Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Microb Ecol ; 78(1): 57-69, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30284602

RESUMO

Microorganisms play important roles in mangrove ecosystems. However, we know little about the ecological implications of mangrove microbiomes for high productivity and the efficient circulation of elements in mangrove ecosystems. Here, we focused on mangrove sediments located at the Yunxiao National Mangrove Reserve in southeast China, uncovering the mangrove microbiome using the 16S rRNA gene and shotgun metagenome sequencing approaches. Physicochemical assays characterized the Yunxiao mangrove sediments as carbon (C)-rich, sulfur (S)-rich, and nitrogen (N)-limited environment. Then phylogenetic analysis profiling a distinctive microbiome with an unexpected high frequency of Chloroflexi and Nitrospirae appeared to be an adaptive characteristic of microbial structure in S-rich habitat. Metagenome sequencing analysis revealed that the metabolic pathways of N and S cycling at the community-level were routed through ammonification and dissimilatory nitrate reduction to ammonium for N conservation in this N-limited habitat, and dissimilatory sulfate reduction along with polysulfide formation for generating bioavailable S resource avoiding the biotoxicity of sulfide in mangrove sediments. In addition, methane metabolism acted as a bridge to connect C cycling to N and S cycling. Further identification of possible biogeochemical linkers suggested Syntrophobacter, Sulfurovum, Nitrospira, and Anaerolinea potentially drive the coupling of C, N, and S cycling. These results highlighting the adaptive routed metabolism flow, a previously undescribed property of mangrove sediment microbiome, appears to be a defining characteristic of this habitat and may significantly contribute to the high productivity of mangrove ecosystems, which could be used as indicators for the health and biodiversity of mangrove ecosystems.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota , Compostos de Amônio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , China , Conservação dos Recursos Naturais , DNA Bacteriano/genética , Sedimentos Geológicos/química , Nitratos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Enxofre/metabolismo , Áreas Alagadas
2.
Biotechnol Appl Biochem ; 62(2): 287-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24980609

RESUMO

To improve the production of d-lactic acid, atmospheric and room temperature plasma (ARTP) was used to generate mutations in Sporolactobacillus sp. Y2-8. An efficient mutant YBS1-5 was rapidly isolated by implanting ARTP twice with a 100 W radio-frequency power input, 10 standard liters per minute of the helium flow, and a 2 mm treatment distance. Significant improvement of d-lactic acid productivity (1.39 g L(-1) H(-1) ) by YBS1-5 was achieved, and it was 41.84% higher than the productivity (0.98 g L(-1) H(-1) ) of Y2-8. Moreover, the dry cell weight of YBS1-5 was 16.7% higher than that of Y2-8. Metabolic activities of concerned substrates related with key enzymes of d-lactic acid fermentation were analyzed by Biolog approach. Results showed that the activities of the key enzymes glucokinase and d-lactate dehydrogenase in mutant YBS1-5 were increased by approximately 45% and 66%, respectively, in comparison with those of the strain Y2-8. Fed-batch fermentation further improved the productivity; 127 g L(-1) d-lactic acid in 74 H by YBS1-5 with higher productivity (1.72 g L(-1) H(-1) ) was achieved. The subculture experiments indicated that YBS1-5 was genetically stable after eight generations.


Assuntos
Firmicutes/fisiologia , Melhoramento Genético/métodos , Ácido Láctico/biossíntese , Gases em Plasma/farmacologia , Atmosfera/química , Firmicutes/classificação , Firmicutes/efeitos dos fármacos , Mutação/efeitos dos fármacos , Mutação/genética , Especificidade da Espécie
3.
Plant Physiol Biochem ; 207: 108364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232496

RESUMO

Microalgae are compelling renewable resources with applications including biofuels, bioplastics, nutrient supplements, and cosmetic products. Picochlorum celeri is an alga with high industrial interest due to exemplary outdoor areal biomass productivities in seawater. Detailed proximate analysis is needed in multiple environmental conditions to understand the dynamic biomass compositions of P. celeri, and how these compositions might be leveraged in biotechnological applications. In this study, biomass characterization of P. celeri was performed under nutrient-replete, nitrogen-restricted, and hyper-saline conditions. Nutrient-replete cultivation of P. celeri resulted in protein-rich biomass (∼50% ash-free dry weight) with smaller carbohydrate (∼12% ash-free dry weight) and lipid (∼11% ash-free dry weight) partitions. Gradual nitrogen depletion elicited a shift from proteins to carbohydrates (∼50% ash-free dry weight, day 3) as cells transitioned into the production of storage metabolites. Importantly, dilutions in nitrogen-restricted 40 parts per million (1.43 mM nitrogen) media generated high-carbohydrate (∼50% ash-free dry weight) biomass without substantially compromising biomass productivity (36 g ash-free dry weight m-2 day-1) despite decreased chlorophyll (∼2% ash-free dry weight) content. This strategy for increasing carbohydrate content allowed for the targeted production of polysaccharides, which could potentially be utilized to produce fuels, oligosaccharides, and bioplastics. Cultivation at 2X sea salts resulted in a shift towards carbohydrates from protein, with significantly increased levels of the amino acid proline, which putatively acts as an osmolyte. A detailed understanding of the biomass composition of P. celeri in nutrient-replete, nitrogen-restricted, and hyper saline conditions informs how this strain can be useful in the production of biotechnological products.


Assuntos
Clorófitas , Microalgas , Biomassa , Carboidratos/química , Clorófitas/metabolismo , Nitrogênio/metabolismo , Biopolímeros/metabolismo , Biocombustíveis
4.
Trends Biotechnol ; 41(9): 1109-1112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36863908

RESUMO

Traditional strain breeding of industrial filamentous actinomycetes has long been hampered by insufficient screening throughput. From microtiter plate based methods to droplet-based microfluidic screening, various novel product-driven high-throughput screening (HTS) methods have pushed the screening speed limit towards a minimum of hundreds of strains per second with single cell resolution.


Assuntos
Actinobacteria , Actinomyces , Ensaios de Triagem em Larga Escala , Microfluídica , Reatores Biológicos
5.
Bioresour Technol ; 325: 124725, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33508680

RESUMO

This work aimed to select a Tisochrysis lutea phenotype with higher biomass and fucoxanthin productivities using fluorescence-activated cell sorting (FACS). A novel phenotype was obtained after 2 rounds of selection, based on high-fucoxanthin fluorescence. The resulting phenotype forms cell aggregates, has no flagella, and was stable after 15 months. Optimal temperature (30 °C) and light (300 µmol m-2 s-1) were obtained at laboratory scale, identical to the original strain. The biomass productivity was higher than the original strain: 1.9× at laboratory scale (0.4 L), and 4.5× under outdoor conditions (190 L). Moreover, compared to the original strain, the productivity of fucoxanthin increased 1.6-3.1× and docosahexaenoic acid 1.5-1.9×. These are the highest ever reported outdoor productivities, obtained with a robust new phenotype from a T. lutea monoculture isolated with FACS without genetic manipulation. The resulting phenotype shows high potential for industrial production.


Assuntos
Ácidos Docosa-Hexaenoicos , Haptófitas , Biomassa , Fenótipo , Xantofilas
6.
Environ Sci Pollut Res Int ; 28(7): 7981-7993, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33043421

RESUMO

The cation-independent bioflocculant (59LF) extracted from Klebsiella sp. 59L was characterized. 59LF consisted of protein (4.8%) and total sugar (85.2%) with high molecular weight (93.82% of 2120 kDa), and total sugar was composed of 76.45% of neutral sugar, 3.65% of uronic acid, and 1.43% of amino sugar. Results indicated that 59LF was pH tolerant and thermally stable, and the maximum yield of 59LF was 4.078 g/L after 48 h culture. The optimal flocculating activity for Kaolin particles was obtained when the dosage of 59LF was 7.0 mg/L without additional metal ions as coagulant aids. Furthermore, the surface properties of 59LF were observed using a Fourier-transform infrared spectrophotometer and X-ray photoelectron spectroscopy, whereas a porous structure was detected by a scanning electron microscope. Thus, a primary flocculation mechanism of 59LF was proposed. This study provided a potential cation-independent bioflocculant with high productivity and low dosage in future application.


Assuntos
Caulim , Klebsiella , Cátions , Floculação , Concentração de Íons de Hidrogênio
7.
Micromachines (Basel) ; 11(5)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443786

RESUMO

A shifted laser surface texturing method (sLST) was developed for the improvement of the production speed of functional surface textures to enable their industrial applicability. This paper compares the shifted method to classic methods using a practical texturing example, with a focus on delivering the highest processing speed. The accuracy of the texture is assessed by size and circularity measurements with the use of LabIR paint and by a depth profile measurement using a contact surface profiler. The heat accumulation temperature increase and laser usage efficiency were also calculated. The classic methods (path filling and hatch) performed well (deviation ≤ 5%) up to a certain scanning speed (0.15 and 0.7 m/s). For the shifted method, no scanning speed limit was identified within the maximum of the system (8 m/s). The depth profile shapes showed similar deviations (6% to 10%) for all methods. The shifted method in its burst variant achieved the highest processing speed (11 times faster, 146 mm2/min). The shifted method in its path filling variant achieved the highest processing efficiency per needed laser power (64 mm2/(min·W)), lowest heat accumulation temperature increase (3 K) and highest laser usage efficiency (99%). The advantages of the combination of the shifted method with GHz burst machining and the multispot approach were described.

8.
Environ Sci Pollut Res Int ; 26(20): 20164-20182, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115808

RESUMO

At present, diminishing oil resources and increasing environmental concerns have led to a shift toward the production of alternative biofuels. In the last few decades, butanol, as liquid biofuel, has received considerable research attention due to its advantages over ethanol. Several studies have focused on the production of butanol through the fermentation from raw renewable biomass, such as lignocellulosic materials. However, the low concentration and productivity of butanol production and the price of raw materials are limitations for butanol fermentation. Moreover, these limitations are the main causes of industrial decline in butanol production. This study reviews butanol fermentation, including the metabolism and characteristics of acetone-butanol-ethanol (ABE) producing clostridia. Furthermore, types of butanol production from biomass feedstock are detailed in this study. Specifically, this study introduces the recent progress on the efficient butanol production of "designed" and modified biomass. Additionally, the recent advances in the butanol fermentation process, such as multistage continuous fermentation, metabolic flow change of the electron carrier supplement, continuous fermentation with immobilization and recycling of cell, and the recent technical separation of the products from the fermentation broth, are described in this study.


Assuntos
Biocombustíveis/análise , Butanóis/análise , Clostridium/metabolismo , Fermentação , Biomassa
9.
Vet Microbiol ; 228: 213-218, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30593370

RESUMO

We developed A/PR/8/34 (PR8) virus-based reverse genetics system in which six internal genes of PR8 and attenuated hemagglutinin and intact neuraminidase genes of field avian influenza viruses (AIVs) have been used for the generation of highly productive recombinant vaccine strains. The 6 + 2 recombinant vaccine strains can induce protective humoral immunity against intended field AIVs; however, the epitopes of B and T cells encoded by internal genes may be important for heterosubtypic protection. Therefore, it is advantageous to use homologous internal genes of field AIVs for recombinant vaccine strains. However, the rescue of recombinant viruses having whole internal genes of field AIVs by the PR8-based reverse genetics system was unsuccessful in some cases. Although partial replacement of an internal gene has been successful for generation of highly productive and mammalian nonpathogenic recombinant viruses, complete replacement of internal genes may be more favorable. In this study, we successfully generated complete recombinant H9N2 AIVs possessing 8 genomes of H9N2 AIVs by optimal combinations of 3' end promoter sequences of polymerase genomes, and a NS genome. All the generated recombinant viruses showed highly productive and mammalian nonpathogenic traits but some of them showed much higher virus titers in embryonated chicken eggs. Additionally, we found the same mutations of NS1 gene determined pathogenicity of AIVs in chicken embryos as well as mammals. Thus, the 3' end promoter optimization, and highly productive and mammalian nonpathogenic internal genes may be useful to develop vaccines against AIVs.


Assuntos
Hemaglutininas Virais/imunologia , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Neuraminidase/imunologia , Animais , Embrião de Galinha , Galinhas/virologia , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Regiões Promotoras Genéticas/genética , Genética Reversa , Vacinas Sintéticas/imunologia
10.
Anim Reprod ; 15(3): 256-260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-34457070

RESUMO

Over the years, the dairy cow has been selected and managed for high performance and efficiency in milk production. Thus, different factors influence the fertility of dairy cows of high productivity. It has been observed that genetic selection for large productions and metabolic adaptations may explain the greater requirement to maintain reproduction at satisfactory levels. Also, these animals are more susceptible to environmental factors such as increased temperature and humidity. Studies have shown that heat stress results in reduced estrous expression and impairs ovarian function, interfering with folliculogenesis and steroidogenesis. Likewise, under heat stress conditions, dry matter intake is reduced, prolonging the after calving negative energy balance and calving-conception interval. Thus, suboptimal reproductive performance is one of the main factors responsible for the economic losses in large dairy farms. In this context, numerous management practices have been introduced to improve reproduction in high productivity animals, making reproductive management increasingly complex in dairy farms. Among them, we can mention the implementation of management and nutrition conditions adapted to the periods of heat stress, as well as protocols and biotechniques that improve the quality of the follicles and oocytes. Thus, because genetic selection for better fertility animals is a characteristic of low heritability, the success of reproductive programs in highly productive herds depends on the association of the control of genetic and physiological factors with those of environmental, nutritional and management. This paper aims to discuss reproductive aspects of dairy cows of high productivity, the role of heat stress in this context, and the implementation of management, nutrition and biotechnology conditions, to minimize the adverse effects on the reproduction of these animals.

11.
Eng Life Sci ; 18(9): 626-634, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32624942

RESUMO

The aim of this study was to improve l-lactic acid production of Lactobacillus thermophilus SRZ50. For this purpose, high efficient heavy-ion mutagenesis technique was performed using SRZ50 as the original strain. To enhance the screening efficiency for high yield l-lactic acid producers, a scale-down from shake flask to microtiter plate was developed. The results showed that 24-well U-bottom MTPs could well alternate shake flasks for L. thermophilus cultivation as a scale-down tool due to its a very good comparability to the shake flasks. Based on this microtiter plate screening method, two high l-lactic acid productivity mutants, A59 and A69, were successfully screened out, which presented, respectively, 15.8 and 16.2% higher productivities than that of the original strain. Based on fed-batch fermentation, the A69 mutant can accumulate 114.2 g/L l-lactic acid at 96 h. Hence, the proposed traditional microbial breeding method with efficient high-throughput screening assay was proved to be an appropriate strategy to obtain lactic acid-overproducing strain.

12.
N Biotechnol ; 37(Pt A): 117-122, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27373779

RESUMO

Agro-industrial residues with a low carbon content, such as whey, stillage or wastewater from plant oil mills are abundant and cheap. However, they cannot be used directly in highly productive industrial poly(3-hydroxybutyrate) (P3HB) production, as the classical fed-batch fermentation strategy requires highly concentrated feed streams. This problem has been circumvented in this report by retaining the cells during the fermentation in the bioreactor using an external microfiltration module. Synthetic medium containing a glucose concentration of 50g/L was continuously fed to Cupriavidus necator, which converted the sugar to P3HB. With this setup we were able to achieve high productivities (3.10g P3HB/(Lh)) and reach high cell densities (148g/L) containing 76% P3HB, and obtained good yields (0.33g P3HB/g added glucose). The added sugar from the feed was instantly consumed by the bacteria, resulting in a negligible loss of sugar to the permeate. This approach creates the possibility of polyhydroxyalkanoate production from a range of cheap and easily available substrates, for which only waste water treatment or biogas production has been cost-competitive until now.


Assuntos
Reatores Biológicos , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Biotecnologia , Cupriavidus necator/metabolismo , Fermentação , Glucose/metabolismo , Nitrogênio/metabolismo
13.
Bioresour Technol ; 151: 120-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24215768

RESUMO

The effect of osmotic pressure on erythritol and mannitol production by an osmophilic yeast strain of Yarrowia lipolytica CICC 1675 using glycerol as the sole carbon source was investigated. Appropriately high osmotic pressure was found to enhance erythritol production and inhibit mannitol formation. A novel two-stage osmotic pressure control fed-batch strategy based on the kinetic analysis was developed for higher erythritol yield and productivity. During the first 96 h, the osmotic pressure was maintained at 4.25 osmol/kg by feeding glycerol to reduce the inhibition of cell growth. After 132 h, the osmotic pressure was controlled at 4.94 osmol/kg to maintain a high dp(ery)/dt. Maximum erythritol yield of 194.3g/L was obtained with 0.95 g/L/h productivity, which were 25.7% and 2.2%, respectively, improvement over the best results in one-stage fed-batch fermentation. This is the first report that a novel osmotic pressure control fed-batch strategy significantly enhanced erythritol production.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Eritritol/biossíntese , Fermentação , Glicerol/metabolismo , Pressão Osmótica , Yarrowia/metabolismo , Biomassa , Fermentação/efeitos dos fármacos , Manitol/metabolismo , Pressão Osmótica/efeitos dos fármacos , Polímeros/metabolismo , Cloreto de Sódio/farmacologia , Fatores de Tempo , Yarrowia/efeitos dos fármacos
14.
Braz. arch. biol. technol ; 52(6): 1313-1320, Nov.-Dec. 2009. graf, tab
Artigo em Inglês | LILACS | ID: lil-539097

RESUMO

The effect of six planting densities on cacao yield of a commercial hybrid mixture as well as the interaction of planting densities with the years were investigated. Crop data collected over a 14-year period (1977-1990) showed that it was possible to optimise the regional cacao yields by implementing high planting densities (2500 and 1736 trees ha-1). This was however only true for the first half of the crop period. In the second half, low planting density (1059 trees ha-1) attained the best yields. This change in the ranking of planting densities over the years confirmed the presence of density-year interaction. Alternatives to achieve high productivity in high planting density systems were presented and discussed.


O efeito de seis densidades de plantio sobre a produção de um híbrido comercial de cacau, bem como a interação das densidades com os anos, foi investigado. Dados coletados do cultivo por 14 anos (1977-1990) mostraram que é possível otimizar a produção de cacau da região implementando uma alta densidade populacional (2500 e 1736 plantas ha-1). Todavia, isto se verificou apenas para a primeira metade do período de cultivo. Na segunda metade, a baixa densidade (1059 plantas ha-1) foi superior em produção. Esta mudança na densidade com o passar dos anos foi confirmada pela presença da interação densidades por anos. Alternativas para alcançar elevadas produtividades nos sistemas com altas densidades foram apresentadas e discutidas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA