Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(23)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36863007

RESUMO

Y-doping can effectively improve the performance of HfOx-based resistive random-access memory (RRAM) devices, but the underlying physical mechanism of Y-doping affecting the performance of HfOx-based memristors is still missing and unclear. Although impedance spectroscopy (IS) has been widely used to investigate impedance characteristics and switching mechanisms of RRAM devices, there is less IS analysis on Y-doped HfOx-based RRAM devices as well as devices at different temperatures. Here, the effect of Y-doping on the switching mechanism of HfOx-based RRAM devices with a Ti/HfOx/Pt structure were reported using current-voltage characteristics and IS. The results indicated that doping Y into HfOxfilms could decrease the forming/operate voltage and improve the RS uniform. Both doped and undoped HfOx-based RRAM devices obeyed the oxygen vacancies (VO) conductive filament model along the grain boundary (GB). Additionally, the GB resistive activation energy of the Y-doped device was inferior to that of the undoped device. It exhibited a shift of theVOtrap level towards the conduction band bottom after Y-doping in the HfOxfilm, which was the main reason for the improved RS performance.

2.
Nanotechnology ; 34(26)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36962937

RESUMO

To strengthen the downscaling potential of top-gate amorphous oxide semiconductor (AOS) thin-film transistors (TFTs), the ultra-thin gate insulator (GI) was comparatively implemented using the atomic-layer-deposited (ALD) AlOxand HfOx. Both kinds of high-kGIs exhibit good insulating properties even with the physical thickness thinning to 4 nm. Compared to the amorphous indium-gallium-zinc oxide (a-IGZO) TFTs with 4 nm AlOxGI, the 4 nm HfOxenables a larger GI capacitance, while the HfOx-gated TFT suffers higher gate leakage current and poorer subthreshold slope, respectively originating from the inherently small band offset and the highly defective interface between a-IGZO and HfOx. Such imperfect a-IGZO/HfOxinterface further causes noticeable positive bias stress instability. Both ALD AlOxand HfOxwere found to react with the underneath a-IGZO channel to generate the interface defects, such as metal interstitials and oxygen vacancies, while the ALD process of HfOxgives rise to a more severe reduction of a-IGZO. Moreover, when such a defective interface is covered by the top gate, it cannot be readily restored using the conventional oxidizing post-treatments and thus desires the reduction-resistant pre-treatments of AOSs.

3.
Nanotechnology ; 32(49)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34404031

RESUMO

Ferroelectric tunnel junction (FTJ) has been considered as a promising candidate for next-generation memory devices due to its non-destructive and low power operations. In this article, we demonstrate the interlayer (IL) engineering in the FTJs to boost device performances. Through the analysis on the material and electrical characteristics of the fabricated FTJs with engineered IL stacks, it is clearly found that the insertion of an Al2O3layer between the SiO2insulator and the pure-HfOxFE improves the read disturbance (2Vc = 2.2 V increased), the endurance characteristics (tenfold improvement), and the cell-to-cell TER variation simultaneously without the degradation of the ferroelectricity (less than 5%) and the polarization switching speeds through grain size modulation. Based on these investigations, the guidelines of IL engineering for low power ferroelectric devices were provided to obtain stable and fast memory operations.

4.
Nanoscale Res Lett ; 12(1): 407, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28618715

RESUMO

A retention behavior model for self-rectifying TaO/HfO x - and TaO/AlO x -based resistive random-access memory (RRAM) is proposed. Trapping-type RRAM can have a high resistance state (HRS) and a low resistance state (LRS); the degradation in a LRS is usually more severe than that in a HRS, because the LRS during the SET process is limited by the internal resistor layer. However, if TaO/AlO x elements are stacked in layers, the LRS retention can be improved. The LRS retention time estimated by extrapolation method is more than 5 years at room temperature. Both TaO/HfO x - and TaO/AlO x -based RRAM structures have the same capping layer of TaO, and the activation energy levels of both types of structures are 0.38 eV. Moreover, the additional AlO x switching layer of a TaO/AlO x structure creates a higher O diffusion barrier that can substantially enhance retention, and the TaO/AlO x structure also shows a quite stable LRS under biased conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA