Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Immunity ; 48(2): 350-363.e7, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29426701

RESUMO

Despite evidence that γδ T cells play an important role during malaria, their precise role remains unclear. During murine malaria induced by Plasmodium chabaudi infection and in human P. falciparum infection, we found that γδ T cells expanded rapidly after resolution of acute parasitemia, in contrast to αß T cells that expanded at the acute stage and then declined. Single-cell sequencing showed that TRAV15N-1 (Vδ6.3) γδ T cells were clonally expanded in mice and had convergent complementarity-determining region 3 sequences. These γδ T cells expressed specific cytokines, M-CSF, CCL5, CCL3, which are known to act on myeloid cells, indicating that this γδ T cell subset might have distinct functions. Both γδ T cells and M-CSF were necessary for preventing parasitemic recurrence. These findings point to an M-CSF-producing γδ T cell subset that fulfills a specialized protective role in the later stage of malaria infection when αß T cells have declined.


Assuntos
Fator Estimulador de Colônias de Macrófagos/fisiologia , Malária/prevenção & controle , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia , Subpopulações de Linfócitos T/imunologia , Animais , Feminino , Humanos , Ativação Linfocitária , Malária/imunologia , Camundongos , Parasitemia/prevenção & controle , Recidiva
2.
Biochem Biophys Res Commun ; 729: 150342, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38981402

RESUMO

Despite viral suppression by effective combined antiretroviral therapy, HIV-1-infected individuals have an increased risk of non-AIDS-related overall morbidity, which is due to the persistent chronic inflammation exemplified by the activation of monocytes, such as increased CD16high subset, and elevated plasma level of soluble CD163 (sCD163) and soluble CD14 (sCD14). Here, we show that IL-10, which has been recognized as anti-inflammatory, induces these activated phenotypes of monocytes in vitro. IL-10 increased CD16high monocytes, which was due to the upregulation of CD16 mRNA expression and completely canceled by an inhibitor of Stat3. Moreover, IL-10 increased the production of sCD163 and sCD14 by monocytes, which was consistent with the upregulation of cell surface expression of CD163 and CD14, and mRNA expression of CD163. However, unlike the IL-10-indeuced upregulation of CD16, that of CD14 was minimally affected by the Stat3 inhibitor. Furthermore, the IL-10-induced upregulation of CD163 protein and mRNA was partially inhibited by the Stat3 inhibitor, but completely canceled by an inhibitor of AMPK, an upstream kinase of Stat3 and PI3K/Akt/mTORC1 pathways. In this study, we also found that HIV-1 pathogenic protein Nef, which is known to persist in plasma of virally-suppressed individuals, induced IL-10 production in monocyte-derived macrophages. Our results may suggest that IL-10, which is inducible by Nef-activated macrophages, is one of drivers for activated phenotypes of monocytes in virally-suppressed individuals, and that IL-10 induces the increased CD16high monocytes and elevated level of sCD163 and sCD14 through the activation of different signaling pathways.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Infecções por HIV , HIV-1 , Interleucina-10 , Monócitos , Receptores de Superfície Celular , Humanos , Interleucina-10/metabolismo , Monócitos/metabolismo , Monócitos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Infecções por HIV/sangue , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Receptores de IgG/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Fator de Transcrição STAT3/metabolismo , Fenótipo , Regulação para Cima , Células Cultivadas
3.
Inflamm Res ; 73(2): 253-262, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158446

RESUMO

BACKGROUND: Macrophages (Mφ) can exist along a spectrum of phenotypes that include pro-inflammatory (M1) or anti-inflammatory (M2) immune cells. Mφ colony stimulating factor (M-CSF) and granulocyte Mφ colony stimulating factor (GM-CSF) are cytokines important in hematopoiesis, polarization and activation of Mφ. METHODS AND RESULTS: To gain a greater understanding of the relationship between GM-CSF and M-CSF, we investigated an in vitro model of differentiation to determine if GM-CSF and M-CSF can antagonize each other, in terms of Mφ phenotype and functions. We determined that Mφ cultured in mixed M-CSF: GM-CSF ratios exhibit M1-like GM-CSF-treated macrophage phenotype when the ratios of the two cytokines are 1:1 in culture. Moreover, GM-CSF is dominant over M-CSF in influencing Mφ production of proinflammatory cytokines such as IL-6, TNFα, and IL-12p40, and the anti-inflammatory cytokine IL-10. CONCLUSIONS: Our data established that GM-CSF is more dominant over M-CSF, triggering the Mφ to become pro-inflammatory cells. These findings provide insight into how GM-CSF can influence Mφ activation with implications in inflammatory diseases where the Mφ status can play a significant role in supporting the inflammatory conditions.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Fator Estimulador de Colônias de Macrófagos , Macrófagos , Anti-Inflamatórios/farmacologia , Diferenciação Celular , Células Cultivadas , Citocinas/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Hematopoese , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fenótipo
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731934

RESUMO

Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments.


Assuntos
Remodelação Óssea , Ritmo Circadiano , Remodelação Óssea/genética , Animais , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Humanos , Osteoblastos/metabolismo , Osteogênese/genética , Osteoclastos/metabolismo , Regulação da Expressão Gênica , Osso e Ossos/metabolismo
5.
Semin Cell Dev Biol ; 112: 8-15, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32563679

RESUMO

Osteoclasts, the multinucleated cells responsible for bone resorption, have an enormous destructive power which demands to be kept under tight control. Accordingly, the identification of molecular signals directing osteoclastogenesis and switching on their resorptive activity have received much attention. Mandatory factors were identified, but a very essential aspect of the control mechanism of osteoclastic resorption, i.e. its spatial control, remains poorly understood. Under physiological conditions, multinucleated osteoclasts are only detected on the bone surface, while their mono-nucleated precursors are only in the bone marrow. How are pre-osteoclasts targeted to the bone surface? How is their progressive differentiation coordinated with their approach to the bone surface sites to be resorbed, which is where they finally fuse? Here we review the information on the bone marrow distribution of differentiating pre-osteoclasts relative to the position of the mandatory factors for their differentiation as well as relative to physical entities that may affect their access to the remodelling sites. This info allows recognizing an "osteoclastogenesis route" through the bone marrow and leading to the coincident fusion/resorption site - but also points to what still remains to be clarified regarding this route and regarding the restriction of fusion at the resorption site. Finally, we discuss the mechanism responsible for the start of resorption and its spatial extension. This review underscores that fully understanding the control of bone resorption requires to consider it in both space and time - which demands taking into account the context of bone tissue.


Assuntos
Reabsorção Óssea/fisiopatologia , Comunicação Celular/genética , Osteoclastos/fisiologia , Osteogênese/genética , Células da Medula Óssea/metabolismo , Reabsorção Óssea/genética , Diferenciação Celular/genética , Humanos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/fisiologia , Propriedades de Superfície
6.
Cytokine ; 172: 156400, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839333

RESUMO

BACKGROUND: WNT4 gene polymorphism are common in endometriosis and may functionally link estrogen and estrogen receptor signaling. Previous study confirmed estrogen and estrogen receptor signaling recruit macrophage to promote the pathogenesis of endometriosis. To investigate the effect of WNT4 in endometriosis involved in macrophage polarization and whether WNT4 could reduce the apoptosis of granulosa cells. METHODS: An observational study consisting of 8 cases of women with endometriosis (diagnosed by surgery and histology) and 22 mice of endometriosis animal model was conducted. Granulosa cells were isolated from 16 patients with endometriosis and co-cultured with macrophage under WNT4 treatment using TUNEL assay, quantitative reverse transcription PCR, flow cytometry and ELISA analysis. 22 mice of endometriosis animal model confirmed the WNT4 treatment effects using histology and immunohistochemistry, Western blot and flow cytometry. RESULTS: We observed that the apoptotic proportion of granulosa cells was significantly decreased and M2 macrophage was significantly increased after WNT4 treatment during the granulosa cell and macrophage co-culture system. To reveal the underlying mechanism for this, we conducted a series of experiments and found that high expression of granulosa cell M-CSF led to the M2 polarization of macrophages. The animal model also suggested that the anti-apoptotic effect of WNT4 on granulosa cells were conducted by the M2 polarized macrophage. CONCLUSIONS: WNT4 could reduce granulosa cell apoptosis and improve ovarian reserve by promoting macrophage polarization in endometriosis. M-CSF secreted by granulosa cell after WNT4 treatment was the main mediator of macrophage polarization.


Assuntos
Endometriose , Fator Estimulador de Colônias de Macrófagos , Humanos , Feminino , Camundongos , Animais , Fator Estimulador de Colônias de Macrófagos/metabolismo , Endometriose/metabolismo , Receptores de Estrogênio/metabolismo , Macrófagos/metabolismo , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Apoptose , Estrogênios/metabolismo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
7.
Microbiol Immunol ; 67(2): 90-98, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461910

RESUMO

Although pituitary neuroendocrine tumors (PitNETs) are usually benign, some are highly invasive and recurrent. Recurrent PitNETs are often treatment-resistant and there is currently no effective evidence-based treatment. Tumor-associated macrophages (TAMs) promote tumor growth in many cancers, but the effect of TAMs on PitNETs remains unclear. This study investigated the role of TAMs in the incidence of recurrent PitNETs. Immunohistochemical analysis revealed that the densities of CD163- and CD204-positive TAMs tended to increase in recurrent PitNETs. Compared with TAMs in primary lesions, those in recurrent lesions were enlarged. To clarify the cell-cell interactions between TAMs and PitNETs, in vitro experiments were performed using a mouse PitNET cell line AtT20 and the mouse macrophage cell line J774. Several cytokines related to macrophage chemotaxis and differentiation, such as M-CSF, were elevated significantly by stimulation with macrophage conditioned medium. When M-CSF immunohistochemistry analysis was performed using human PitNET samples, M-CSF expression increased significantly in recurrent lesions compared with primary lesions. Although no M-CSF receptor (M-CSFR) expression was observed in tumor cells of primary and recurrent PitNETs, flow cytometric analysis revealed that the mouse PitNET cell line expressed M-CSFR. Cellular proliferation in mouse PitNETs was inhibited by high concentrations of M-CSFR inhibitors, suggesting that cell-to-cell communication between PitNETs and macrophages induces M-CSF expression, which in turn enhances TAM chemotaxis and maturation in the tumor microenvironment. Blocking the M-CSFR signaling pathway might be a novel therapeutic adjuvant in treating recurrent PitNETs.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Tumores Neuroendócrinos , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Macrófagos , Citocinas/metabolismo , Transdução de Sinais , Microambiente Tumoral
8.
Mol Biol Rep ; 50(3): 2857-2863, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36609750

RESUMO

PURPOSE: This work compiles the characteristics of bone cells involved in the physiological bone remodeling. METHODS: A narrative review of the literature was performed. RESULTS: Remodeling is a different process from modeling. Remodeling allows old or damaged bone tissue to be renewed, ensuring the maintenance of bone fracture resistance, as well as maintaining calcium and phosphorus homeostasis. We present the role of osteoclasts, a multinucleated cell with hematopoietic origin responsible for resorbing bone. The formation of osteoclasts depends on the cytokines macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL) and can be blocked by osteoprotegerin. Furthermore, this review highlights the features of osteoblasts, polarized cubic cells of mesenchymal origin that deposit bone and also covers osteocytes and bone lining cells. This review presents the five fundamental phases of bone remodeling and addresses aspects of its regulation through hormones and growth factors. CONCLUSIONS: Knowledge of the current concepts of physiological bone remodeling is necessary for the study of the different pathologies that affect the bone tissue and thus helps in the search for new therapies.


Assuntos
Glicoproteínas de Membrana , Osteócitos , Glicoproteínas de Membrana/metabolismo , Diferenciação Celular/fisiologia , Proteínas de Transporte/metabolismo , Osteoclastos/metabolismo , Osteoblastos/metabolismo
9.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895023

RESUMO

Bone homeostasis is regulated by the balanced actions of osteoblasts that form the bone and osteoclasts (OCs) that resorb the bone. Bone-resorbing OCs are differentiated from hematopoietic monocyte/macrophage lineage cells, whereas osteoblasts are derived from mesenchymal progenitors. OC differentiation is induced by two key cytokines, macrophage colony-stimulating factor (M-CSF), a factor essential for the proliferation and survival of the OCs, and receptor activator of nuclear factor kappa-B ligand (RANKL), a factor for responsible for the differentiation of the OCs. Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinases, play an essential role in regulating the proliferation, differentiation, and function of OCs. ERKs have been known to play a critical role in the differentiation and activation of OCs. In most cases, ERKs positively regulate OC differentiation and function. However, several reports present conflicting conclusions. Interestingly, the inhibition of OC differentiation by ERK1/2 is observed only in OCs differentiated from RAW 264.7 cells. Therefore, in this review, we summarize the current understanding of the conflicting actions of ERK1/2 in OC differentiation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Osteoclastos , Osteoclastos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Ligante RANK/metabolismo
10.
Glia ; 70(4): 728-747, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34961968

RESUMO

Microglia are increasingly being recognized as druggable targets in neurodegenerative disorders, and good in vitro models are crucial to address cell biological questions. Major challenges are to recapitulate the complex microglial morphology and their in vivo transcriptome. We have therefore exposed primary microglia from adult rhesus macaques to a variety of different culture conditions including exposure to soluble factors as M-CSF, IL-34, and TGF-ß as well as serum replacement approaches, and compared their morphologies and transcriptomes to those of mature, homeostatic in vivo microglia. This enabled us to develop a new, partially serum-free, monoculture protocol, that yields high numbers of ramified cells. We also demonstrate that exposure of adult microglia to M-CSF or IL-34 induces similar transcriptomes, and that exposure to TGF-ß has much less pronounced effects than it does on rodent microglia. However, regardless of culture conditions, the transcriptomes of in vitro and in vivo microglia remained substantially different. Analysis of differentially expressed genes inspired us to perform 3D-spherical coculture experiments of microglia with oligodendrocytes and radial glia. In such spheres, microglia signature genes were strongly induced, even in the absence of neurons and astrocytes. These data reveal a novel role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity, providing new anchor points to study microglia in health and disease.


Assuntos
Células Ependimogliais , Microglia , Animais , Sinais (Psicologia) , Perfilação da Expressão Gênica , Macaca mulatta , Oligodendroglia , Transcriptoma
11.
J Allergy Clin Immunol ; 148(3): 799-812.e10, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33662369

RESUMO

BACKGROUND: The type 2 cytokines IL-4 and IL-13 promote not only atopic dermatitis (AD) but also the resolution of inflammation. How type 2 cytokines participate in the resolution of AD is poorly known. OBJECTIVE: Our aim was to determine the mechanisms and cell types governing skin inflammation, barrier dysfunction, and resolution of inflammation in a model of AD. METHODS: Mice that exhibit expression of IL-4, IL-13, and MCPT8 or that could be depleted of basophils or eosinophils, be deficient in IL-4 or MHC class II molecules, or have basophils lacking macrophage colony-stimulating factor (M-CSF) were treated with calcipotriol (MC903) as an acute model of AD. Kinetics of the disease; keratinocyte differentiation; and leukocyte accumulation, phenotype, function, and cytokine production were measured by transepidermal water loss, histopathology, molecular biology, or unbiased analysis of spectral flow cytometry. RESULTS: In this model of AD, basophils were activated systemically and were the initial and main source of IL-4 in the skin. Basophils and IL-4 promoted epidermal hyperplasia and skin barrier dysfunction by acting on keratinocyte differentiation during inflammation. Basophils, IL-4, and basophil-derived M-CSF inhibited the accumulation of proinflammatory cells in the skin while promoting the expansion and function of proresolution M2-like macrophages and the expression of probarrier genes. Basophils kept their proresolution properties during AD resolution. CONCLUSION: Basophils can display both beneficial and detrimental type 2 functions simultaneously during atopic inflammation.


Assuntos
Basófilos/imunologia , Dermatite Atópica/imunologia , Pele/imunologia , Animais , Calcitriol/análogos & derivados , Diferenciação Celular , Citocinas/genética , Citocinas/imunologia , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/genética , Dermatite Atópica/patologia , Toxina Diftérica , Edema/induzido quimicamente , Edema/imunologia , Eosinófilos/imunologia , Feminino , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Hiperplasia/imunologia , Queratinócitos/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/patologia
12.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555673

RESUMO

Prostate cancer is a major public health concern and one of the most prevalent forms of cancer worldwide. The definition of altered signaling pathways implicated in this complex disease is thus essential. In this context, abnormal expression of the receptor of Macrophage Colony-Stimulating Factor-1 (M-CSF or CSF-1) has been described in prostate cancer cells. Yet, outcomes of this expression remain unknown. Using mouse and human prostate cancer cell lines, this study has investigated the functionality of the wild-type CSF-1 receptor in prostate tumor cells and identified molecular mechanisms underlying its ligand-induced activation. Here, we showed that upon CSF-1 binding, the receptor autophosphorylates and activates multiple signaling pathways in prostate tumor cells. Biological experiments demonstrated that the CSF-1R/CSF-1 axis conferred significant advantages in cell growth and cell invasion in vitro. Mouse xenograft experiments showed that CSF-1R expression promoted the aggressiveness of prostate tumor cells. In particular, we demonstrated that the ligand-activated CSF-1R increased the expression of spp1 transcript encoding for osteopontin, a key player in cancer development and metastasis. Therefore, this study highlights that the CSF-1 receptor is fully functional in a prostate cancer cell and may be a potential therapeutic target for the treatment of prostate cancer.


Assuntos
Osteopontina , Neoplasias da Próstata , Receptor de Fator Estimulador de Colônias de Macrófagos , Animais , Humanos , Masculino , Camundongos , Ligantes , Fator Estimulador de Colônias de Macrófagos/metabolismo , Osteopontina/genética , Neoplasias da Próstata/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
13.
Am J Physiol Gastrointest Liver Physiol ; 321(4): G436-G447, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34405716

RESUMO

Chronic constipation (CC) is a gastrointestinal disorder that adversely affects the quality of life. MicroRNAs are involved in the pathogenesis of functional gastrointestinal disorders. This study aims to investigate the molecular mechanism of microRNA-128 in CC. Here, we successfully constructed a murine model of CC based on morphine and rhubarb. The expression of stem cell factor (SCF) and neuron-specific enolase (NSE) was low in the models. Using miRNA array and bioinformatic analysis, we predicted and confirmed the expression of miR-128 and its downstream target genes in CC model. Compared with the control group, CC group showed a significant downregulation of miR-128 and upregulation of p38α and macrophage colony-stimulating factors (M-CSFs). Moreover, we observed elevated inflammatory cytokine and decreased anti-inflammatory cytokine levels in colonic tissues. Furthermore, coculture assays indicated that regulating expression of miR-128 in colonic epithelial cells induced the secretion of IL-6 and TNF-α by macrophages. In conclusion, our study demonstrated that miR-128 regulated the p38α/M-CSF signaling pathway to promote chronic inflammatory responses and changes in the immune microenvironment of the colon, thereby offering potential insights into the pathogenesis of CC and therapeutic targets for its treatment.NEW & NOTEWORTHY In this study, we constructed a murine model and identified a novel signaling mechanism involved in the chronic constipation progression. Our findings on the role of miR-128/p38α/M-CSF axis provide new insights into the treatment of chronic constipation.


Assuntos
Constipação Intestinal/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular Tumoral , Colo/metabolismo , Constipação Intestinal/genética , Feminino , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/genética , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
14.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331816

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) play an important role in macrophage (MФ) development by influencing their differentiation and polarization. Our goal was to explore the difference between M-CSF- and GM-CSF-derived bone marrow MФ responsiveness to TLR7-mediated signalling pathways that influence cytokine production early after infection in a model of acute virus infection. To do so, we examined cytokine production and TLR7-mediated signalling at 1 h post-lymphocytic choriomeningitis virus (LCMV) Armstrong (ARM) infection. We found that R848-induced cytokine expression was enhanced in these cells, with GM-CSF cells exhibiting higher proinflammatory cytokine expression and M-CSF cells exhibiting higher anti-inflammatory cytokine expression. However, R848-mediated signalling molecule activation was diminished in LCMV-infected M-CSF and GM-CSF macrophages. Interestingly, we observed that TLR7 expression was maintained during LCMV infection of M-CSF and GM-CSF cells. Moreover, TLR7 expression was significantly higher in M-CSF cells compared to GM-CSF cells. Taken together, our data demonstrate that although LCMV restrains early TLR7-mediated signalling, it primes differentiated MФ to enhance expression of their respective cytokine profiles and maintains levels of TLR7 expression early after infection.


Assuntos
Citocinas/biossíntese , Imidazóis/farmacologia , Vírus da Coriomeningite Linfocítica/fisiologia , Macrófagos/imunologia , Macrófagos/virologia , Glicoproteínas de Membrana/metabolismo , Receptor 7 Toll-Like/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
15.
Genes Cells ; 25(11): 707-717, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32916757

RESUMO

Osteoclasts are multinucleated cells responsible for bone resorption. Src homology 3 (SH3) domain-containing protein-2 (SH3P2)/osteoclast-stimulating factor-1 regulates osteoclast differentiation, but its exact role remains elusive. Here, we show that SH3P2 suppresses osteoclast differentiation. SH3P2 knockout (KO) mice displayed decreased femoral trabecular bone mass and enhanced localization of osteoclasts on the tibial trabecular bone surface, suggesting that SH3P2 suppresses bone resorption by osteoclasts. Osteoclast differentiation based on cellular multinuclearity induced by macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL) was enhanced in bone marrow-derived macrophages lacking SH3P2. RANKL induced SH3P2 dephosphorylation, which increased the association of actin-dependent motor protein myosin 1E (Myo1E) with SH3P2 and thereby prevented Myo1E localization to the plasma membrane. Consistent with this, Myo1E in the membrane fraction increased in SH3P2-KO cells. Together with the attenuated osteoclast differentiation in Myo1E knocked down cells, SH3P2 may suppress osteoclast differentiation by preventing their cell-to-cell fusion depending on Myo1E membrane localization.


Assuntos
Proteínas Musculares/metabolismo , Miosina Tipo I/metabolismo , Osteoclastos/metabolismo , Animais , Células da Medula Óssea/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fêmur/metabolismo , Hematopoese/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/fisiologia , Miosina Tipo I/fisiologia , Miosinas/metabolismo , Osteoclastos/fisiologia , Ligante RANK/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938766

RESUMO

The role of a signaling pathway through macrophage colony-stimulating factor (MCSF) and its receptor, macrophage colony-stimulating factor 1 receptor (CSF1R), during experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE) was studied by two different approaches. First, we evaluated the effect of stimulation of the MCSF/CSF1R axis before infection. Exogenous MCSF (40 µg/kg of body weight intraperitoneally [i.p.]) was administered once daily to BALB/c mice on days 4 and 2 before intranasal infection with 2,500 PFU of HSV-1. MCSF treatment significantly increased mouse survival compared to saline (50% versus 10%; P = 0.0169). On day 6 postinfection (p.i.), brain viral titers were significantly decreased, whereas beta interferon (IFN-ß) was significantly increased in mice treated with MCSF compared to mice treated with saline. The number of CD68+ (a phagocytosis marker) microglial cells was significantly increased in MCSF-treated mice compared to the saline-treated group. Secondly, we conditionally depleted CSF1R on microglial cells of CSF1R-loxP-CX3CR1-cre/ERT2 mice (in a C57BL/6 background) through induction with tamoxifen. The mice were then infected intranasally with 600,000 PFU of HSV-1. The survival rate of mice depleted of CSF1R (knockout [KO] mice) was significantly lower than that of wild-type (WT) mice (0% versus 67%). Brain viral titers and cytokine/chemokine levels were significantly higher in KO than in WT animals on day 6 p.i. Furthermore, increased infiltration of monocytes into the brains of WT mice was seen on day 6 p.i., but not in KO mice. Our results suggest that microglial cells are essential to control HSE at early stages of the disease and that the MCSF/CSF1R axis could be a therapeutic target to regulate their response to infection.IMPORTANCE Microglia appear to be one of the principal regulators of neuroinflammation in the central nervous system (CNS). An increasing number of studies have demonstrated that the activation of microglia could result in either beneficial or detrimental effects in different CNS disorders. Hence, the role of microglia during herpes simplex virus encephalitis (HSE) has not been fully characterized. Using experimental mouse models, we showed that an early activation of the MCSF/CSF1R axis improved the outcome of the disease, possibly by inducing a proliferation of microglia. In contrast, depletion of microglia before HSV-1 infection worsened the prognosis of HSE. Thus, an early microglial response followed by sustained infiltration of monocytes and T cells into the brain seem to be key components for a better clinical outcome. These data suggest that microglia could be a potential target for immunomodulatory strategies combined with antiviral therapy to better control the outcome of this devastating disease.


Assuntos
Encefalite por Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Microglia/metabolismo , Microglia/virologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Encéfalo/virologia , Sistema Nervoso Central/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fator Estimulador de Colônias de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Fagocitose , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Carga Viral
17.
Cytokine ; 140: 155438, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33493861

RESUMO

BACKGROUND: Patients infected by SARS-CoV-2 can develop interstitial pneumonia, requiring hospitalisation or mechanical ventilation. Increased levels of inflammatory biomarkers are associated with development of acute respiratory distress syndrome (ARDS). The aim of the present study was to determine which cytokines are associated with respiratory insufficiency in patients hospitalised for COVID-19. PATIENTS AND METHODS: Data on 67 consecutive patients were collected between March 8 and March 30, 2020. PaO2/FiO2 ratio (P/F) was calculated at hospital admission. The following cytokines were analysed: interleukin (IL)-6, IL-1α, IL-18, tumour necrosis factor (TNF)-ß, macrophage colony-stimulating factor (M-CSF), macrophage migration inhibitory factor (MIF), soluble IL-2 receptor alpha (sIL-2Rα; CD25), IL-12ß, IL-3, interferon (IFN) α2a, monokine induced by gamma interferon (MIG), monocyte-chemotactic protein 3 (MCP3) and hepatocyte growth factor (HGF). RESULTS: P/F lower than 300 was recorded in 22 out of 67 patients (32.8%). P/F strongly correlated with IL-6 (r = -0.62, P < 0.0001), M-CSF (r = -0.63, P < 0.0001), sIL-2Rα (r = -0.54, P < 0.0001), and HGF (r = -0.53, P < 0.0001). ROC curve analyses for IL-6 (AUC 0.83, 95% CI 0.73-0.93, P < 0.0001), M-CSF (AUC 0.87, 95% CI 0.79-0.96, P < 0.0001), HGF (AUC 0.81, 95% CI 0.70-0.93, P < 0.0001), and sIL-2Rα (AUC 0.80, 95% CI, 0.69-0.90, P < 0.0001) showed that these four soluble factors were highly significant. All four soluble factors correlated with LDH, white blood cell count, neutrophil count, lymphocyte count, and CRP. CONCLUSION: IL-6, M-CSF, sIL-2Rα, and HGF are possibly involved in the main biological processes of severe COVID-19, mirroring the level of systemic hyperinflammatory state, the level of lung inflammation, and the severity of organ damage.


Assuntos
COVID-19/sangue , Citocinas/sangue , Imunidade Inata/imunologia , Inflamação/sangue , Subunidade alfa de Receptor de Interleucina-2/sangue , Insuficiência de Múltiplos Órgãos/sangue , Pneumonia/sangue , Idoso , COVID-19/complicações , COVID-19/virologia , Feminino , Fator de Crescimento de Hepatócito/sangue , Interações Hospedeiro-Patógeno , Humanos , Inflamação/complicações , Interleucina-6/sangue , Fator Estimulador de Colônias de Macrófagos/sangue , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/complicações , Pneumonia/complicações , Pneumonia/virologia , Estudos Retrospectivos , SARS-CoV-2/fisiologia
18.
J Neurooncol ; 153(2): 225-237, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33963961

RESUMO

PURPOSE: Tumor infiltration by immunosuppressive myeloid cells or tumor-associated macrophages (TAMs) contributes to tumor progression and metastasis. In contrast to their adult counterparts, higher TAM signatures do not correlate with aggressive tumor behavior in pediatric brain tumors. While prominent TAM infiltrates exist before and after radiation, the degree to which irradiated macrophages and microglia support progression or leptomeningeal metastasis remains unclear. Patients with medulloblastoma often present with distant metastases and tumor recurrence is largely incurable, making them prime candidates for the study of novel approaches to prevent neuroaxis dissemination and recurrence. METHODS: Macrophage depletion was achieved using CSF-1 receptor inhibitors (CSF-1Ri), BLZ945 and AFS98, with or without whole brain radiation in a variety of medulloblastoma models, including patient-derived xenografts bearing Group 3 medulloblastoma and a transgenic Sonic Hedgehog (Ptch1+/-, Trp53-/-) medulloblastoma model. RESULTS: Effective reduction of microglia, TAM, and spinal cord macrophage with CSF-1Ri resulted in negligible effects on the rate of local and spinal recurrences or survival following radiation. Results were comparable between medulloblastoma subgroups. While notably few tumor-infiltrating lymphocytes (TILs) were detected, average numbers of CD3+ TILs and FoxP3+ Tregs did not differ between groups following treatment and tumor aggressiveness by Ki67 proliferation index was unaltered. CONCLUSION: In the absence of other microenvironmental influences, medulloblastoma-educated macrophages do not operate as tumor-supportive cells or promote leptomeningeal recurrence in these models. Our data add to a growing body of literature describing a distinct immunophenotype amid the medulloblastoma microenvironment and highlight the importance of appropriate pediatric modeling prior to clinical translation.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Transdução de Sinais , Criança , Proteínas Hedgehog , Humanos , Fator Estimulador de Colônias de Macrófagos , Macrófagos , Receptores Proteína Tirosina Quinases , Receptor de Fator Estimulador de Colônias de Macrófagos , Microambiente Tumoral
19.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805444

RESUMO

Macrophage colony-stimulating factor (M-CSF or CSF-1) is known to have a broad range of actions on myeloid cells maturation, including the regulation of macrophage differentiation, proliferation and survival. Macrophages generated by M-CSF stimulus have been proposed to be alternatively activated or M2 phenotype. M-CSF is commonly overexpressed by tumors and is also known to enhance tumor growth and aggressiveness via stimulating pro-tumor activities of tumor-associated macrophages (TAMs). Currently, inhibition of CSF-1/CSF-1R interaction by therapeutic antibody to deplete TAMs and their pro-tumor functions is becoming a prevalent strategy in cancer therapy. However, its antitumor activity shows a limited single-agent effect. Therefore, macrophages in response to M-CSF interruption are pending for further investigation. To achieve this study, bone marrow derived macrophages were generated in vitro by M-CSF stimulation for 7 days and then continuously grown until day 21 in M-CSF absence. A selective pressure for cell survival was initiated after withdrawal of M-CSF. The surviving cells were more prone to M2-like phenotype, even after receiving interleukin-4 (IL-4) stimulation. The transcriptome analysis unveiled that endogenous CSF-1 level was dramatically up-regulated and numerous genes downstream to CSF-1 covering tumor necrosis factor (TNF), ras-related protein 1 (Rap1) and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway were significantly modulated, especially for proliferation, migration and adhesion. Moreover, the phenomenal increase of miR-21-5p and genes related to pro-tumor activity were observed in parallel. In summary, withholding of CSF-1/CSF-1R interaction would rather augment than suspend the M-CSF-driven pro-tumor activities of M2 macrophages in a long run.


Assuntos
Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Lectinas Tipo C/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/patologia
20.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525571

RESUMO

Interleukin-27 (IL-27) is a pleiotropic cytokine that influences the innate and adaptive immune systems. It inhibits viral infection and regulates the expression of microRNAs (miRNAs). We recently reported that macrophages differentiated from human primary monocytes in the presence of IL-27 and human AB serum resisted human immunodeficiency virus (HIV) infection and showed significant autophagy induction. In the current study, the miRNA profiles in these cells were investigated, especially focusing on the identification of novel miRNAs regulated by IL-27-treatment. The miRNA sequencing analysis detected 38 novel miRNAs. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed that IL-27 differentially regulated the expression of 16 of the 38 miRNAs. Overexpression of the synthesized miRNA mimics by transfection revealed that miRAB40 had potent HIV-inhibiting and autophagy-inducing properties. B18R, an interferon (IFN)-neutralization protein, partially suppressed both activities, indicating that the two functions were induced via IFN-dependent and -independent pathways. Although the target mRNA(s) of miRAB40 involving in the induction of both functions was unable to identify in this study, the discovery of miRAB40, a potential HIV-inhibiting and autophagy inducing miRNA, may provide novel insights into the miRNA (small none-coding RNA)-mediated regulation of HIV inhibition and autophagy induction as an innate immune response.


Assuntos
Perfilação da Expressão Gênica/métodos , HIV-1/fisiologia , Interleucina-27/farmacologia , Macrófagos/citologia , MicroRNAs/genética , Autofagia , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Interferons/metabolismo , Macrófagos/química , Macrófagos/virologia , MicroRNAs/farmacologia , Análise de Sequência de RNA , Soro/química , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA