Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
BMC Plant Biol ; 23(1): 457, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37775771

RESUMO

BACKGROUND: Russeting is a major problem in many fruit crops. Russeting is caused by environmental factors such as wounding or moisture exposure of the fruit surface. Despite extensive research, the molecular sequence that triggers russet initiation remains unclear. Here, we present high-resolution transcriptomic data by controlled russet induction at very early stages of fruit development. During Phase I, a patch of the fruit surface is exposed to surface moisture. For Phase II, moisture exposure is terminated, and the formerly exposed surface remains dry. We targeted differentially expressed transcripts as soon as 24 h after russet induction. RESULTS: During moisture exposure (Phase I) of 'Pinova' apple, transcripts associated with the cell cycle, cell wall, and cuticle synthesis (SHN3) decrease, while those related to abiotic stress increase. NAC35 and MYB17 were the earliest induced genes during Phase I. They are therefore linked to the initial processes of cuticle microcracking. After moisture removal (Phase II), the expression of genes related to meristematic activity increased (WOX4 within 24 h, MYB84 within 48 h). Genes related to lignin synthesis (MYB52) and suberin synthesis (MYB93, WRKY56) were upregulated within 3 d after moisture removal. WOX4 and AP2B3 are the earliest differentially expressed genes induced in Phase II. They are therefore linked to early events in periderm formation. The expression profiles were consistent between two different seasons and mirrored differences in russet susceptibility in a comparison of cultivars. Furthermore, expression profiles during Phase II of moisture induction were largely identical to those following wounding. CONCLUSIONS: The combination of a unique controlled russet induction technique with high-resolution transcriptomic data allowed for the very first time to analyse the formation of cuticular microcracks and periderm in apple fruit immediately after the onset of triggering factors. This data provides valuable insights into the spatial-temporal dynamics of russeting, including the synthesis of cuticles, dedifferentiation of cells, and impregnation of cell walls with suberin and lignin.


Assuntos
Malus , Malus/metabolismo , Frutas , Transcriptoma , Lignina/metabolismo , Perfilação da Expressão Gênica
2.
Mol Breed ; 43(10): 74, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37830083

RESUMO

The apple (Malus x domestica) scab (Venturia inaequalis) resistance genes Rvi4 and Rvi15 were mapped to a similar region on the top of linkage group 2 and both resistance genes elicit the same type of resistance reaction, i.e., a hypersensitive response; hence, it is suspected that the two genes may be the same. As the two resistance genes Rvi4 and Rvi15 are currently used in apple breeding, it is important to clarify whether the two resistance genes are the same or not. Several approaches were used to make this determination. First, the pedigree of the genotype GMAL 2473, the source of Rvi15, was reconstructed. GMAL 2473 was found to be an F1 of 'Russian seedling', the genotype, which is known to also be the source of Rvi4. Next, it was further demonstrated that 'Regia', a cultivar known to carry Rvi4 (and Rvi2), carries the same gene (Vr2-C), which was demonstrated to be the gene inducing Rvi15 resistance. Finally, it was shown that transgenic lines carrying Vr2-C are compatible with race 4 apple scab isolates. Taken all together, these results definitively demonstrate that Rvi4 and Rvi15 are the same resistance gene. For future studies, we suggest referring to this resistance with the first name that was assigned to this gene, namely Rvi4. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01421-0.

3.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769223

RESUMO

Biofumigation with slow-release diffusers of essential oils (EOs) of basil, oregano, savoury, thyme, lemon, and fennel was assessed for the control of blue mould of apples, caused by Penicillium expansum. In vitro, the ability of the six EOs to inhibit the mycelial growth was evaluated at concentrations of 1.0, 0.5, and 0.1%. EOs of thyme, savoury, and oregano, at all three concentrations, and basil, at 1.0 and 0.5%, were effective in inhibiting the mycelial growth of P. expansum. In vivo, disease incidence and severity were evaluated on 'Opal' apples artificially inoculated with the pathogen and treated at concentrations of 1.0% and 0.5% of EOs. The highest efficacy in reducing blue mould was observed with EOs of lemon and oregano at 1.0% after 60 days of storage at 1 ± 1 °C (incidence of rot, 3 and 1%, respectively) and after a further 14 days of shelf-life at 15 ± 1 °C (15 and 17%). Firmness, titratable acidity, and total soluble solids were evaluated at harvest, after cold storage, and after shelf-life. Throughout the storage period, no evident phytotoxic effects were observed. The EOs used were characterised through GC-MS to analyse their compositions. Moreover, the volatile organic compounds (VOCs) present in the cabinets were characterised during storage using the SPME-GC-MS technique. The antifungal effects of EOs were confirmed both in vitro and in vivo and the possible mechanisms of action were hypothesised. High concentrations of antimicrobial and antioxidant compounds in the EOs explain the efficacy of biofumigation in postharvest disease control. These findings provide new insights for the development of sustainable strategies for the management of postharvest diseases and the reduction of fruit losses during storage.


Assuntos
Malus , Óleos Voláteis , Penicillium , Óleos Voláteis/farmacologia , Antifúngicos/farmacologia
4.
BMC Plant Biol ; 22(1): 452, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131258

RESUMO

BACKGROUND: European canker, caused by the fungal pathogen Neonectria ditissima, is an economically damaging disease in apple producing regions of the world - especially in areas with moderate temperatures and high rainfall. The pathogen has a wide host range of hardwood perennial species, causing trunk cankers, dieback and branch lesions in its hosts. Although apple scion germplasm carrying partial resistance to the disease has been described, little is still known of the genetic basis for this quantitative resistance. RESULTS: Resistance to Neonectria ditissima was studied in a multiparental population of apple scions using several phenotyping methods. The studied population consists of individuals from multiple families connected through a common pedigree. The degree of disease of each individual in the population was assessed in three experiments: artificial inoculations of detached dormant shoots, potted trees in a glasshouse and in a replicated field experiment. The genetic basis of the differences in disease was studied using a pedigree-based analysis (PBA). Three quantitative trait loci (QTL), on linkage groups (LG) 6, 8 and 10 were identified in more than one of the phenotyping strategies. An additional four QTL, on LG 2, 5, 15 and 16 were only identified in the field experiment. The QTL on LG2 and 16 were further validated in a biparental population. QTL effect sizes were small to moderate with 4.3 to 19% of variance explained by a single QTL. A subsequent analysis of QTL haplotypes revealed a dynamic response to this disease, in which the estimated effect of a haplotype varied over the field time-points. CONCLUSIONS: This study describes the first identified QTL associated with resistance to N. ditissima in apple scion germplasm. The results from this study show that QTL present in germplasm commonly used in apple breeding have a low to medium effect on resistance to N. ditissima. Hence, multiple QTL will need to be considered to improve resistance through breeding.


Assuntos
Hypocreales , Malus , Resistência à Doença/genética , Hypocreales/fisiologia , Malus/genética , Malus/microbiologia , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163793

RESUMO

The Tiller Angle Control 1 (TAC1) gene belongs to the IGT family, which mainly controls plant branch angle, thereby affecting plant form. Two members of MdTAC1 are identified in apple; the regulation of apple branch angle by MdTAC1 is still unclear. In this study, a subcellular localization analysis detected MdTAC1a in the nucleus and cell membrane, but MdTAC1b was detected in the cell membrane. Transgenic tobacco by overexpression of MdTAC1a or MdTAC1b showed enlarged leaf angles, the upregulation of several genes, such as GA 2-oxidase (GA2ox), and a sensitive response to light and gravity. According to a qRT-PCR analysis, MdTAC1a and MdTAC1b were strongly expressed in shoot tips and vegetative buds of weeping cultivars but were weakly expressed in columnar cultivars. In the MdTAC1a promoter, there were losses of 2 bp in spur cultivars and 6 bp in weeping cultivar compared with standard and columnar cultivars. An InDel marker specific to the MdTAC1a promoter was developed to distinguish apple cultivars and F1 progeny. We identified a protein, MdSRC2, that interacts with MdTAC1a, whose encoding gene which was highly expressed in trees with large branch angles. Our results indicate that differences in the MdTAC1a promoter are major contributors to branch-angle variation in apple, and the MdTAC1a interacts with MdSRC2 to affect this trait.


Assuntos
Malus/crescimento & desenvolvimento , Nicotiana/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clonagem Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Nicotiana/genética , Transformação Genética
6.
BMC Plant Biol ; 20(1): 191, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375636

RESUMO

BACKGROUND: Sugar content is an important determinant of fruit sweetness, but details on the complex molecular mechanism underlying fruit sugar accumulation remain scarce. Here, we report the role of sucrose transporter (SUT) family in regulating fruit sugar accumulation in apple. RESULTS: Gene-tagged markers were developed to conduct candidate gene-based association study, and an SUT4 member MdSUT4.1 was found to be significantly associated with fruit sugar accumulation. MdSUT4.1 encodes a tonoplast localized protein and its expression level had a negative correlation with fruit sugar content. Overexpression of MdSUT4.1 in strawberry and apple callus had an overall negative impact on sugar accumulation, suggesting that it functions to remobilize sugar out of the vacuole. In addition, MdSUT4.1 is located on chromosomal region harboring a previously reported QTL for sugar content, suggesting that it is a candidate gene for fruit sugar accumulation in apple. CONCLUSIONS: MdSUT4.1 is involved in the regulation of fruit sugar accumulation in apple. This study is not only helpful for understanding the complex mechanism of fruit sugar accumulation, but it also provides molecular tools for genetic improvement of fruit quality in breeding programs of apple.


Assuntos
Malus/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Fragaria/genética , Frutas/genética , Estudos de Associação Genética , Genoma de Planta , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética
7.
BMC Genomics ; 18(1): 339, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464870

RESUMO

BACKGROUND: Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity. RESULTS: Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes. CONCLUSIONS: Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host-species specificity. Since many of the effector candidates are in close proximity to repetitive sequences this may point to a possible mechanism for the effector gene family expansion observed and a route to diversification via transposition and repeat-induced point mutation.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Genômica , Especificidade de Hospedeiro , Rosaceae/microbiologia , Ascomicetos/citologia , Ascomicetos/patogenicidade , Parede Celular/enzimologia , Doenças das Plantas/microbiologia , Virulência
8.
BMC Genomics ; 17(1): 798, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733113

RESUMO

BACKGROUND: 'Honeycrisp' is an apple cultivar that is susceptible to soft scald, a chilling injury expressed as necrotic patches on the peel. Improved understanding of metabolism associated with the disorder would improve our understanding of soft scald and contribute to developing more effective management strategies for apple storage. It was expected that specific gene expression and specific metabolite levels in the peel would be linked with soft scald risk at harvest and/or specific time points during cold storage. RESULTS: Fruit from nine 'Honeycrisp' apple orchards that would eventually develop different incidences of soft scald between 4 and 8 weeks of cold air storage were used to contrast and determine differential transcriptomic and metabolomic changes during storage. Untargeted metabolic profiling revealed changes in a number of distinct pathways preceding and concurrent with soft scald symptom development, including elevated γ-aminobutryic acid (GABA), 1-hexanol, acylated steryl glycosides, and free p-coumaryl acyl esters. At harvest, levels of sesquiterpenoid and triterpenoid acyl esters were relatively higher in peel of fruit that did not later develop the disorder. RNA-seq driven gene expression profiling highlighted possible involvement of genes and associated metabolic processes with soft scald development. These included elevated expression of genes involved in lipid peroxidation and phenolic metabolism in fruit with soft scald, and isoprenoid/brassinosteroid metabolism in fruit that did not develop soft scald. Expression of other stress-related genes in fruit that developed soft scald included chlorophyll catabolism, cell wall loosening, and lipid transport while superoxide dismutases were up-regulated in fruit that did not develop the disorder. CONCLUSIONS: This study delineates the sequential transcriptomic and metabolomic changes preceding soft scald symptom development. Changes were differential depending on susceptibility of fruit to the disorder and could be attributed to key stress related and mediating pathways.


Assuntos
Metabolismo Energético , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Metabolômica , Transcriptoma
9.
BMC Plant Biol ; 16(1): 130, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277533

RESUMO

BACKGROUND: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North + East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. RESULTS: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST = 0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST = 0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. CONCLUSIONS: The variation found at group and subgroup levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.


Assuntos
Fluxo Gênico , Variação Genética , Malus/genética , Europa (Continente) , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Malus/classificação , Malus/embriologia , Malus/metabolismo , Repetições de Microssatélites , Filogenia
10.
J Chem Ecol ; 42(12): 1265-1280, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27896554

RESUMO

This study investigated the volatile emission from apple (Malus x domestica Borkh., cv. Golden Delicious) foliage that was either intact, mechanically-damaged, or exposed to larval feeding by Pandemis heparana (Denis and Schiffermüller) (Lepidoptera: Tortricidae). Volatiles were collected by closed-loop-stripping-analysis and characterized by gas chromatography-mass spectrometry in three time periods: after 1 h and again 24 and 48 h later. Volatiles for all treatments also were monitored continuously over a 72-h period by the use of proton transfer reaction - time of flight-mass spectrometry (PTR-ToF-MS). In addition, the volatile samples were analyzed by gas chromatography-electroantennographic detection (GC-EAD) using male and female antennae of P. heparana. Twelve compounds were detected from intact foliage compared with 23 from mechanically-damaged, and 30 from P. heparana-infested foliage. Interestingly, six compounds were released only by P. heparana-infested foliage. The emission dynamics of many compounds measured by PTR-ToF-MS showed striking differences according to the timing of herbivory and the circadian cycle. For example, the emission of green leaf volatiles began shortly after the start of herbivory, and increased over time independently from the light-dark cycle. Conversely, the emission of terpenes and aromatic compounds showed a several-hour delay in response to herbivory, and followed a diurnal rhythm. Methanol was the only identified volatile showing a nocturnal rhythm. Consistent GC-EAD responses were found for sixteen compounds, including five aromatic ones. A field trial in Sweden demonstrated that benzyl alcohol, 2-phenylethanol, phenylacetonitrile, and indole lures placed in traps were not attractive to Pandemis spp. adults, but 2-phenylethanol and phenylacetonitrile when used in combination with acetic acid were attractive to both sexes.


Assuntos
Herbivoria , Lepidópteros/fisiologia , Malus/fisiologia , Compostos Orgânicos Voláteis/análise , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Larva/fisiologia , Masculino , Malus/química , Folhas de Planta/química , Folhas de Planta/fisiologia , Compostos Orgânicos Voláteis/metabolismo
11.
Molecules ; 20(8): 13603-19, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26213913

RESUMO

The potential of near infrared spectroscopy (NIRS) in the wavelength range of 1000-2500 nm for predicting quality parameters such as total soluble solids (TSS), acidity (TA), firmness, and individual sugars (glucose, fructose, sucrose, and xylose) for two cultivars of apples ("Braeburn" and "Cripps Pink") was studied during the pre- and post-storage periods. Simultaneously, a qualitative investigation on the capability of NIRS to discriminate varieties, harvest dates, storage periods and fruit inhomogeneity was carried out. In order to generate a sample set with high variability within the most relevant apple quality traits, three different harvest time points in combination with five different storage periods were chosen, and the evolution of important quality parameters was followed both with NIRS and wet chemical methods. By applying a principal component analysis (PCA) a differentiation between the two cultivars, freshly harvested vs. long-term stored apples and, notably, between the sun-exposed vs. shaded side of apples could be found. For the determination of quality parameters effective prediction models for titratable acid (TA) and individual sugars such as fructose, glucose and sucrose by using partial least square (PLS) regression have been developed. Our results complement earlier reports, highlighting the versatility of NIRS as a fast, non-invasive method for quantitative and qualitative studies on apples.


Assuntos
Análise de Alimentos/métodos , Frutas , Malus , Controle de Qualidade , Espectrofotometria Infravermelho
12.
J Sci Food Agric ; 94(7): 1305-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24115016

RESUMO

BACKGROUND: Polyphenols have a favourable antioxidant potential on human health, suggesting that their high content in apple is responsible for the beneficial effects of apple consumption. They are also linked to the quality of apple juices and ciders since they are predominantly responsible for astringency, bitterness and colour. Major phenolic compounds were quantified by liquid chromatography in fruits and juices from a cider apple progeny harvested for 3 years. The total content of procyanidins and their average degree of polymerisation (DPn) were also determined in fruits by phloroglucinolysis. Variability and extraction yield of these compounds were determined. RESULTS: The variability observed in the progeny was representative of the variability observed in many cider apple varieties. Hydroxycinnamic acids were the most extractable group, with an average extraction yield of 67%, whereas flavonols and anthocyanins were the least. CONCLUSION: This study is the first to introduce variability and extraction yields of the main phenolic compounds in both fruits and juices of a cider apple progeny. This dataset will be used for an upcoming QTL mapping study, an original approach that has never been undertaken for cider apple.


Assuntos
Antioxidantes/análise , Bebidas/análise , Cruzamentos Genéticos , Frutas/química , Alimento Funcional/análise , Malus/química , Polifenóis/análise , Antioxidantes/química , Antioxidantes/metabolismo , Ácidos Cumáricos/análise , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Dieta/etnologia , Europa (Continente) , Qualidade dos Alimentos , França , Frutas/genética , Frutas/metabolismo , Humanos , Hidrólise , Malus/genética , Malus/metabolismo , Peso Molecular , Extratos Vegetais/química , Polifenóis/biossíntese , Polifenóis/química , Análise de Componente Principal , Proantocianidinas/análise , Proantocianidinas/biossíntese , Proantocianidinas/química , Reprodutibilidade dos Testes , Especificidade da Espécie
13.
Front Plant Sci ; 14: 1054914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056502

RESUMO

The plant phyllosphere is colonized by microbial communities that can influence the fitness and growth of their host, including the host's resilience to plant pathogens.There are multiple factors involved in shaping the assemblages of bacterial and fungal endophytes within the phyllosphere, including host genetics and environment. In this work, the role of host genetics in plant-microbiome assembly was studied in a full-sibling family of apple (Malus x domestica) trees infected with the fungal pathogen Neonectria ditissima. A Quantitative Trait Loci (QTL) analysis showed that there are multiple loci which influence the abundance of individual endophytic taxa, with the majority of QTL having a moderate to large effect (20-40%) on endophyte abundance. QTL regions on LG 1, 3, 4, 5, 10, 12, 13, 14 and 15 were shown to affect multiple taxa. Only a small proportion of the variation in overall taxonomic composition was affected by host genotype, with significant QTL hits for principal components explaining <8% and <7.4% of the total variance in bacterial and fungal composition, respectively. Four of the identified QTL colocalised with previously identified regions associated with tolerance to Neonectria ditissima. These results suggest that there is a genetic basis shaping apple endophyte composition and that microbe-host associations in apple could be tailored through breeding.

14.
Front Plant Sci ; 14: 1143961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021306

RESUMO

Introduction: Apple russeting is mainly due to the accumulation of suberin in the cell wall in response to defects and damages in the cuticle layer. Over the last decades, massive efforts have been done to better understand the complex interplay between pathways involved in the suberization process in model plants. However, the regulation mechanisms which orchestrate this complex process are still under investigation. Our previous studies highlighted a number of transcription factor candidates from the Myeloblastosis (MYB) transcription factor family which might regulate suberization in russeted or suberized apple fruit skin. Among these, we identified MdMYB68, which was co-expressed with number of well-known key suberin biosynthesis genes. Method: To validate the MdMYB68 function, we conducted an heterologous transient expression in Nicotiana benthamiana combined with whole gene expression profiling analysis (RNA-Seq), quantification of lipids and cell wall monosaccharides, and microscopy. Results: MdMYB68 overexpression is able to trigger the expression of the whole suberin biosynthesis pathway. The lipid content analysis confirmed that MdMYB68 regulates the deposition of suberin in cell walls. Furthermore, we also investigated the alteration of the non-lipid cell wall components and showed that MdMYB68 triggers a massive modification of hemicelluloses and pectins. These results were finally supported by the microscopy. Discussion: Once again, we demonstrated that the heterologous transient expression in N. benthamiana coupled with RNA-seq is a powerful and efficient tool to investigate the function of suberin related transcription factors. Here, we suggest MdMYB68 as a new regulator of the aliphatic and aromatic suberin deposition in apple fruit, and further describe, for the first time, rearrangements occurring in the carbohydrate cell wall matrix, preparing this suberin deposition.

15.
Methods Enzymol ; 671: 63-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35878994

RESUMO

Carotenoid compounds accumulate to confer coloration to plant tissues and have some established health benefits in humans. These pigments have antioxidant properties and are precursors of vitamin A, which is important for human vision. Apple is widely consumed globally, but most commercial apple cultivars have low fruit carotenoid content because these pigments accumulate mostly in the fruit skin rather than the flesh (the majority of the edible portion). Although carotenoids accumulate in the early stages of fruit development, much of this carotenoid is lost by fruit maturity as a result of low biosynthetic rate, rapid turnover of compounds and/or lack of storage capacity in these tissues. Improving apple fruit carotenoid content through traditional breeding or genetic technologies, will take a long time because of the extended juvenile phase of the trees and limited germplasm diversity within many commercial breeding programs. This process, however, can be accelerated by fundamental understanding of the apple carotenoid biosynthetic pathway and the mechanisms controlling the metabolic steps. The availability of a well annotated apple genome sequence has led to the identification of apple carotenoid gene families and potential transcription factors. This is an important step since the knowledge could be used to elevate carotenoid content either through breeding or genetic transformation techniques. Here, we provide an overview of carotenogenesis in apple and outline the methods employed to improve the carotenoid content of this horticultural crop.


Assuntos
Malus , Vias Biossintéticas/genética , Carotenoides/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Malus/genética , Malus/metabolismo , Proteínas de Plantas/metabolismo
16.
Front Plant Sci ; 13: 1039014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275517

RESUMO

Our previous studies, comparing russeted vs. waxy apple skin, highlighted a MYeloBlastosys (Myb) transcription factor (MdMYB52), which displayed a correlation with genes associated to the suberization process. The present article aims to assess its role and function in the suberization process. Phylogenetic analyses and research against Arabidopsis thaliana MYBs database were first performed and the tissue specific expression of MdMYB52 was investigated using RT-qPCR. The function of MdMYB52 was further investigated using Agrobacterium-mediated transient overexpression in Nicotiana benthamiana leaves. An RNA-Seq analysis was performed to highlight differentially regulated genes in response MdMYB52. Transcriptomic data were supported by analytical chemistry and microscopy. A massive decreased expression of photosynthetic and primary metabolism pathways was observed with a concomitant increased expression of genes associated with phenylpropanoid and lignin biosynthesis, cell wall modification and senescence. Interestingly key genes involved in the synthesis of suberin phenolic components were observed. The analytical chemistry displayed a strong increase in the lignin content in the cell walls during MdMYB52 expression. More specifically, an enrichment in G-Unit lignin residues was observed, supporting transcriptomic data as well as previous work describing the suberin phenolic domain as a G-unit enriched lignin-like polymer. The time-course qPCR analysis revealed that the observed stress response, might be explain by this lignin biosynthesis and by a possible programmed senescence triggered by MdMYB52. The present work supports a crucial regulatory role for MdMYB52 in the biosynthesis of the suberin phenolic domain and possibly in the fate of suberized cells in russeted apple skins.

17.
J Fungi (Basel) ; 9(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36675843

RESUMO

Botrytis cinerea is the causal agent of grey mould rot of apples. The efficacy of biofumigation with thyme (Thymus vulgaris), savoury (Satureja montana), and basil (Ocimum basilicum) essential oils (EOs) at 1%, 0.5%, and 0.1% concentrations were tested against B. cinerea. In vitro, the results showed 100% growth inhibition at 1% concentration for all oils. Subsequent biofumigation experiments on apples of cultivar 'Opal' with 1% EOs showed that, after 60 d storage, thyme and savoury EOs significantly reduced grey mould rot incidence (average incidence 2% for both treatments) compared to the control (7%). Analyses of quality indicated slightly higher fruit firmness for 1% thyme at 30 d and slightly higher titratable acidity for 1% thyme and savoury at 60 d. Sampling of the atmosphere inside the cabinets was performed to characterize and quantify the volatile components of EOs released through biofumigation. Though thymol and p-cymene were the main components of thyme EO, the antimicrobial activity was mainly due to the presence of thymol and, to a lower extent, of carvacrol. In savoury EO, carvacrol and p-cymene were the main components, whereas in basil EO, linalool and estragole were mainly present. Metabarcoding analyses showed that the epiphytic microbiome had higher richness and evenness compared to their endophytic counterpart. By the end of shelf-life, treatments with thyme EO reduced B. cinerea abundance compared to the inoculated control for both endophytes (from 36.5% to 1.5%) and epiphytes (from 7.0% to 0.7%), while favouring a significant increase in Penicillium species both in endophytes (from 0.2% to 21.5%) and epiphytes (from 0.5% to 18.6%). Results indicate that thyme EO (1%) and savoury EO (1%) are equally effective in hampering grey mould rot development in vivo.

18.
Food Chem ; 390: 133088, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35537239

RESUMO

This study was designed to have the absolute definition of 'one apple to one puree', which gave a first insight into the impacts of fruit inter-variability (between varieties) and intra-variability (between individual fruits) on the quality of processed purees. Both the inter-variability of apple varieties and the intra-variability of single apples induced intensive changes of appearance, chemical and textural properties of their corresponding microwave-cooked purees. The intra-variability of cooked purees was different according to apple cultivars. Some strong correlations of visible-near infrared (VIS-NIR) spectra were observed between fresh and cooked apples, particularly in the regions 665-685 nm and 1125-1400 nm. These correlations allowed then the indirect predictions of puree color (a* and b*, RPD ≧ 2.1), viscosity (RPD ≧ 2.3), soluble solids content (SSC, RPD = 2.1), titratable acidity (RPD = 2.8), and pH (RPD = 2.5) from the non-destructive acquired VIS-NIR spectra of raw apples.


Assuntos
Malus , Culinária , Frutas/química , Malus/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Viscosidade
19.
Food Chem ; 355: 129636, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33799241

RESUMO

The potential of MIRS was investigated to: i) differentiate cooked purees issued from different apples and process conditions, and ii) predict the puree quality characteristics from the spectra of homogenized raw apples. Partial least squares (PLS) regression was tested both, on the real spectra of cooked purees and their reconstructed spectra calculated from the spectra of homogenized raw apples by direct standardization. The cooked purees were well-classified according to apple thinning practices and cold storage durations, and to different heating and grinding conditions. PLS models using the spectra of homogenized raw apples can anticipate the titratable acidity (the residual predictive deviation (RPD) = 2.9), soluble solid content (RPD = 2.8), particle averaged size (RPD = 2.6) and viscosity (RPD ≥ 2.5) of cooked purees. MIR technique can provide sustainable evaluations of puree quality, and even forecast texture and taste of purees based on the prior information of raw materials.


Assuntos
Manipulação de Alimentos , Malus/química , Espectrofotometria Infravermelho , Culinária , Frutas/química , Química Verde , Análise dos Mínimos Quadrados , Paladar , Viscosidade
20.
Plant Physiol Biochem ; 151: 47-59, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32197136

RESUMO

Vitamin C is a crucial antioxidant and cofactor for both plants and humans. Apple fruits generally contain low levels of vitamin C, making vitamin C content an interesting trait for apple crop improvement. With the aim of breeding high vitamin C apple cultivars it is important to get an insight in the natural biodiversity of vitamin C content in apple fruits. In this study, quantification of ascorbic acid (AsA), dehydroascorbic acid (DHA), and total AsA (AsA + DHA) in apple pulp of 79 apple accessions at harvest revealed significant variation, indicating a large genetic biodiversity. High density genotyping using an 8 K SNP array identified 21 elite and 58 local cultivars in this germplasm, with local accessions showing similar levels of total AsA but higher amounts of DHA compared to elite varieties. Out of the 79 apple cultivars screened, ten genotypes with either the highest or the lowest concentration of total AsA at harvest were used for monitoring vitamin C dynamics during fruit development and storage. For all these cultivars, the AsA/DHA ratio in both apple pulp and peel increased throughout fruit development, whereas the AsA/DHA balance always shifted towards the oxidized form during storage and shelf life, putatively reflecting an abiotic stress response. Importantly, at any point during apple fruit development and storage, the apple peel contained a higher level of vitamin C compared to the pulp, most likely because of its direct exposure to abiotic and biotic stresses.


Assuntos
Ácido Ascórbico/análise , Frutas/química , Malus/química , Antioxidantes/análise , Genótipo , Malus/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA