocardial fibrosis. These findings expand our understanding of G. acuta's therapeutic properties and bioactive constituents. Gen-miR-1-regulated HAX1/HMG20A/Smads axis will be one potential therapeutic target for cardiac remodeling.


Assuntos
Cardiomiopatias , Gentianella , MicroRNAs , Infarto do Miocárdio , Ratos , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Ratos Sprague-Dawley , Cardiomiopatias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Fatores Imunológicos/farmacologia , Fibroblastos , Fibrose , Inflamação/metabolismo , Miocárdio/metabolismo
10.
bioRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37961430

RESUMO

L. pneumophila strains harboring wild-type rpsL such as Lp02rpsLWT cannot replicate in mouse bone marrow-derived macrophages (BMDMs) due to induction of extensive lysosome damage and apoptosis. The mechanism of this unique infection-induced cell death remains unknown. Using a genome-wide CRISPR/Cas9 screening, we identified Hmg20a and Nol9 as host factors important for restricting strain Lp02rpsLWT in BMDMs. Depletion of Hmg20a protects macrophages from infection-induced lysosomal damage and apoptosis, allowing productive bacterial replication. The restriction imposed by Hmg20a was mediated by repressing the expression of several endo-lysosomal proteins, including the small GTPase Rab7. We found that SUMOylated Rab7 is recruited to the bacterial phagosome via SulF, a Dot/Icm effector that harbors a SUMO-interacting motif (SIM). Moreover, overexpression of Rab7 rescues intracellular growth of strain Lp02rpsLWT in BMDMs. Our results establish that L. pneumophila exploits the lysosomal network for the biogenesis of its phagosome in BMDMs.

11.
Theranostics ; 11(14): 6983-7004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093866

RESUMO

Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.


Assuntos
Astrócitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gliose/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adulto , Animais , Sobrevivência Celular/efeitos dos fármacos , Proteínas Correpressoras/antagonistas & inibidores , Dieta Hiperlipídica , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/metabolismo , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/genética , Histona Desmetilases/antagonistas & inibidores , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , RNA Interferente Pequeno , RNA-Seq
12.
Biomolecules ; 11(4)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808200

RESUMO

During screening of protein-protein interactions, using human protein arrays carrying 19,676 recombinant glutathione s-transferase (GST)-fused human proteins, we identified the high-mobility protein group 20A (HMG20A) as a novel S100A6 binding partner. We confirmed the Ca2+-dependent interaction of HMG20A with S100A6 by the protein array method, biotinylated S100A6 overlay, and GST-pulldown assay in vitro and in transfected COS-7 cells. Co-immunoprecipitation of S100A6 with HMG20A from HeLa cells in a Ca2+-dependent manner revealed the physiological relevance of the S100A6/HMG20A interaction. In addition, HMG20A has the ability to interact with S100A1, S100A2, and S100B in a Ca2+-dependent manner, but not with S100A4, A11, A12, and calmodulin. S100A6 binding experiments using various HMG20A mutants revealed that Ca2+/S100A6 interacts with the C-terminal region (residues 311-342) of HMG20A with stoichiometric binding (HMG20A:S100A6 dimer = 1:1). This was confirmed by the fact that a GST-HMG20A mutant lacking the S100A6 binding region (residues 311-347, HMG20A-ΔC) failed to interact with endogenous S100A6 in transfected COS-7 cells, unlike wild-type HMG20A. Taken together, these results identify, for the first time, HMG20A as a target of Ca2+/S100 proteins, and may suggest a novel linkage between Ca2+/S100 protein signaling and HMG20A function, including in the regulation of neural differentiation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Animais , Sítios de Ligação , Células COS , Proteínas de Ciclo Celular/genética , Chlorocebus aethiops , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células HeLa , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Análise Serial de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteína A6 Ligante de Cálcio S100/genética
13.
Mol Cell Biol ; 39(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30988160

RESUMO

Growth factor independence 1B (GFI1B) coordinates assembly of transcriptional repressor complexes comprised of corepressors and histone-modifying enzymes to control gene expression programs governing lineage allocation in hematopoiesis. Enforced expression of GFI1B in K562 erythroleukemia cells favors erythroid over megakaryocytic differentiation, providing a platform to define molecular determinants of binary fate decisions triggered by GFI1B. We deployed proteome-wide proximity labeling to identify factors whose inclusion in GFI1B complexes depends upon GFI1B's obligate effector, lysine-specific demethylase 1 (LSD1). We show that GFI1B preferentially recruits core and putative elements of the BRAF-histone deacetylase (HDAC) (BHC) chromatin-remodeling complex (LSD1, RCOR1, HMG20A, HMG20B, HDAC1, HDAC2, PHF21A, GSE1, ZMYM2, and ZNF217) in an LSD1-dependent manner to control acquisition of erythroid traits by K562 cells. Among these elements, depletion of both HMG20A and HMG20B or of GSE1 blocks GFI1B-mediated erythroid differentiation, phenocopying impaired differentiation brought on by LSD1 depletion or disruption of GFI1B-LSD1 binding. These findings demonstrate the central role of the GFI1B-LSD1 interaction as a determinant of BHC complex recruitment to enable cell fate decisions driven by GFI1B.


Assuntos
Células Eritroides/citologia , Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Células COS , Diferenciação Celular , Chlorocebus aethiops , Regulação para Baixo , Células Eritroides/metabolismo , Histona Desacetilases/metabolismo , Humanos , Células K562 , Fenótipo , Acetato de Tetradecanoilforbol/farmacologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA