Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.471
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 375-399, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360545

RESUMO

The liver's unique characteristics have a profound impact on the priming and maintenance of adaptive immunity. This review delves into the cellular circuits that regulate adaptive immune responses in the liver, with a specific focus on hepatitis B virus infection as an illustrative example. A key aspect highlighted is the liver's specialized role in priming CD8+ T cells, leading to a distinct state of immune hyporesponsiveness. Additionally, the influence of the liver's hemodynamics and anatomical features, particularly during liver fibrosis and cirrhosis, on the differentiation and function of adaptive immune cells is discussed. While the primary emphasis is on CD8+ T cells, recent findings regarding the involvement of B cells and CD4+ T cells in hepatic immunity are also reviewed. Furthermore, we address the challenges ahead and propose integrating cutting-edge techniques, such as spatial biology, and combining mouse models with human sample analyses to gain comprehensive insights into the liver's adaptive immunity. This understanding could pave the way for novel therapeutic strategies targeting infectious diseases, malignancies, and inflammatory liver conditions like metabolic dysfunction-associated steatohepatitis and autoimmune hepatitis.


Assuntos
Imunidade Adaptativa , Fígado , Humanos , Animais , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Hepatite B/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia
2.
Cell ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39481381

RESUMO

Here, we describe "obelisks," a class of heritable RNA elements sharing several properties: (1) apparently circular RNA ∼1 kb genome assemblies, (2) predicted rod-like genome-wide secondary structures, and (3) open reading frames encoding a novel "Oblin" protein superfamily. A subset of obelisks includes a variant hammerhead self-cleaving ribozyme. Obelisks form their own phylogenetic group without detectable similarity to known biological agents. Surveying globally, we identified 29,959 distinct obelisks (clustered at 90% sequence identity) from diverse ecological niches. Obelisks are prevalent in human microbiomes, with detection in ∼7% (29/440) and ∼50% (17/32) of queried stool and oral metatranscriptomes, respectively. We establish Streptococcus sanguinis as a cellular host of a specific obelisk and find that this obelisk's maintenance is not essential for bacterial growth. Our observations identify obelisks as a class of diverse RNAs of yet-to-be-determined impact that have colonized and gone unnoticed in human and global microbiomes.

3.
Cell ; 187(11): 2735-2745.e12, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723628

RESUMO

Hepatitis B virus (HBV) is a small double-stranded DNA virus that chronically infects 296 million people. Over half of its compact genome encodes proteins in two overlapping reading frames, and during evolution, multiple selective pressures can act on shared nucleotides. This study combines an RNA-based HBV cell culture system with deep mutational scanning (DMS) to uncouple cis- and trans-acting sequence requirements in the HBV genome. The results support a leaky ribosome scanning model for polymerase translation, provide a fitness map of the HBV polymerase at single-nucleotide resolution, and identify conserved prolines adjacent to the HBV polymerase termination codon that stall ribosomes. Further experiments indicated that stalled ribosomes tether the nascent polymerase to its template RNA, ensuring cis-preferential RNA packaging and reverse transcription of the HBV genome.


Assuntos
Vírus da Hepatite B , Transcrição Reversa , Humanos , Genoma Viral/genética , Vírus da Hepatite B/genética , Mutação , Ribossomos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Linhagem Celular
4.
Cell ; 187(15): 4078-4094.e21, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38897196

RESUMO

Reversing CD8+ T cell dysfunction is crucial in treating chronic hepatitis B virus (HBV) infection, yet specific molecular targets remain unclear. Our study analyzed co-signaling receptors during hepatocellular priming and traced the trajectory and fate of dysfunctional HBV-specific CD8+ T cells. Early on, these cells upregulate PD-1, CTLA-4, LAG-3, OX40, 4-1BB, and ICOS. While blocking co-inhibitory receptors had minimal effect, activating 4-1BB and OX40 converted them into antiviral effectors. Prolonged stimulation led to a self-renewing, long-lived, heterogeneous population with a unique transcriptional profile. This includes dysfunctional progenitor/stem-like (TSL) cells and two distinct dysfunctional tissue-resident memory (TRM) populations. While 4-1BB expression is ubiquitously maintained, OX40 expression is limited to TSL. In chronic settings, only 4-1BB stimulation conferred antiviral activity. In HBeAg+ chronic patients, 4-1BB activation showed the highest potential to rejuvenate dysfunctional CD8+ T cells. Targeting all dysfunctional T cells, rather than only stem-like precursors, holds promise for treating chronic HBV infection.


Assuntos
Linfócitos T CD8-Positivos , Vírus da Hepatite B , Hepatite B Crônica , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Hepatite B Crônica/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Animais , Receptores OX40/metabolismo , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Antígenos CD/metabolismo
5.
Immunity ; 57(4): 890-903.e6, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38518779

RESUMO

The early appearance of broadly neutralizing antibodies (bNAbs) in serum is associated with spontaneous hepatitis C virus (HCV) clearance, but to date, the majority of bNAbs have been isolated from chronically infected donors. Most of these bNAbs use the VH1-69 gene segment and target the envelope glycoprotein E2 front layer. Here, we performed longitudinal B cell receptor (BCR) repertoire analysis on an elite neutralizer who spontaneously cleared multiple HCV infections. We isolated 10,680 E2-reactive B cells, performed BCR sequencing, characterized monoclonal B cell cultures, and isolated bNAbs. In contrast to what has been seen in chronically infected donors, the bNAbs used a variety of VH genes and targeted at least three distinct E2 antigenic sites, including sites previously thought to be non-neutralizing. Diverse front-layer-reactive bNAb lineages evolved convergently, acquiring breadth-enhancing somatic mutations. These findings demonstrate that HCV clearance-associated bNAbs are genetically diverse and bind distinct antigenic sites that should be the target of vaccine-induced bNAbs.


Assuntos
Hepacivirus , Hepatite C , Humanos , Anticorpos Amplamente Neutralizantes , Epitopos , Anticorpos Neutralizantes , Proteínas do Envelope Viral/genética
6.
Immunity ; 57(10): 2416-2432.e8, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39226901

RESUMO

Pro-inflammatory autoantigen-specific CD4+ T helper (auto-Th) cells are central orchestrators of autoimmune diseases (AIDs). We aimed to characterize these cells in human AIDs with defined autoantigens by combining human leukocyte antigen (HLA)-tetramer-based and activation-based multidimensional ex vivo analyses. In aquaporin4-antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) patients, auto-Th cells expressed CD154, but proliferative capacity and pro-inflammatory cytokines were strongly reduced. Instead, exhaustion-associated co-inhibitory receptors were expressed together with FOXP3, the canonical regulatory T cell (Treg) transcription factor. Auto-Th cells responded in vitro to checkpoint inhibition and provided potent B cell help. Cells with the same exhaustion-like (ThEx) phenotype were identified in soluble liver antigen (SLA)-antibody-autoimmune hepatitis and BP180-antibody-positive bullous pemphigoid, AIDs of the liver and skin, respectively. While originally described in cancer and chronic infection, our data point to T cell exhaustion as a common mechanism of adaptation to chronic (self-)stimulation across AID types and link exhausted CD4+ T cells to humoral autoimmune responses, with implications for therapeutic targeting.


Assuntos
Autoantígenos , Doenças Autoimunes , Linfócitos T CD4-Positivos , Humanos , Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Fenótipo , Linfócitos T Reguladores/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Autoanticorpos/imunologia , Feminino
7.
Immunity ; 55(2): 341-354.e7, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990590

RESUMO

The high genetic diversity of hepatitis C virus (HCV) complicates effective vaccine development. We screened a cohort of 435 HCV-infected individuals and found that 2%-5% demonstrated outstanding HCV-neutralizing activity. From four of these patients, we isolated 310 HCV antibodies, including neutralizing antibodies with exceptional breadth and potency. High neutralizing activity was enabled by the use of the VH1-69 heavy-chain gene segment, somatic mutations within CDRH1, and CDRH2 hydrophobicity. Structural and mutational analyses revealed an important role for mutations replacing the serines at positions 30 and 31, as well as the presence of neutral and hydrophobic residues at the tip of the CDRH3. Based on these characteristics, we computationally created a de novo antibody with a fully synthetic VH1-69 heavy chain that efficiently neutralized multiple HCV genotypes. Our findings provide a deep understanding of the generation of broadly HCV-neutralizing antibodies that can guide the design of effective vaccine candidates.


Assuntos
Anticorpos Amplamente Neutralizantes/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/genética , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Epitopos , Feminino , Genótipo , Hepacivirus/genética , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/química , Anticorpos Anti-Hepatite C/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
8.
Immunity ; 54(9): 2089-2100.e8, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34469774

RESUMO

Kupffer cells (KCs) are highly abundant, intravascular, liver-resident macrophages known for their scavenger and phagocytic functions. KCs can also present antigens to CD8+ T cells and promote either tolerance or effector differentiation, but the mechanisms underlying these discrepant outcomes are poorly understood. Here, we used a mouse model of hepatitis B virus (HBV) infection, in which HBV-specific naive CD8+ T cells recognizing hepatocellular antigens are driven into a state of immune dysfunction, to identify a subset of KCs (referred to as KC2) that cross-presents hepatocellular antigens upon interleukin-2 (IL-2) administration, thus improving the antiviral function of T cells. Removing MHC-I from all KCs, including KC2, or selectively depleting KC2 impaired the capacity of IL-2 to revert the T cell dysfunction induced by intrahepatic priming. In summary, by sensing IL-2 and cross-presenting hepatocellular antigens, KC2 overcome the tolerogenic potential of the hepatic microenvironment, suggesting new strategies for boosting hepatic T cell immunity.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Interleucina-2/imunologia , Células de Kupffer/imunologia , Animais , Hepatite B/imunologia , Tolerância Imunológica/imunologia , Camundongos , Camundongos Transgênicos
9.
Immunity ; 54(4): 781-796.e4, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33675683

RESUMO

Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.


Assuntos
Anticorpos Neutralizantes/imunologia , Células Germinativas/imunologia , Glicoproteínas/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Macaca mulatta/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linfócitos B/imunologia , Células CHO , Linhagem Celular , Cricetulus , Epitopos/imunologia , Células HEK293 , Hepatite C/virologia , Humanos , Estudos Longitudinais , Macaca mulatta/virologia , Receptores de Antígenos de Linfócitos B/imunologia , Vacinação/métodos
10.
Annu Rev Cell Dev Biol ; 31: 125-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26436705

RESUMO

Hepatitis B virus (HBV) infection affects 240 million people worldwide. A liver-specific bile acid transporter named the sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV and its satellite, the hepatitis D virus (HDV). NTCP likely acts as a major determinant for the liver tropism and species specificity of HBV and HDV at the entry level. NTCP-mediated HBV entry interferes with bile acid transport in cell cultures and has been linked with alterations in bile acid and cholesterol metabolism in vivo. The human liver carcinoma cell line HepG2, complemented with NTCP, now provides a valuable platform for studying the basic biology of the viruses and developing treatments for HBV infection. This review summarizes critical findings regarding NTCP's role as a viral receptor for HBV and HDV and discusses important questions that remain unanswered.


Assuntos
Vírus da Hepatite B/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Proteínas de Transporte/metabolismo , Vírus Delta da Hepatite/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo
11.
Immunity ; 51(6): 1074-1087.e9, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31784108

RESUMO

Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Interferon Tipo I/imunologia , Fígado/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Receptor de Interferon alfa e beta/metabolismo , Animais , Arginina/sangue , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Feminino , Hepatócitos/metabolismo , Fígado/imunologia , Fígado/virologia , Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ornitina/sangue , Ornitina Carbamoiltransferase/genética , Transdução de Sinais/imunologia , Ureia/metabolismo , Células Vero
12.
Immunol Rev ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248154

RESUMO

Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.

13.
Immunol Rev ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340232

RESUMO

Enteric viruses are the main cause of acute gastroenteritis worldwide with a significant morbidity and mortality, especially among children and aged adults. Some enteric viruses also cause disseminated infections and severe neurological manifestations such as poliomyelitis. Protective immunity against these viruses is not well understood in humans, with most knowledge coming from animal models, although the development of poliovirus and rotavirus vaccines has extended our knowledge. In a classical view, innate immunity involves the recognition of foreign DNA or RNA by pathogen recognition receptors leading to the production of interferons and other inflammatory cytokines. Antigen uptake and presentation to T cells and B cells then activate adaptive immunity and, in the case of the mucosal immunity, induce the secretion of dimeric IgA, the more potent immunoglobulins in viral neutralization. The study of Inborn errors of immunity (IEIs) offers a natural opportunity to study nonredundant immunity toward pathogens. In the case of enteric viruses, patients with a defective production of antibodies are at risk of developing neurological complications. Moreover, a recent description of patients with low or absent antibody production with protracted enteric viral infections associated with hepatitis reinforces the prominent role of B cells and immunoglobulins in the control of enteric virus.

14.
Am J Hum Genet ; 111(6): 1018-1034, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749427

RESUMO

Evolutionary changes in the hepatitis B virus (HBV) genome could reflect its adaptation to host-induced selective pressure. Leveraging paired human exome and ultra-deep HBV genome-sequencing data from 567 affected individuals with chronic hepatitis B, we comprehensively searched for the signatures of this evolutionary process by conducting "genome-to-genome" association tests between all human genetic variants and viral mutations. We identified significant associations between an East Asian-specific missense variant in the gene encoding the HBV entry receptor NTCP (rs2296651, NTCP S267F) and mutations within the receptor-binding region of HBV preS1. Through in silico modeling and in vitro preS1-NTCP binding assays, we observed that the associated HBV mutations are in proximity to the NTCP variant when bound and together partially increase binding affinity to NTCP S267F. Furthermore, we identified significant associations between HLA-A variation and viral mutations in HLA-A-restricted T cell epitopes. We used in silico binding prediction tools to evaluate the impact of the associated HBV mutations on HLA presentation and observed that mutations that result in weaker binding affinities to their cognate HLA alleles were enriched. Overall, our results suggest the emergence of HBV escape mutations that might alter the interaction between HBV PreS1 and its cellular receptor NTCP during viral entry into hepatocytes and confirm the role of HLA class I restriction in inducing HBV epitope variations.


Assuntos
Vírus da Hepatite B , Mutação , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Humanos , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Genoma Viral , Genômica/métodos , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/virologia , Hepatite B Crônica/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo
15.
Immunity ; 48(1): 161-173.e5, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29305140

RESUMO

Acute hepatitis A (AHA) involves severe CD8+ T cell-mediated liver injury. Here we showed during AHA, CD8+ T cells specific to unrelated viruses became activated. Hepatitis A virus (HAV)-infected cells produced IL-15 that induced T cell receptor (TCR)-independent activation of memory CD8+ T cells. TCR-independent activation of non-HAV-specific CD8+ T cells were detected in patients, as indicated by NKG2D upregulation, a marker of TCR-independent T cell activation by IL-15. CD8+ T cells derived from AHA patients exerted innate-like cytotoxicity triggered by activating receptors NKG2D and NKp30 without TCR engagement. We demonstrated that the severity of liver injury in AHA patients correlated with the activation of HAV-unrelated virus-specific CD8+ T cells and the innate-like cytolytic activity of CD8+ T cells, but not the activation of HAV-specific T cells. Thus, host injury in AHA is associated with innate-like cytotoxicity of bystander-activated CD8+ T cells, a result with implications for acute viral diseases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Hepatite A/imunologia , Hepatopatias/imunologia , Ativação Linfocitária/imunologia , Adolescente , Adulto , Testes Imunológicos de Citotoxicidade , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Hepatite A/complicações , Humanos , Immunoblotting , Interleucina-15/metabolismo , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/etiologia , Masculino , Pessoa de Meia-Idade , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
16.
Mol Cell ; 74(6): 1205-1214.e8, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31080011

RESUMO

Translation initiation of hepatitis C virus (HCV) genomic RNA is induced by an internal ribosome entry site (IRES). Our cryoelectron microscopy (cryo-EM) analysis revealed that the HCV IRES binds to the solvent side of the 40S platform of the cap-dependently translating 80S ribosome. Furthermore, we obtained the cryo-EM structures of the HCV IRES capturing the 40S subunit of the IRES-dependently translating 80S ribosome. In the elucidated structures, the HCV IRES "body," consisting of domain III except for subdomain IIIb, binds to the 40S subunit, while the "long arm," consisting of domain II, remains flexible and does not impede the ongoing translation. Biochemical experiments revealed that the cap-dependently translating ribosome becomes a better substrate for the HCV IRES than the free ribosome. Therefore, the HCV IRES is likely to efficiently induce the translation initiation of its downstream mRNA with the captured translating ribosome as soon as the ongoing translation terminates.


Assuntos
Fatores de Iniciação em Eucariotos/química , Hepacivirus/genética , Iniciação Traducional da Cadeia Peptídica , RNA Viral/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Células HEK293 , Hepacivirus/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Sítios Internos de Entrada Ribossomal , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/genética , RNA Viral/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
17.
Proc Natl Acad Sci U S A ; 121(7): e2313002121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319965

RESUMO

It is known that pre-mRNAs in eukaryotic cells can be processed to circular RNAs by a backsplicing mechanism. Circular RNAs have great stability and can sequester proteins or small RNAs to exert functions on cellular pathways. Because viruses often exploit host pathways, we explored whether the RNA genome of the cytoplasmic hepatitis C virus is processed to yield virus-derived circRNAs (vcircRNAs). Computational analyses of RNA-seq experiments predicted that the viral RNA genome is fragmented to generate hundreds of vcircRNAs. More than a dozen of them were experimentally verified by rolling-circle amplification. VcircRNAs that contained the viral internal ribosome entry site were found to be translated into proteins that displayed proviral functions. Furthermore, two highly abundant, nontranslated vcircRNAs were shown to enhance viral RNA abundance. These findings argue that novel vcircRNA molecules modulate viral amplification in cells infected by a cytoplasmic RNA virus.


Assuntos
Hepatite C , RNA Circular , Humanos , Hepacivirus/genética , RNA Viral/genética , Provírus/genética
18.
Proc Natl Acad Sci U S A ; 121(24): e2400145121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833465

RESUMO

Microalgae are promising production platforms for the cost-effective production of recombinant proteins. We have recently established that the red alga Porphyridium purpureum provides superior transgene expression properties, due to the episomal maintenance of transformation vectors as multicopy plasmids in the nucleus. Here, we have explored the potential of Porphyridium to synthesize complex pharmaceutical proteins to high levels. Testing expression constructs for a candidate subunit vaccine against the hepatitis C virus (HCV), we show that the soluble HCV E2 glycoprotein can be produced in transgenic algal cultures to high levels. The antigen undergoes faithful posttranslational modification by N-glycosylation and is recognized by conformationally selective antibodies, suggesting that it adopts a proper antigenic conformation in the endoplasmic reticulum of red algal cells. We also report the experimental determination of the structure of the N-glycan moiety that is attached to glycosylated proteins in Porphyridium. Finally, we demonstrate the immunogenicity of the HCV antigen produced in red algae when administered by injection as pure protein or by feeding of algal biomass.


Assuntos
Hepacivirus , Porphyridium , Porphyridium/metabolismo , Porphyridium/imunologia , Porphyridium/genética , Hepacivirus/imunologia , Hepacivirus/genética , Glicosilação , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Animais
19.
Proc Natl Acad Sci U S A ; 121(45): e2416255121, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39467126

RESUMO

Classically, all hepatitis E virus (HEV) variants causing human infection belong to the genus Paslahepevirus (HEV-A). However, the increasing cases of rat HEV infection in humans since 2018 challenged this dogma, posing increasing health threats. Herein, we investigated the underlying mechanisms dictating the zoonotic potentials of different HEV species and their possible cross-protection relationships. We found that rat HEV virus-like particles (HEVVLPs) bound to human liver and intestinal cells/tissues with high efficiency. Moreover, rat HEVVLPs and infectious rat HEV particles penetrated the cell membrane and entered human target cells postbinding. In contrast, ferret HEVVLPs showed marginal cell binding and entry ability, bat HEVVLPs and avian HEVVLPs exhibited no binding and entry potency. Structure-based three-dimensional mapping identified that the surface spike domain of rat HEV is crucial for cell binding. Antigenic cartography indicated that rat HEV exhibited partial cross-reaction with HEV-A. Intriguingly, sera of HEV-A infected patients or human HEV vaccine Hecolin® immunized individuals provided partial cross-protection against the binding of rat HEVVLPs to human target cells. In summary, the interactions between the viral capsid and cellular receptor(s) regulate the distinct zoonotic potentials of different HEV species. The systematic characterization of antigenic cartography and serological cross-reactivity of different HEV species provide valuable insights for the development of species-specific diagnosis and protective vaccines against zoonotic HEV infection.


Assuntos
Vírus da Hepatite E , Hepatite E , Animais , Humanos , Vírus da Hepatite E/fisiologia , Hepatite E/transmissão , Hepatite E/virologia , Ratos , Zoonoses/virologia , Zoonoses/transmissão , Furões/virologia , Tropismo Viral , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
20.
Proc Natl Acad Sci U S A ; 121(24): e2400378121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830096

RESUMO

Epitranscriptomic RNA modifications have emerged as important regulators of the fate and function of viral RNAs. One prominent modification, the cytidine methylation 5-methylcytidine (m5C), is found on the RNA of HIV-1, where m5C enhances the translation of HIV-1 RNA. However, whether m5C functionally enhances the RNA of other pathogenic viruses remains elusive. Here, we surveyed a panel of commonly found RNA modifications on the RNA of hepatitis B virus (HBV) and found that HBV RNA is enriched with m5C as well as ten other modifications, at stoichiometries much higher than host messenger RNA (mRNA). Intriguingly, m5C is mostly found on the epsilon hairpin, an RNA element required for viral RNA encapsidation and reverse transcription, with these m5C mainly deposited by the cellular methyltransferase NSUN2. Loss of m5C from HBV RNA due to NSUN2 depletion resulted in a partial decrease in viral core protein (HBc) production, accompanied by a near-complete loss of the reverse transcribed viral DNA. Similarly, mutations introduced to remove the methylated cytidines resulted in a loss of HBc production and reverse transcription. Furthermore, pharmacological disruption of m5C deposition led to a significant decrease in HBV replication. Thus, our data indicate m5C methylations as a critical mediator of the epsilon elements' function in HBV virion production and reverse transcription, suggesting the therapeutic potential of targeting the m5C methyltransfer process on HBV epsilon as an antiviral strategy.


Assuntos
Citidina , Vírus da Hepatite B , RNA Viral , Transcrição Reversa , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Citidina/análogos & derivados , Citidina/metabolismo , Citidina/genética , Humanos , Transcrição Reversa/genética , Metilação , Replicação Viral/genética , Epigênese Genética , Vírion/metabolismo , Vírion/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA