Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nano Lett ; 24(22): 6813-6820, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781191

RESUMO

Spintronic devices incorporating magnetic skyrmions have attracted significant interest recently. Such devices traditionally focus on controlling magnetic textures in 2D thin films. However, enhanced performance of spintronic properties through the exploitation of higher dimensionalities motivates the investigation of variable-thickness skyrmion devices. We report the demonstration of a skyrmion injection mechanism that utilizes charge currents to drive skyrmions across a thickness step and, consequently, a metastability barrier. Our measurements show that under certain temperature and field conditions skyrmions can be reversibly injected from a thin region of an FeGe lamella, where they exist as an equilibrium state, into a thicker region, where they can only persist as a metastable state. This injection is achieved with a current density of 3 × 108 A m-2, nearly 3 orders of magnitude lower than required to move magnetic domain walls. This highlights the possibility to use such an element as a skyrmion source/drain within future spintronic devices.

2.
Nano Lett ; 23(18): 8719-8724, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37691265

RESUMO

Spin-wave-based transmission and processing of information is a promising emerging nanotechnology that can help overcome limitations of traditional electronics based on the transfer of electrical charge. Among the most important challenges for this technology is the implementation of spin-wave devices that can operate without the need for an external bias magnetic field. Here we experimentally demonstrate that this can be achieved using submicrometer wide spin-wave waveguides fabricated from ultrathin films of a low-loss magnetic insulator, yttrium iron garnet (YIG). We show that these waveguides exhibit a highly stable single-domain static magnetic configuration at zero field and support long-range propagation of spin waves with gigahertz frequencies. The experimental results are supported by micromagnetic simulations, which additionally provide information for the optimization of zero-field guiding structures. Our findings create the basis for the development of energy-efficient zero-field spin-wave devices and circuits.

3.
Nano Lett ; 23(20): 9295-9302, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37820262

RESUMO

Femtosecond (fs) time-resolved magneto-optics is applied to investigate laser-excited ultrafast dynamics of one-dimensional nickel gratings on fused silica and silicon substrates for a wide range of periodicities Λ = 400-1500 nm. Multiple surface acoustic modes with frequencies up to a few tens of GHz are generated. Nanoscale acoustic wavelengths Λ/n have been identified as nth-spatial harmonics of Rayleigh surface acoustic wave (SAW) and surface skimming longitudinal wave (SSLW), with acoustic frequencies and lifetimes being in agreement with theoretical calculations. Resonant magnetoelastic excitation of the ferromagnetic resonance (FMR) by SAW's third spatial harmonic, and, most interestingly fingerprints of the parametric resonance at 1/2 SAW frequency have been observed. Numerical solutions of Landau-Lifshitz-Gilbert (LLG) equation magnetoelastically driven by complex polychromatic acoustic fields quantitatively reproduce all resonances at once. Thus, our results provide a solid experimental and theoretical base for a quantitative understanding of ultrafast fs-laser-driven magnetoacoustics and tailoring the magnetic-grating-based metasurfaces at the nanoscale.

4.
Nano Lett ; 20(6): 4220-4227, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32329620

RESUMO

Modern-day CMOS-based computation technology is reaching its fundamental limitations. The emerging field of magnonics, which utilizes spin waves for data transport and processing, proposes a promising path to overcome these limitations. Different devices have been demonstrated recently on the macro- and microscale, but the feasibility of the magnonics approach essentially relies on the scalability of the structure feature size down to the extent of a few 10 nm, which are typical sizes for the established CMOS technology. Here, we present a study of propagating spin-wave packets in individual yttrium iron garnet (YIG) conduits with lateral dimensions down to 50 nm. Space and time-resolved microfocused Brillouin-light-scattering (BLS) spectroscopy is used to characterize the YIG nanostructures and measure the spin-wave decay length and group velocity directly. The revealed magnon transport at the scale comparable to the scale of CMOS proves the general feasibility of magnon-based data processing.

5.
Philos Trans A Math Phys Eng Sci ; 373(2036)2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25624510

RESUMO

We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described.

6.
Photoacoustics ; 34: 100565, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058748

RESUMO

Phonons and magnons are prospective information carriers to substitute the transfer of charge in nanoscale communication devices. Our ability to manipulate them at the nanoscale and with ultimate speed is examined by ultrafast acoustics and femtosecond optomagnetism, which use ultrashort laser pulses for generation and detection of the corresponding coherent excitations. Ultrafast magnetoacoustics merges these research directions and focuses on the interaction of optically generated coherent phonons and magnons. In this review, we present ultrafast magnetoacoustic experiments with nanostructures based on the alloy (Fe,Ga) known as Galfenol. We demonstrate how broad we can manipulate the magnetic response on an optical excitation by controlling the spectrum of generated coherent phonons and their interaction with magnons. Resonant phonon pumping of magnons, formation of magnon polarons, driving of a magnetization wave by a guided phonon wavepacket are demonstrated. The presented experimental results have great application potential in emerging areas of modern nanoelectronics.

7.
Pharmaceutics ; 15(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986729

RESUMO

The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.

8.
Micromachines (Basel) ; 13(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35208328

RESUMO

Patterned elements of permalloy (Py) with a thickness as large as 300 nm have been defined by electron beam lithography on X-ray-transparent 50 nm thick membranes in order to characterize their magnetic structure via Magnetic Transmission X-ray Microscopy (MTXM). To avoid the situation where the fragility of the membranes causes them to break during the lithography process, it has been found that the spin coating of the resist must be applied in two steps. The MTXM results show that our samples have a central domain wall, as well as other types of domain walls, if the nanostructures are wide enough.

9.
Nanomaterials (Basel) ; 12(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36558263

RESUMO

Our study addresses the problematics of magnetic skyrmions, nanometer-size vortex-like swirling topological defects, broadly studied today for applications in classic, neuromorphic and quantum information technologies. We tackle some challenging issues of material properties versus skyrmion stability and manipulation within a multiple-scale modeling framework, involving complementary ab-initio and micromagnetic frameworks. Ab-initio calculations provide insight into the anatomy of the magnetic anisotropy, the Dzyaloshinskii-Moriya asymmetric exchange interaction (DMI) and their response to a gating electric field. Various multi-layered heterostructures were specially designed to provide electric field tunable perpendicular magnetization and sizeable DMI, which are required for skyrmion occurrence. Landau-Lifshitz-Gilbert micromagnetic calculations in nanometric disks allowed the extraction of material parameter phase diagrams in which magnetic textures were classified according to their topological charge. We identified suitable ranges of magnetic anisotropy, DMI and saturation magnetization for stabilizing skyrmionic ground states or writing/manipulating them using either a spin-transfer torque of a perpendicular current or the electric field. From analyzing the different contributions to the total magnetic free energy, we point out some critical properties influencing the skyrmions' stability. Finally, we discuss some experimental issues related to the choice of materials or the design of novel magnetic materials compatible with skyrmionic applications.

10.
Front Chem ; 10: 1014731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300031

RESUMO

Using the microwave-assisted method, novel Fe3O4/Zn-metal organic framework magnetic nanostructures were synthesized. The crystallinity, thermal stability, adsorption/desorption isotherms, morphology/size distribution, and magnetic hysteresis of synthesized Fe3O4/Zn-metal organic framework magnetic nanostructures were characterized by XRD patterns, TGA curve, BET adsorption/desorption technique, SEM image, and VSM curve, respectively. After confirming the Fe3O4/Zn-metal organic framework magnetic nanostructures, its antimicrobial properties against Gram-positive bacterial, Gram-negative bacterial, and fungal strains based on minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) values were studied. The MIC values in antimicrobial activity for Gram-positive and Gram-negative bacterial strains, between 16-128 µg/ml, and for fungal strain, 128 µg/ml were observed. The results showed that the high specific surface area of Fe3O4/Zn-metal organic framework magnetic nanostructures caused the antimicrobial power of nanoparticles to be high, and the observed antimicrobial effects were higher than some known commercial antimicrobial drugs. Another advantage of the specific surface area of Fe3O4/Zn-metal organic framework magnetic nanostructures was its high catalytic properties in the three-component reaction of isatin, malononitrile, and dimedone. New spiro [indoline-pyranopyrimidines] derivatives were synthesized with high efficiency. The catalytic activity results of Fe3O4/Zn-metal organic framework magnetic nanostructures showed that, in addition to recyclability, derivatives could be synthesized in less time than previously reported methods. The results of investigating the catalytic activity of Fe3O4/Zn-metal organic framework magnetic nanostructures showed that the spiro [indoline-pyranopyrimidines] derivatives were synthesized in the time range of 10-20 min with an efficiency of over 85%. As a final result, it can be concluded that the microwave synthesis method improves the unique properties of magnetic nanostructures, especially its specific surface area, and has increased its efficiency.

11.
Nanomaterials (Basel) ; 11(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467036

RESUMO

Electrochemical deposition of interconnected nanowires and nanotubes made of ferromagnetic metals into track-etched polycarbonate templates with crossed nanochannels has been revealed suitable for the fabrication of mechanically stable three-dimensional magnetic nanostructures with large surface area. These 3D networks embedded into flexible polymer membranes are also planar and lightweight. This fabrication technique allows for the control of the geometric characteristics and material composition of interconnected magnetic nanowire or nanotube networks, which can be used to fine-tune their magnetic and magneto-transport properties. The magnetostatic contribution to the magnetic anisotropy of crossed nanowire networks can be easily controlled using the diameter, packing density, or angle distribution characteristics. Furthermore, the fabrication of Co and Co-rich NiCo alloy crossed nanowires with textured hcp phases leads to an additional significant magnetocrystalline contribution to the magnetic anisotropy that can either compete or add to the magnetostatic contribution. The fabrication of an interconnected nanotube network has also been demonstrated, where the hollow core and the control over the tube wall thickness add another degree of freedom to control the magnetic properties and magnetization reversal mechanisms. Finally, three-dimensional networks made of interconnected multilayered nanowire with a succession of ferromagnetic and non-magnetic layers have been successfully fabricated, leading to giant magnetoresistance responses measured in the current-perpendicular-to-plane configuration. These interconnected nanowire networks have high potential as integrated, reliable, and stable magnetic field sensors; magnetic devices for memory and logic operations; or neuromorphic computing.

12.
Nanomaterials (Basel) ; 11(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34443704

RESUMO

The effects of competing magnetic interactions in stabilizing different spin configurations are drawing renewed attention in order to unveil emerging topological spin textures and to highlight microscopic mechanisms leading to their stabilization. The possible key role of the two-site exchange anisotropy in selecting specific helicity and vorticity of skyrmionic lattices has only recently been proposed. In this work, we explore the phase diagram of a frustrated localized magnet characterized by a two-dimensional centrosymmetric triangular lattice, focusing on the interplay between the two-ion anisotropy and the single-ion anisotropy. The effects of an external magnetic field applied perpendicularly to the magnetic layer, are also investigated. By means of Monte Carlo simulations, we find an abundance of different spin configurations, going from trivial to high-order Q skyrmionic and meronic lattices. In closer detail, we find that a dominant role is played by the two-ion over the single-ion anisotropy in determining the planar spin texture; the strength and the sign of single ion anisotropy, together with the magnitude of the magnetic field, tune the perpendicular spin components, mostly affecting the polarity (and, in turn, the topology) of the spin texture. Our analysis confirms the crucial role of the anisotropic symmetric exchange in systems with dominant short-range interactions; at the same time, we predict a rich variety of complex magnetic textures, which may arise from a fine tuning of competing anisotropic mechanisms.

13.
Cancers (Basel) ; 13(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073106

RESUMO

Cancer immunotherapy has shown remarkable results in various cancer types through a range of immunotherapeutic approaches, including chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB), and therapeutic vaccines. Despite the enormous potential of cancer immunotherapy, its application in various clinical settings has been limited by immune evasion and immune suppressive mechanisms occurring locally or systemically, low durable response rates, and severe side effects. In the last decades, the rapid advancement of nanotechnology has been aiming at the development of novel synthetic nanocarriers enabling precise and enhanced delivery of immunotherapeutics, while improving drug stability and effectiveness. Magnetic nanostructured formulations are particularly intriguing because of their easy surface functionalization, low cost, and robust manufacturing procedures, together with their suitability for the implementation of magnetically-guided and heat-based therapeutic strategies. Here, we summarize and discuss the unique features of magnetic-based nanostructures, which can be opportunely designed to potentiate classic immunotherapies, such as therapeutic vaccines, ICB, adoptive cell therapy (ACT), and in situ vaccination. Finally, we focus on how multifunctional magnetic delivery systems can facilitate the anti-tumour therapies relying on multiple immunotherapies and/or other therapeutic modalities. Combinatorial magnetic-based therapies are indeed offering the possibility to overcome current challenges in cancer immunotherapy.

14.
ACS Appl Mater Interfaces ; 12(50): 55584-55595, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33259182

RESUMO

Magnetic nanostructures (MNS) have a wide range of biological applications due to their biocompatibility, superparamagnetic properties, and customizable composition that includes iron oxide (Fe3O4), Zn2+, and Mn2+. However, several challenges to the biomedical usage of MNS must still be addressed, such as formulation stability, inability to encapsulate therapeutic payloads, and variable clearance rates in vivo. Here, we enhance the utility of MNS during controlled delivery applications via encapsulation within polymeric bicontinuous nanospheres (BCNs) composed of poly(ethylene glycol)-block-poly(propylene sulfide) (PEG-b-PPS) copolymers. PEG-b-PPS BCNs have demonstrated versatile encapsulation and delivery capabilities for both hydrophilic and hydrophobic payloads due to their unique and highly organized cubic phase nanoarchitecture. MNS-embedded BCNs (MBCNs) were thus coloaded with physicochemically diverse molecular payloads using the technique of flash nanoprecipitation and characterized in terms of their structure and in vivo biodistribution following intravenous administration. Retention of the internal aqueous channels and cubic architecture of MBCNs were verified using cryogenic transmission electron microscopy and small-angle X-ray scattering, respectively. MBCNs demonstrated improvement in magnetic resonance imaging (MRI) contrast enhancement (r2 relaxivity) as compared to free MNS, which in combination with scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy evidenced the clustering and continued access to water of MNS following encapsulation. Furthermore, MBCNs were found to be noncytotoxic and able to deliver their hydrophilic and hydrophobic small-molecule payloads both in vitro and in vivo. Finally, the oxidation sensitivity of the hydrophobic PPS block allowed MBCNs to undergo a unique, triggerable transition in morphology into MNS-bearing micellar nanocarriers. In summary, MBCNs are an attractive platform for the delivery of molecular and nanoscale payloads for diverse on-demand and sustained drug delivery applications.


Assuntos
Nanopartículas de Magnetita/química , Nanosferas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Feminino , Óxido Ferroso-Férrico/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/química , Fígado/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Nanosferas/metabolismo , Nanosferas/toxicidade , Oxirredução , Polietilenoglicóis/química , Sulfetos/química , Distribuição Tecidual
15.
Nanomaterials (Basel) ; 10(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354026

RESUMO

Traditionally, neutron scattering is an essential method for the analysis of spin structures and spin excitations in bulk materials. Over the last 30 years, polarized neutron scattering in terms of reflectometry has also contributed largely to the analysis of magnetic thin films and magnetic multilayers. More recently it has been shown that polarized neutron reflectivity is, in addition, a suitable tool for the study of thin films laterally patterned with magnetic stripes or islands. We provide a brief overview of the fundamental properties of polarized neutron reflectivity, considering different domain states, domain fluctuations, and different domain sizes with respect to the neutron coherence volume. The discussion is exemplified by a set of simulated reflectivities assuming either complete polarization and polarization analysis, or a reduced form of polarized neutron reflectivity without polarization analysis. Furthermore, we emphasize the importance of the neutron coherence volume for the interpretation of specular and off-specular intensity maps, in particular when studying laterally non-homogeneous magnetic films. Finally, experimental results, fits, and simulations are shown for specular and off-specular scattering from a magnetic film that has been lithographically patterned into a periodic stripe array. These experiments demonstrate the different and mutually complementary information that can be gained when orienting the stripe array parallel or perpendicular to the scattering plane.

16.
Front Chem ; 7: 41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761296

RESUMO

The aim of the presented work is to combine luminescent porous silicon (PSi) with a ferromagnetic metal (Ni) to modify on the one hand the photoluminescence by the presence of metal deposits and on the other hand to influence the optical properties by an external magnetic field. The optical properties are investigated especially with respect to the wavelength-shift of the photoluminescence due to the metal filling. With increasing metal deposits within PSi the photoluminescence peak is blue-shifted and furthermore an increase of the intensity is observed. Photoluminescence spectra of bare PSi show a maximum around 620 nm whereas in the case of Ni filled samples the peak is blue-shifted to around 580 nm for a deposition time of 15 min. Field dependent magnetic measurements performed with an applied field parallel and perpendicular to the surface, respectively, show a magnetic anisotropy which is in agreement with a thin film. This film-like behavior is caused by the interconnected Ni structures due to the branched porous silicon morphology. The coercivity increases with increasing metal deposition from about 150 Oe to about 450 Oe and also the magnetic anisotropy is enhanced with the growth of metal deposits. Within this work the influence of the magnetic metal filling on the optical properties and the magnetic characterization of the nanocomposites are discussed. The presented systems give not only rise to optoelectronics applications but also to magneto optical integrated devices.

17.
Nanomaterials (Basel) ; 9(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108892

RESUMO

Hyperfine interactions of 57Fe nuclei in Fe100-xNix nanostructures synthesized in polymer ion-track membranes were studied by Mössbauer spectroscopy. The main part of obtained nanostructures was Fe100-xNix nanotubes with bcc structure for 0 ≤ x ≤ 40, and with fcc structure for 50 ≤ x ≤ 90. The length, outside diameter and wall thickness of nanotubes were 12 µm, 400 ± 10 nm and 120 ± 5 nm respectively. For the studied nanotubes a magnetic texture is observedalong their axis. The average value of the angle between the direction of the Fe atom magnetic moment and the nanotubes axis decreases with increasing of Ni concentration for nanotubes with bcc structure from ~50° to ~40°, and with fcc structure from ~55° to ~46°. The concentration dependences of the hyperfine parameters of nanotubes Mössbauer spectra are qualitatively consistent with the data for bulk polycrystalline samples. With Ni concentration increasing the average value of the hyperfine magnetic field increases from ~328 kOe to ~335 kOe for the bcc structure and drops to ~303 kOe in the transition to the fcc structure and then decreases to ~290 kOe at x = 90. Replacing the Fe atom with the Ni atom in the nearest environment of Fe atom within nanotubes with bcc structure lead to an increase in the hyperfine magnetic field by "6-9 kOe", and in tubes with fcc structure-to a decrease in the hyperfine magnetic field by "11-16 kOe". The changes of the quadrupole shift and hyperfine magnetic field are linearly correlated with the coefficient -(15 ± 5)·10-4 mm/s/kOe.

18.
Adv Colloid Interface Sci ; 271: 101982, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31325653

RESUMO

In the present review, we summarized the applications of magnetic spinel ferrite nanoparticles as catalysts in organic reactions and transformations. Catalytic applications are comprised of using mostly cobalt, nickel, copper, and zinc ferrites, along with their mixed-metal combinations based on nano ferrites. The spinel ferrites (SFs) are gained principally by wet-chemical, sol-gel or co-precipitation methods, more infrequently by the mechanical high-energy ball milling, spark plasma sintering, sonochemical technique, microwave heating or hydrothermal route. Catalytic processes with the application of ferrite nanoparticles are included decomposition (in particular photocatalytic), reactions of dehydrogenation, oxidation, alkylation, CC coupling, removing organic/inorganic contaminants from aqueous solutions. As significant and remarkable advantages, ferrite nanocatalysts not only are environmentally benign and compatible with green chemistry aspects but also can be simply recovered from reaction systems and recycled up to several times almost without significant loss of their catalytic activity.

19.
Adv Colloid Interface Sci ; 265: 29-44, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30711796

RESUMO

A valuable site-directed application in the field of nanomedicine is targeted drug delivery using magnetic metal oxide nanoparticles by applying an external magnetic field at the target tissue. The magnetic property of these structures allows controlling the orientation and location of particles by changing the direction of the applied external magnetic field. Pharmaceutical design and research in the field of nanotechnology offer novel solutions for diagnosis and therapies. This review summarizes magnetic nanoparticles and magnetic spinel ferrit's properties, remarkable approaches in magnetic liposomes, magnetic polymeric nanoparticles, MRI, hyperthermia and especially magnetic drug delivery systems, which have recently developed in the field of magnetic nanoparticles and their medicinal applications. Here, we discuss spinel ferrite (SF) as magnetic materials that are a significant class of composite metal oxides. They contain ferric ions and have the general structural formula M2+Fe23+O4 (where M = Co,Ni,Zn,etc.). This structure indicates unique multifunctional properties, such as excellent magnetic characteristics, high specific surface area, surface active sites, high chemical stability, tuneable shape and size, and options for functionalization. The review assesses the current efforts on synthesis, properties and medical application of magnetic spinel ferrites nanoparticles based on cobalt, nickel and zinc. Based on this review, it can be concluded that MNPs and SFNPs have unlimited ability in biomedical applications. However, the practical application of SFNPs on a huge scale still needs to be considered and evaluated.


Assuntos
Nanopartículas de Magnetita/uso terapêutico , Terapia de Alvo Molecular/métodos , Nanotecnologia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Animais , Cobalto/química , Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/métodos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Humanos , Hipertermia Induzida/instrumentação , Hipertermia Induzida/métodos , Ferro/química , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Nanotecnologia/instrumentação , Neoplasias/metabolismo , Neoplasias/patologia , Níquel/química , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Nanomedicina Teranóstica/instrumentação , Zinco/química
20.
Anticancer Agents Med Chem ; 19(1): 6-16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30411694

RESUMO

Cancer is the second disease in the world from the point of view of mortality. The conventional routes of treatment were found to be not sufficient and thus alternative ways are imposed. The use of hybrid, magnetic nanostructures is a promising way for simultaneous targeted diagnosis and treatment of various types of cancer. For this reason, the development of core@shell structures was found to be an efficient way to develop stable, biocompatible, non-toxic carriers with shell-dependent internalization capacity in cancer cells. So, the multicomponent approach can be the most suitable way to assure the multifunctionality of these nanostructures to achieve the desired/necessary properties. The in vivo stability is mostly assured by the coating of the magnetic core with various polymers (including polyethylene glycol, silica etc.), while the targeting capacity is mostly assured by the decoration of these nanostructures with folic acid. Unfortunately, there are also some limitations related to the multilayered approach. For instance, the increasing of the thickness of layers leads to a decrease the magnetic properties, (hyperthermia and guiding ability in the magnetic field, for instance), the outer shell should contain the targeting molecules (as well as the agents helping the internalization into the cancer cells), etc.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas de Magnetita/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Polímeros/farmacologia , Animais , Antineoplásicos/química , Humanos , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA