Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 65(7): e0009721, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33903110

RESUMO

Efforts to mitigate the coronavirus disease 2019 (COVID-19) pandemic include the screening of existing antiviral molecules that could be repurposed to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Although SARS-CoV-2 replicates and propagates efficiently in African green monkey kidney (Vero) cells, antivirals such as nucleos(t)ide analogs (NUCs) often show decreased activity in these cells due to inefficient metabolization. SARS-CoV-2 exhibits low viability in human cells in culture. Here, serial passages of a SARS-CoV-2 isolate (original-SARS2) in the human hepatoma cell clone Huh7.5 led to the selection of a variant (adapted-SARS2) with significantly improved infectivity in human liver (Huh7 and Huh7.5) and lung cancer (unmodified Calu-1 and A549) cells. The adapted virus exhibited mutations in the spike protein, including a 9-amino-acid deletion and 3 amino acid changes (E484D, P812R, and Q954H). E484D also emerged in Vero E6-cultured viruses that became viable in A549 cells. Original and adapted viruses were susceptible to scavenger receptor class B type 1 (SR-B1) receptor blocking, and adapted-SARS2 exhibited significantly less dependence on ACE2. Both variants were similarly neutralized by COVID-19 convalescent-phase plasma, but adapted-SARS2 exhibited increased susceptibility to exogenous type I interferon. Remdesivir inhibited original- and adapted-SARS2 similarly, demonstrating the utility of the system for the screening of NUCs. Among the tested NUCs, only remdesivir, molnupiravir, and, to a limited extent, galidesivir showed antiviral effects across human cell lines, whereas sofosbuvir, ribavirin, and favipiravir had no apparent activity. Analogously to the emergence of spike mutations in vivo, the spike protein is under intense adaptive selection pressure in cell culture. Our results indicate that the emergence of spike mutations will most likely not affect the activity of remdesivir.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Chlorocebus aethiops , Humanos , Pandemias , Glicoproteína da Espícula de Coronavírus , Replicação Viral
2.
Antimicrob Agents Chemother ; 65(10): e0115521, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34310217

RESUMO

Remdesivir (RDV; GS-5734) is currently the only FDA-approved antiviral drug for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The drug is approved for use in adults or children 12 years or older who are hospitalized for the treatment of COVID-19 on the basis of an acceleration of clinical recovery for inpatients with this disease. Unfortunately, the drug must be administered intravenously, restricting its use to those requiring hospitalization for relatively advanced disease. RDV is also unstable in plasma and has a complex activation pathway which may contribute to its highly variable antiviral efficacy in SARS-CoV-2-infected cells. Potent orally bioavailable antiviral drugs for early treatment of SARS-CoV-2 infection are urgently needed, and several, including molnupiravir and PF-07321332, are currently in clinical development. We focused on making simple, orally bioavailable lipid analogs of remdesivir nucleoside (RVn; GS-441524) that are processed to RVn monophosphate, the precursor of the active RVn triphosphate, by a single-step intracellular cleavage. In addition to high oral bioavailability, stability in plasma, and simpler metabolic activation, new oral lipid prodrugs of RVn had submicromolar anti-SARS-CoV-2 activity in a variety of cell types, including Vero E6, Calu-3, Caco-2, human pluripotent stem cell (PSC)-derived lung cells, and Huh7.5 cells. In Syrian hamsters, oral treatment with 1-O-octadecyl-2-O-benzyl-glycero-3-phosphate RVn (ODBG-P-RVn) was well tolerated and achieved therapeutic levels in plasma above the 90% effective concentration (EC90) for SARS-CoV-2. The results suggest further evaluation as an early oral treatment for SARS-CoV-2 infection to minimize severe disease and reduce hospitalizations.


Assuntos
Tratamento Farmacológico da COVID-19 , Pró-Fármacos , Adenosina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Antivirais/farmacologia , Células CACO-2 , Cricetinae , Humanos , Lipídeos , SARS-CoV-2
3.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275182

RESUMO

The antiviral effects of hepatitis C virus (HCV)-specific CD8 T cells have been shown in an HCV replicon system but not in an authentic infectious HCV cell culture (HCVcc) system. Here, we developed tools to examine the antigenicity of HCV-infected HLA-A2-positive Huh7.5 hepatoma cells (Huh7.5A2 cells) in activating HCV-specific CD8 T cells and the downstream antiviral effects. Infectious HCV epitope mutants encoding the well-defined genotype 1a-derived HLA-A2-restricted HCV NS3-1073 or NS5-2594 epitope were generated from a genotype 2a-derived HCV clone (Jc1Gluc2A) by site-directed mutagenesis. CD8 T-cell lines specific for NS3-1073 and NS5-2594 were expanded from HCV-seropositive persons by peptide stimulation in vitro or engineered from HCV-seronegative donor T cells by transduction of a lentiviral vector expressing HCV-specific T-cell receptors. HCV-specific CD8 T cells were cocultured with Huh7.5 cells that were pulsed with titrating doses of HCV epitope peptides or infected with HCV epitope mutants. HCV-specific CD8 T-cell activation (CD107a, gamma interferon, macrophage inflammatory protein 1ß, tumor necrosis factor alpha) was dependent on the peptide concentrations and the relative percentages of HCV-infected Huh7.5A2 cells. HCV-infected Huh7.5A2 cells activated HCV-specific CD8 T cells at levels comparable to those achieved with 0.1 to 2 µM pulsed peptides, providing a novel estimate of the level at which endogenously processed HCV epitopes are presented on HCV-infected cells. While HCV-specific CD8 T-cell activation with cytolytic and antiviral effects was blunted by PD-L1 expression on HCV-infected Huh7.5A2 cells, resulting in the improved viability of Huh7.5A2 cells, PD-1 blockade reversed this effect, producing enhanced cytolytic elimination of HCV-infected Huh7.5A2 cells. Our findings, obtained using an infectious HCVcc system, show that the HCV-specific CD8 T-cell function is modulated by antigen expression levels, the percentage of HCV-infected cells, and the PD-1/PD-L1 pathways and has antiviral and cytotoxic effects.IMPORTANCE We developed several novel molecular and immunological tools to study the interactions among HCV, HCV-infected hepatocytes, and HCV-specific CD8 T cells. Using these tools, we show the level at which HCV-infected hepatoma cells present endogenously processed HCV epitopes to HCV-specific CD8 T cells with antiviral and cytotoxic effects. We also show the marked protective effect of PD-L1 expression on HCV-infected hepatoma cells against HCV-specific CD8 T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepacivirus/imunologia , Hepatócitos/virologia , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocina CCL4/genética , Técnicas de Cocultura , Testes Imunológicos de Citotoxicidade , Antígeno HLA-A2/imunologia , Hepacivirus/genética , Hepatócitos/imunologia , Humanos , Interferon gama/genética , Ativação Linfocitária , Proteína 1 de Membrana Associada ao Lisossomo/genética , Mutagênese Sítio-Dirigida , Peptídeos/farmacologia , Receptores de Antígenos de Linfócitos T/genética , Transdução Genética , Fator de Necrose Tumoral alfa/genética
4.
Int J Mol Sci ; 18(11)2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29113144

RESUMO

The hepatitis C virus (HCV) causes chronic liver disease leading to fibrosis, cirrhosis, and hepatocellular carcinoma. HCV infection triggers various types of cell death which contribute to hepatitis C pathogenesis. However, much is still unknown about the impact of viral proteins on them. Here we present the results of simultaneous immunocytochemical analysis of markers of apoptosis, autophagy, and necrosis in Huh7.5 cells expressing individual HCV proteins or their combinations, or harboring the virus replicon. Stable replication of the full-length HCV genome or transient expression of its core, Е1/Е2, NS3 and NS5B led to the death of 20-47% cells, 72 h posttransfection, whereas the expression of the NS4A/B, NS5A or NS3-NS5B polyprotein did not affect cell viability. HCV proteins caused different impacts on the activation of caspases-3, -8 and -9 and on DNA fragmentation. The structural core and E1/E2 proteins promoted apoptosis, whereas non-structural NS4A/B, NS5A, NS5B suppressed apoptosis by blocking various members of the caspase cascade. The majority of HCV proteins also enhanced autophagy, while NS5A also induced necrosis. As a result, the death of Huh7.5 cells expressing the HCV core was induced via apoptosis, the cells expressing NS3 and NS5B via autophagy-associated death, and the cells expressing E1/E2 glycoproteins or harboring HCV the replicon via both apoptosis and autophagy.


Assuntos
Carcinoma Hepatocelular/genética , Hepacivirus/genética , Neoplasias Hepáticas/genética , Proteínas não Estruturais Virais/genética , Apoptose/genética , Autofagia/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Caspases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genoma Viral/genética , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/virologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/virologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Transdução de Sinais , Transfecção , Replicação Viral/genética
5.
Viruses ; 14(11)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423136

RESUMO

Hepatitis C virus (HCV) genotype 4 is highly prevalent in the Middle East and parts of Africa. Subtype 4d has recently spread among high-risk groups in Europe. However, 4d infectious culture systems are not available, hampering studies of drugs, as well as neutralizing antibodies relevant for HCV vaccine development. We determined the consensus 4d sequence from a chronic hepatitis C patient by next-generation sequencing, generated a full-length clone thereof (pDH13), and demonstrated that pDH13 RNA-transcripts were viable in the human-liver chimeric mouse model, but not in Huh7.5 cells. However, a JFH1-based DH13 Core-NS5A 4d clone encoding A1671S, T1785V, and D2411G was viable in Huh7.5 cells, with efficient growth after inclusion of 10 additional substitutions [4d(C5A)-13m]. The efficacies of NS3/4A protease- and NS5A- inhibitors against genotypes 4a and 4d were similar, except for ledipasvir, which is less potent against 4d. Compared to 4a, the 4d(C5A)-13m virus was more sensitive to neutralizing monoclonal antibodies AR3A and AR5A, as well as 4a and 4d patient plasma antibodies. In conclusion, we developed the first genotype 4d infectious culture system enabling DAA efficacy testing and antibody neutralization assessment critical to optimization of DAA treatments in the clinic and for vaccine design to combat the HCV epidemic.


Assuntos
Hepatite C Crônica , Hepatite C , Animais , Camundongos , Humanos , Hepacivirus , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepatite C Crônica/tratamento farmacológico , Genótipo
6.
Vaccines (Basel) ; 10(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35214707

RESUMO

Hepatitis C virus (HCV) infections pose a major public health burden due to high chronicity rates and associated morbidity and mortality. A vaccine protecting against chronic infection is not available but would be important for global control of HCV infections. In this study, cell culture-based HCV production was established in a packed-bed bioreactor (CelCradle™) aiming to further the development of an inactivated whole virus vaccine and to facilitate virological and immunological studies requiring large quantities of virus particles. HCV was produced in human hepatoma-derived Huh7.5 cells maintained in serum-free medium on days of virus harvesting. Highest virus yields were obtained when the culture was maintained with two medium exchanges per day. However, increasing the total number of cells in the culture vessel negatively impacted infectivity titers. Peak infectivity titers of up to 7.2 log10 focus forming units (FFU)/mL, accumulated virus yields of up to 5.9 × 1010 FFU, and a cell specific virus yield of up to 41 FFU/cell were obtained from one CelCradle™. CelCradle™-derived and T flask-derived virus had similar characteristics regarding neutralization sensitivity and buoyant density. This packed-bed tide-motion system is available with larger vessels and may thus be a promising platform for large-scale HCV production.

7.
bioRxiv ; 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32869033

RESUMO

Remdesivir (RDV, GS-5734) is currently the only FDA-approved antiviral drug for the treatment of SARS CoV-2 infection. The drug is approved for use in adults or children 12-years or older who are hospitalized for the treatment of COVID-19 on the basis of an acceleration of clinical recovery for inpatients with this disease. Unfortunately, the drug must be administered intravenously, restricting its use to those requiring hospitalization for relatively advanced disease. RDV is also unstable in plasma and has a complex activation pathway which may contribute to its highly variable antiviral efficacy in SARS-CoV-2 infected cells. Potent orally bioavailable antiviral drugs for early treatment of SARS-CoV-2 infection are urgently needed and several including molnupiravir and PF-07321332 are currently in clinical development. We focused on making simple, orally bioavailable lipid analogs of Remdesivir nucleoside (RVn, GS-441524) that are processed to RVn-monophosphate, the precursor of the active RVn-triphosphate, by a single-step intracellular cleavage. In addition to high oral bioavailability, stability in plasma and simpler metabolic activation, new oral lipid prodrugs of RVn had submicromolar anti-SARS-CoV-2 activity in a variety of cell types including Vero E6, Calu-3, Caco-2, human pluripotent stem cell (PSC)-derived lung cells and Huh7.5 cells. In Syrian hamsters oral treatment with ODBG-P-RVn was well tolerated and achieved therapeutic levels in plasma above the EC90 for SARS-CoV-2. The results suggest further evaluation as an early oral treatment for SARS-CoV-2 infection to minimize severe disease and reduce hospitalizations.

8.
Int J Pharm ; 547(1-2): 572-581, 2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-29908332

RESUMO

Virus infections cause diseases of different severity ranged from mild infection e.g. common cold into life threatening diseases e.g. Human Immunodeficiency virus (HIV), Hepatitis B. Virus infections represent 44% of newly emerging infections. Although there are many efficient antiviral agents, they still have drawbacks due to accumulation at off target organs and developing of virus resistance due to virus mutation. Therefore, developing a delivery system that can selectively target drug into affected organs and avoid off target accumulation would be a highly advantageous strategy to improve antiviral therapy. Nanoparticles (NP) can be effectively targeted to the liver, and therefore it could be used for improving therapy of hepatic virus infections including hepatitis B virus and hepatitis C virus (HCV). Many studies were performed to encapsulate antiviral agents into nano-delivery system to improve their pharmacokinetics parameters to have a better therapeutic efficacy with lower side effects. However, the effect of virus infection on the uptake of NP has not yet been studied in detail. The latter is a crucial area as modulation of endocytic uptake of nanoparticles could impact on reduce potential therapeutic usefulness of antiviral agents loaded into nano-delivery system. In this study, a fluorescently-labelled polymeric nanoparticle was prepared and used to track NP uptake into Huh7.5, human hepatoma cells transfected with replicating HCV genomes, compared with non-transfected cells as a model representing hepatocyte uptake. Confocal microscopy and flow cytometry of virus transfected Huh7.5 cells unexpectedly demonstrated two-fold increase in uptake of NP compared to non-transfected cells. Therefore, virus transfection enhanced NP uptake into Huh7.5 cells and NP could be considered as a promising delivery system for targeted treatment of hepatitis viruses.


Assuntos
Antivirais/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Hepacivirus/efeitos dos fármacos , Hepatócitos/metabolismo , Nanopartículas/química , Linhagem Celular Tumoral , Infecções por HIV/tratamento farmacológico , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Permeabilidade , Polímeros/química , Transfecção
9.
J Agric Food Chem ; 66(28): 7531-7541, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29984997

RESUMO

Citrus polymethoxylated flavones (PMFs) influence biochemical cascades in human diseases, yet little is known about how these compounds interact with cells and how these associations influence the actions of these compounds. An innate attribute of PMFs is their ultraviolet-light-induced fluorescence, and the fluorescence spectra of 14 PMFs and 7 PMF metabolites were measured in methanol. These spectra were shown to be strongly influenced by the compounds' hydroxy and methoxy substituents. For a subset of these compounds, the fluorescence spectra were measured when bound to human carcinoma Huh7.5 cells. Emission-wavelength maxima of PMF metabolites with free hydroxyl substituents exhibited 70-80 nm red shifts when bound to the Huh7.5 cells. Notable solvent effects of water were observed for nearly all these compounds, and these influences likely reflect the effects of localized microenvironments on the resonance structures of these compounds when bound to human cells.


Assuntos
Células/metabolismo , Citrus/química , Flavonas/química , Extratos Vegetais/química , Animais , Linhagem Celular , Células/química , Citrus/metabolismo , Flavonas/metabolismo , Fluorescência , Humanos , Masculino , Espectrometria de Massas , Extratos Vegetais/metabolismo , Ratos , Ratos Wistar , Espectrometria de Fluorescência
10.
Iran J Microbiol ; 8(2): 132-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27307979

RESUMO

BACKGROUND AND OBJECTIVES: HBHA and Mtb32C have been isolated from culture supernatants of Mycobacterium tuberculosis (M. tuberculosis) and Mycobacterium bovis (M. bovis) and their immunogenicity previously studies have been confirmed. In this study, capability of constructed vector containing two mycobacterial immunodaminant antigens (Mtb32C-HBHA), in producing new chimeric protein under the in-vitro condition was examined. MATERIALS AND METHODS: In present study Huh7.5 cells was transfected with Mtb32C-HBHA -pCDNA3.1+ recombinant vector using the calcium phosphate method and expression of chimeric protein was assessed by RT-PCR and Western blot methods. RESULTS: Results of RT-PCR and Western blot showed expression of 35.5 KD recombinant protein (Mtb32C-HBHA) in this cell line. CONCLUSION: The constructed vector can produce two highly immunogenic antigens that fusion of them to gather makes chimeric antigen with new traits. Other attempts are needed to evaluate specific properties of this new antigen such as molecular conformation modeling and immunologic characteristics in future studies.

11.
Cell Mol Gastroenterol Hepatol ; 2(3): 302-316.e8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-28090562

RESUMO

BACKGROUND & AIMS: Monocyte and macrophage (MΦ) activation contributes to the pathogenesis of chronic hepatitis C virus (HCV) infection. Disease pathogenesis is regulated by both liver-resident MΦs and monocytes recruited as precursors of MΦs into the damaged liver. Monocytes differentiate into M1 (classic/proinflammatory) or M2 (alternative/anti-inflammatory) polarized MΦs in response to tissue microenvironment. We hypothesized that HCV-infected hepatoma cells (infected with Japanese fulminant hepatitis-1 [Huh7.5/JFH-1]) induce monocyte differentiation into polarized MΦs. METHODS: Healthy human monocytes were co-cultured with Huh7.5/JFH-1 cells or cell-free virus for 7 days and analyzed for MΦ markers and cytokine levels. A similar analysis was performed on circulating monocytes and liver MΦs from HCV-infected patients and controls. RESULTS: Huh7.5/JFH-1 cells induced monocytes to differentiate into MΦs with increased expression of CD14 and CD68. HCV-MΦs showed M2 surface markers (CD206, CD163, and Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN)) and produced both proinflammatory and anti-inflammatory cytokines. HCV-induced early interleukin 1ß production promoted transforming growth factor (TGF)ß production and MΦ polarization to an M2 phenotype. TGF-ß secreted by M2-MΦ led to hepatic stellate cell activation indicated by increased expression of collagen, tissue inhibitor of metalloproteinase 1, and α-smooth muscle actin. In vivo, we observed a significant increase in M2 marker (CD206) expression on circulating monocytes and in the liver of chronic HCV-infected patients. Furthermore, we observed the presence of a unique collagen-expressing CD14+CD206+ monocyte population in HCV patients that correlated with liver fibrosis. CONCLUSIONS: We show an important role for HCV in induction of monocyte differentiation into MΦs with a mixed M1/M2 cytokine profile and M2 surface phenotype that promote stellate cell activation via TGF-ß. We also identified circulating monocytes expressing M2 marker and collagen in chronic HCV infection that can be explored as a biomarker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA