Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(24): e2308886, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174607

RESUMO

Rechargeable Mg-ion Batteries (RMB) containing a Mg metal anode offer the promise of higher specific volumetric capacity, energy density, safety, and economic viability than lithium-ion battery technology, but their realization is challenging. The limited availability of suitable inorganic cathodes compatible with electrolytes relevant to Mg metal anode restricts the development of RMBs. Despite the promising capability of some oxides to reversibly intercalate Mg+2 ions at high potential, its lack of stability in chloride-containing ethereal electrolytes, relevant to Mg metal anode hinders the realization of a full practical RMB. Here the successful in situ encapsulation of monodispersed spherical V2O5 (≈200 nm) is demonstrated by a thin layer of VS2 (≈12 nm) through a facile surface reduction route. The VS2 layer protects the surface of V2O5 particles in RMB electrolyte solution (MgCl2 + MgTFSI in DME). Both V2O5 and V2O5@VS2 particles demonstrate high initial discharge capacity. However, only the V2O5@VS2 material demonstrates superior rate performance, Coulombic efficiency (100%), and stability (138 mA h g-1 discharge capacity after 100 cycles), signifying the ability of the thin VS2 layer to protect the V2O5 cathode and facilitate the Mg+2 ion intercalation/deintercalation into V2O5.

2.
Proc Natl Acad Sci U S A ; 113(14): 3735-9, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001855

RESUMO

It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

3.
Nano Lett ; 15(2): 1177-82, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25531653

RESUMO

Magnesium is of great interest as a replacement for lithium in next-generation ion-transfer batteries but Mg-metal anodes currently face critical challenges related to the formation of passivating layers during Mg-plating/stripping and anode-electrolyte-cathode incompatibilities. Alternative anode materials have the potential to greatly extend the spectrum of suitable electrolyte chemistries but must be systematically tailored for effective Mg(2+) storage. Using analytical (scanning) transmission electron microscopy ((S)TEM) and ab initio modeling, we have investigated Mg(2+) insertion and extraction mechanisms and transformation processes in ß-SnSb nanoparticles (NPs), a promising Mg-alloying anode material. During the first several charge-discharge cycles (conditioning), the ß-SnSb particles irreversibly transform into a porous network of pure-Sn and Sb-rich subparticles, as Mg ions replace Sn atoms in the SnSb lattice. After electrochemical conditioning, small Sn particles/grains (<33 ± 20 nm) exhibit highly reversible Mg-storage, while the Sb-rich domains suffer substantial Mg trapping and contribute little to the system performance. This result strongly indicates that pure Sn can act as a high-capacity Mg-insertion anode as theoretically predicted, but that its performance is strongly size-dependent, and stable nanoscale Sn morphologies (<40 nm) are needed for superior, reversible Mg-storage and fast system kinetics.

4.
Int J Biol Macromol ; 277(Pt 2): 134341, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089554

RESUMO

The Mg-ion battery faces significant limitations due to its liquid electrolyte, which suffers from inherent issues such as leakage and the growth of Mg dendrites. In contrast, gel polymer electrolytes (GPEs) offer heightened safety, a wide voltage window, and excellent flexibility, making them a promising alternative with outstanding electrochemical performance. In this study, a cyano-modified cellulose (CEC) GPE was engineered to aim at enhancing ion transportation and promoting uniform ion-flux through interactions between N and Mg2+ ions. The resulting CEC-based GPE demonstrated a high ionic conductivity of 1.73 mS cm-1 at room temperature. Furthermore, it exhibited remarkable Mg plating/stripping performance (coulombic efficiency ∼96.7 %) and compatibility with electrodes. Importantly, when employed in a Mo6S8//Mg battery configuration, the CEC GPE displayed exceptional cycle stability, with virtually no degradation observed even after 650 cycles at 1C, thereby significantly advancing Mg-ion battery technology due to its excellent electrochemical properties. This study provides valuable insights into the molecular engineering of cellulose-based GPEs.


Assuntos
Celulose , Fontes de Energia Elétrica , Eletrólitos , Géis , Magnésio , Eletricidade Estática , Celulose/química , Eletrólitos/química , Géis/química , Magnésio/química , Condutividade Elétrica , Íons/química , Eletrodos
5.
ACS Appl Mater Interfaces ; 13(40): 47749-47755, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34582182

RESUMO

The natural abundance of magnesium together with its high volumetric energy capacity and less-dendritic anodes makes Mg-ion batteries an appealing alternative to the widely used Li-ion batteries. However, Mg cathode materials under current investigation suffer from various shortcomings such as low operation voltage and high energy barrier for ion migration, resulting in poor battery performance. Here, we propose a garnet-type intercalation cathode active material, Mg3Si3(MoO6)2, for high-performance Mg-ion batteries. Through first-principles density functional theory calculations, it is demonstrated that Mg3Si3(MoO6)2 possesses a high average discharge voltage (2.35 V vs Mg/Mg2+), a low ion migration barrier (∼0.2 eV), and a minimal volume change (∼4%) concurrently, which comprises excellent intercalation cathode chemistry. The small energy barrier for ion migration is shown to arise from the favorable change in the Mg coordination along the migration route within the garnet host. These findings present an additional direction to develop competent Mg-ion batteries for future energy storage applications.

6.
ACS Appl Mater Interfaces ; 13(34): 40451-40459, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34416812

RESUMO

Thanks to the low cost, free dendritic hazards, and high volumetric capacity, magnesium (Mg)-ion batteries have attracted increasing attention as alternative energy storage devices to lithium-ion batteries. Despite the successful development of electrode materials, the real-life application potential of Mg-ion full battery systems (MIFBSs) is largely hindered by the lack of suitable electrode couples and hence low diffusion kinetics, which induce low specific capacity, poor rate performance, and low working voltage. Herein, we report an aqueous rechargeable MIFBS by employing copper hexacyanoferrate (CuHCF) as the cathode and 3,4,9,10-perylene-tetracarboxylic acid diimide (PTCDI) as the anode in 1 moL L-1 MgCl2 electrolyte. The combination of PTCDI//CuHCF allows efficient redox and convenient intercalation/deintercalation of Mg2+ at the electrodes while facilitating a fast transfer of Mg2+ between the two electrodes. As a result, the system delivers a high capacity of ∼120.3 mAh g-1 at a current density of 0.5 A g-1 after 200 operation cycles with a broadened voltage range (0-1.95 V) and maintains a capacity of ∼97.8 mAh g-1 at 2.0 A g-1 after 1000 cycles. Even at a high current density of 5.0 A g-1, the battery provides a steady capacity of ∼81.4 mAh g-1 over 5000 cycles. Moreover, after being applied at 11.0 A g-1, the system can deliver a capacity of ∼126.5 mAh g-1 at 0.5 A g-1. This work emphasizes the great promise of developing suitable electrode couples for aqueous MIFBSs to achieve high capacity and high rate.

7.
ACS Appl Mater Interfaces ; 12(49): 54711-54719, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33216522

RESUMO

Magnesium ion batteries (MIBs) have attracted a lot of attention because of the natural abundance of magnesium, high volumetric energy density, and superior safety. Nevertheless, MIBs are still in their infancy because of the significant challenge in developing a suitable electrolyte with low flammability, high ionic conductivity, and compatibility with the Mg anode. Herein, we construct rechargeable quasi-solid-state MIBs based on tailored polymer electrolytes. The quasi-solid state electrolyte of poly(vinylidene fluoride-co-hexafluoropropylene)-nanosized SiO2-Mg(TFSI)2 combines the outstanding dynamic property of a liquid electrolyte and the good stability of a solid-state electrolyte. It exhibits a highly reversible Mg2+ deposition-dissolution capability, high ion conductivity (0.83 mS cm-1), and superior compatibility with the Mg metal and cathode. The quasi-solid-state MIBs with a layered titanic oxide cathode show a high reversible capacity of 129 mA h g-1 at 50 mA g-1 (150 W h kg-1) without any decay after 100 cycles.

8.
ACS Nano ; 12(8): 8297-8307, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30086624

RESUMO

At present, the technical progress of secondary batteries employing metallic magnesium as the anode material has been severely hindered due to the low oxidation stability of state-of-the-art Mg electrolytes, which cannot be used to explore high-voltage (>3 V versus Mg2+/Mg) cathode materials. All known electrolytes based on oxidatively stable solvents and salts, such as Mg(ClO4)2 and Mg bis(trifluoromethanesulfonimide), react with the metallic magnesium anode, forming a passivating layer at its surface and preventing the reversible plating and stripping of Mg. Therefore, in a near-term effort to extend the upper voltage limit in the exploration of future candidate Mg-ion battery cathode materials, bismuth anodes have attracted considerable attention due to their efficient magnesiation and demagnesiation alloying reaction in such electrolytes. In this context, we present colloidal Bi nanocrystals (NCs) as a model anode material for the exploration of cathode materials for rechargeable Mg-ion batteries. Bi NCs demonstrate a stable capacity of 325 mAh g-1 over at least 150 cycles at a current density of 770 mA g-1, which is among the most-stable performance of Mg-ion battery anode materials. First-principles crystal structure prediction methodologies and ex situ X-ray diffraction measurements reveal that the magnesiation of Bi NCs leads to the simultaneous formation of the low-temperature trigonal structure, α-Mg3Bi2, and the high-temperature cubic structure, ß-Mg3Bi2, which sheds insight into the high stability of this reversible alloying reaction. Furthermore, small-angle X-ray scattering measurements indicate that although the monodispersed, crystalline nature of the Bi NCs is indeed disturbed during the first discharge step, no notable morphological or structural changes occur in the following electrochemical cycles. The cost-effective and facile synthesis of colloidal Bi NCs and their remarkably high electrochemical stability upon magnesiation make them an excellent model anode material with which to accelerate progress in the field of Mg-ion secondary batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA