Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Mol Pharm ; 21(7): 3513-3524, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867453

RESUMO

The estrogen receptor α positive (ERα+) subtype represents nearly 70% of all breast cancers (BCs), which seriously threaten women's health. Positron emission computed tomography (PET) characterizes its superiority in detecting the recurrence and metastasis of BC. In this article, an array of novel PET probes ([18F]R-1, [18F]R-2, [18F]R-3, and [18F]R-4) targeting ERα based on the tetrahydropyridinyl indole scaffold were developed. Among them, [18F]R-3 and [18F]R-4 showed good target specificity toward ERα and could distinguish MCF-7 (ERα+) and MDA-MB-231 (ERα-) tumors efficiently. Especially, [18F]R-3 could differentiate the ERα positive/negative tumors successfully with a higher tumor-to-muscle uptake ratio (T/M) than that of [18F]R-4. The radioactivity of [18F]R-3 in the MCF-7 tumor was 5.24 ± 0.84%ID/mL and its T/M ratio was 2.49 ± 0.62 at 25 min postinjection, which might be the optimal imaging time point in PET scanning. On the contrary, [18F]R-3 did not accumulate in the MDA-MB-231 tumor at all. The autoradiography analysis of [18F]R-3 on the MCF-7 tumor-bearing mice model was consistent with the PET imaging results. [18F]R-3 exhibited the pharmacokinetic property of rapid distribution and slow clearance, making it suitable for use as a diagnostic PET probe. Overall, [18F]R-3 was capable of serving as a PET radiotracer to delineate the ERα+ tumor and was worthy of further exploitation.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Humanos , Feminino , Receptor alfa de Estrogênio/metabolismo , Radioisótopos de Flúor/farmacocinética , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Células MCF-7 , Linhagem Celular Tumoral , Camundongos Nus , Distribuição Tecidual , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Desenho de Fármacos
2.
Biochem Biophys Res Commun ; 651: 107-113, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36801611

RESUMO

We have compared the similarity of the in vivo distribution of the prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) imaging agents [18F]DCFPyL, [68Ga]galdotadipep, and [68Ga]PSMA-11. This study is designed for a further selection of a PSMA-targeted PET imaging agent for the therapeutic evaluation of [177Lu]ludotadipep, our previously developed prostate-specific membrane antigen (PSMA)-targeted prostate cancer therapeutic radiopharmaceutical. In vitro cell uptake was performed to evaluate the affinity to PSMA using PSMA + PC3-PIP, and PSMA- PC3-flu was used for the study. MicroPET/CT 60 min dynamic imaging and biodistribution were performed at 1, 2, and 4 h after injection. Autoradiography and immunohistochemistry were performed to evaluate the PSMA + tumor target efficiency. In the microPET/CT image, [68Ga]PSMA-11 showed the highest uptake in the kidney among all three compounds. [18F]DCFPyL and [68Ga]PSMA-11 showed similar patterns of in vivo biodistribution and high tumor targeting efficiency, similar to those of[68Ga]galdotadipep. All three agents showed high uptake in tumor tissue on autoradiography, and PSMA expression was confirmed by immunohistochemistry. Thus, [18F]DCFPyL or [68Ga]PSMA-11 can be used as a PET imaging agent to monitor [177Lu]ludotadipep therapy in prostate cancer patients.


Assuntos
Radioisótopos de Gálio , Neoplasias da Próstata , Humanos , Masculino , Detecção Precoce de Câncer , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos , Distribuição Tecidual , Antígeno Prostático Específico/metabolismo
3.
Mol Pharm ; 20(5): 2402-2414, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37015025

RESUMO

Overexpression of fibroblast activation protein (FAP) in cancer-associated fibroblasts in a wide variety of tumors enables a highly selective targeting strategy using FAP inhibitors (FAPIs). Quinoline-based FAPIs labeled with radionuclides have been widely developed for tumor-targeted nuclear medicine imaging. However, the short retention time of FAPIs at the tumor site limits their application in radionuclide therapy. In this study, a novel FAPI-04 dimer was synthesized and labeled with radionuclides to prolong the retention time in tumors for imaging and therapy. To prepare the FAPI-04 dimer complex, DOTA-Suc-Lys-(FAPI-04)2, we used Fmoc-Lys(Boc)-OH as the linker to conjugate two FAPI-04 structures by an amide reaction. The resulting product was further modified by DOTA groups to allow for conjugation with radioactive metals. Both [68Ga]Ga-(FAPI-04)2 and [177Lu]Lu-(FAPI-04)2 showed a radiochemical purity of >99% and remained stable in vitro. In vivo, micro-PET images of SKOV3, A431, and H1299 xenografts revealed that the tumor uptake of [68Ga]Ga-(FAPI-04)2 was about twice that of [68Ga]Ga-FAPI-04 and that the accumulation of [68Ga]Ga-(FAPI-04)2 at the tumor site did not significantly decrease even 3h after injection. The tumor-abdomen ratio of [68Ga]Ga-(FAPI-04)2 images was significantly higher than that of [18F]F-FDG images. For radionuclide therapy, [177Lu]Lu-(FAPI-04)2 effectively retarded tumor growth and displayed good tolerance. In conclusion, the DOTA-Suc-Lys-(FAPI-04)2 design enhanced its uptake in FAP-expressing tumors, improved its retention time at the tumor site, and produced high-contrast imaging in xenografts after radionuclide labeling. Furthermore, it showed a noticeable antitumor effect. DOTA-Suc-Lys-(FAPI-04)2 provides a new approach for applying FAPI derivatives in tumor theranostics.


Assuntos
Neoplasias , Quinolinas , Humanos , Medicina de Precisão , Radioisótopos de Gálio , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
4.
Mol Pharm ; 20(8): 4228-4235, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37409670

RESUMO

Nowadays, one of the most effective methods of tumor immunotherapy is blocking programmed cell death protein 1/programmed cell death protein ligand 1 (PD-1/PD-L1) immune checkpoints. However, there is still a significant challenge in selecting patients to benefit from immune checkpoint therapies. Positron emission tomography (PET), a noninvasive molecular imaging technique, offers a new approach to accurately detect PD-L1 expression and allows for a better prediction of response to PD-1/PD-L1 target immunotherapy. Here, we designed and synthesized a novel group of aryl fluorosulfate-containing small-molecule compounds (LGSu-1, LGSu-2, LGSu-3, and LGSu-4) based on the phenoxymethyl-biphenyl scaffold. After screening by the time-resolved fluorescence resonance energy transfer (TR-FRET) assay, the most potent compound LGSu-1 (half maximal inhibitory concentration (IC50): 15.53 nM) and the low-affinity compound LGSu-2 (IC50: 189.70 nM) as a control were selected for 18F-radiolabeling by sulfur(VI) fluoride exchange chemistry (SuFEx) to use for PET imaging. [18F]LGSu-1 and [18F]LGSu-2 were prepared by a one-step radiofluorination reaction in over 85% radioconversion and nearly 30% radiochemical yield. In B16-F10 melanoma cell assays, [18F]LGSu-1 (5.00 ± 0.06%AD) showed higher cellular uptake than [18F]LGSu-2 (2.55 ± 0.04%AD), in which cell uptake could be significantly blocked by the nonradioactivity LGSu-1. In vivo experiments, micro-PET imaging of B16-F10 tumor-bearing mice and radiographic autoradiography of tumor sections showed that [18F]LGSu-1 was more effectively accumulated in the tumor due to the higher binding affinity with PD-L1. The above experimental results confirmed the potential of the small-molecule probe LGSu-1 as a targeting PD-L1 imaging tracer in tumor tissues.


Assuntos
Antígeno B7-H1 , Neoplasias , Camundongos , Animais , Antígeno B7-H1/metabolismo , Fluoretos , Receptor de Morte Celular Programada 1/metabolismo , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Enxofre , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral
5.
Eur J Neurosci ; 56(3): 4224-4233, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35666711

RESUMO

The intermittent cold stress-induced generalized pain response mimics the pathophysiological and pharmacotherapeutic features reported for fibromyalgia patients, including the presence of chronic generalized pain and female dominance. In addition, the intermittent cold stress-induced generalized pain is abolished in lysophosphatidic acid receptor type-1 knockout mice, as reported in many cases of neuropathic pain models. This study aimed to identify the brain loci involved in the intermittent cold stress generalized pain response and test their dependence on the lysophosphatidic acid receptor type-1. Positron emission tomography analyses using 2-deoxy-2-[18 F]fluoro-d-glucose in the presence of a pain stimulus showed that intermittent cold stress causes a significant increase in uptake in the ipsilateral regions, including the salience networking-related anterior cingulate cortex and insular cortex and the cognition-related hippocampus. A significant decrease was observed in the default mode network-related posterior cingulate cortex. Almost these intermittent cold stress-induced changes were abolished in lysophosphatidic acid receptor type-1 knockout mice. There results suggest that the intermittent cold stress-induced generalized pain response is mediated by the lysophosphatidic acid receptor type-1 in specific brain loci related to salience networking and cognition, which may lead to further developments in the treatment of fibromyalgia.


Assuntos
Fibromialgia , Receptores de Ácidos Lisofosfatídicos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dor Crônica , Modelos Animais de Doenças , Feminino , Fibromialgia/diagnóstico por imagem , Fibromialgia/genética , Fibromialgia/metabolismo , Camundongos , Camundongos Knockout , Tomografia por Emissão de Pósitrons , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/uso terapêutico , Microtomografia por Raio-X
6.
Eur J Nucl Med Mol Imaging ; 49(5): 1497-1507, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34862520

RESUMO

PURPOSE: We longitudinally evaluated the tumour growth and metabolic activity of three nasopharyngeal carcinoma (NPC) cell line models (C666-1, C17 and NPC43) and two xenograft models (Xeno76 and Xeno23) using a micropositron emission tomography and magnetic resonance (microPET/MR). With a better understanding of the interplay between tumour growth and metabolic characteristics of these NPC models, we aim to provide insights for the selection of appropriate NPC cell line/xenograft models to assist novel drug discovery and evaluation. METHODS: Mice were imaged by 18F-deoxyglucose ([18F]FDG) microPET/MR twice a week for consecutive 3-7 weeks. [18F]FDG uptake was quantified by standardized uptake value (SUV) and presented as SUVmean tumour-to-liver ratio (SUVRmean). Longitudinal tumour growth patterns and metabolic patterns were recorded. SUVRmean and histological characteristics were compared across the five NPC models. Cisplatin was administrated to one selected optimal tumour model, C17, to evaluate our imaging platform. RESULTS: We found variable tumour growth and metabolic patterns across different NPC tumour types. C17 has an optimal growth rate and higher tumour metabolic activity compared with C666-1. C666-1 has a fast growth rate but is low in SUVRmean at endpoint due to necrosis as confirmed by H&E. NPC43 and Xeno76 have relatively slow growth rates and are low in SUVRmean, due to severe necrosis. Xeno23 has the slowest growth rate, and a relative high SUVRmean. Cisplatin showed the expected therapeutic effect in the C17 model in marked reduction of tumour size and metabolism. CONCLUSION: Our study establishes an imaging platform that characterizes the growth and metabolic patterns of different NPC models, and the platform is well able to demonstrate drug treatment outcome supporting its use in novel drug discovery and evaluation for NPC.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Animais , Cisplatino , Fluordesoxiglucose F18 , Humanos , Camundongos , Modelos Animais , Carcinoma Nasofaríngeo/diagnóstico por imagem , Neoplasias Nasofaríngeas/diagnóstico por imagem , Necrose , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X
7.
Eur J Nucl Med Mol Imaging ; 49(2): 492-502, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142214

RESUMO

PURPOSE: Phosphodiesterase 10A (PDE10A) is a dual substrate enzyme highly enriched in dopamine-receptive striatal medium spiny neurons, which are involved in psychiatric disorders such as alcohol use disorders (AUD). Although preclinical studies suggest a correlation of PDE10A mRNA expression in neuronal and behavioral responses to alcohol intake, little is known about the effects of alcohol exposure on in vivo PDE10A activity in relation to apparent risk factors for AUD such as decision-making and anxiety. METHODS: We performed a longitudinal [18F]JNJ42259152 microPET study to evaluate PDE10A changes over a 9-week intermittent access to alcohol model, including 6 weeks of alcohol exposure, 2 weeks of abstinence followed by 1 week relapse. Parametric PDE10A-binding potential (BPND) images were generated using a Logan reference tissue model with cerebellum as reference region and were analyzed using both a volume-of-interest and voxel-based approach. Moreover, individual decision-making and anxiety levels were assessed with the rat Iowa Gambling Task and open-field test over the IAE model. RESULTS: We observed an increased alcohol preference especially in those animals that exhibited poor initial decision-making. The first 2 weeks of alcohol exposure resulted in an increased striatal PDE10A binding (> 10%). Comparing PDE10A-binding potential after 2 versus 4 weeks of exposure showed a significant decreased PDE10A in the caudate-putamen and nucleus accumbens (pFWE-corrected < 0.05). This striatal PDE10A decrease was related to alcohol consumption and preference. Normalization of striatal PDE10A to initial levels was observed after 1 week of relapse, apart from the globus pallidus. CONCLUSION: This study shows that chronic voluntary alcohol consumption induces a reversible increased PDE10A enzymatic availability in the striatum, which is related to the amount of alcohol preference. Thus, PDE10A-mediated signaling plays an important role in modulating the reinforcing effects of alcohol, and the data suggest that PDE10A inhibition may have beneficial behavioral effects on alcohol intake.


Assuntos
Alcoolismo , Tomografia por Emissão de Pósitrons , Consumo de Bebidas Alcoólicas/efeitos adversos , Alcoolismo/diagnóstico por imagem , Alcoolismo/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Pirazóis , Piridinas , Ratos
8.
Synapse ; 76(9-10): 17-30, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35730134

RESUMO

Methylphenidate (MP) is a psychostimulant chronically prescribed for the treatment of attention deficit hyperactivity disorder (ADHD). Additionally, MP users may take breaks from using the medication during "drug holidays," which may include short-term or long-term breaks from medication. The present study utilized fluorodeoxyglucose (FDG) positron emission tomography (PET) to analyze the effects of chronic oral MP use and abstinence on brain glucose metabolism (BGluM) in rats at two different doses: high dose (HD) and low dose (LD). The schedule of treatment was 3 weeks on-treatment and 1 week off-treatment for a period of 13 weeks, followed by an abstinence period of 4 total weeks. Results showed that chronic MP treatment using this schedule did not lead to significant changes in BGluM when comparing the control to HD MP groups. However, significant activation in BGluM was observed after periods of abstinence between control and HD MP rats in the following brain regions: the trigeminal nucleus, reticular nucleus, inferior olive, lemniscus, mesencephalic reticular formation, inferior colliculus, and several areas of the cerebellum. These brain regions and functional brain circuit play a role in facial sensory function, the auditory pathway, organizing connections between the thalamus and cortex, motor learning, auditory function, control over eye movement, auditory information integration, and both motor and cognitive functions. These results, when considered with previous studies, indicate that MP schedule of use may have differing effects on BGluM. BGluM following long-term MP use was dependent on MP dose and schedule of use in rats. This study was conducted in non-ADHD model rats with the aim to establish an understanding of the effects of MP itself, especially given the growing chronic off-label and prescribed use of MP. Further studies are needed for analysis of the drug's effects on an ADHD model.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Animais , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Glucose , Metilfenidato/metabolismo , Metilfenidato/farmacologia , Tomografia por Emissão de Pósitrons , Ratos
9.
Brain ; 144(8): 2302-2309, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34059893

RESUMO

Tauopathies are neurodegenerative diseases caused by the abnormal metabolism of the microtubule associated protein tau (MAPT), which is highly expressed in neurons and critically involved in microtubule dynamics. In the adult human brain, the alternative splicing of exon 10 in MAPT pre-mRNA produces equal amounts of protein isoforms with either three (3R) or four (4R) microtubule binding domains. Imbalance in the 3R:4R tau ratio is associated with primary tauopathies that develop atypical parkinsonism, such as progressive supranuclear palsy and corticobasal degeneration. Yet, the development of effective therapies for those pathologies is an unmet goal. Here we report motor coordination impairments in the htau mouse model of tauopathy which harbour abnormal 3R:4R tau isoforms content, and in contrast to TauKO mice, are unresponsive to l-DOPA. Preclinical-PET imaging, array tomography and electrophysiological analyses indicated the dorsal striatum as the candidate structure mediating such phenotypes. Indeed, local modulation of tau isoforms by RNA trans-splicing in the striata of adult htau mice, prevented motor coordination deficits and restored basal neuronal firing. Together, these results suggest that abnormal striatal tau isoform content might lead to parkinsonian-like phenotypes and demonstrate a proof of concept that modulation of tau mis-splicing is a plausible disease-modifying therapy for some primary tauopathies.


Assuntos
Corpo Estriado/metabolismo , Transtornos Motores/metabolismo , Destreza Motora/fisiologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Processamento Alternativo , Animais , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Transtornos Motores/genética , Transtornos Motores/fisiopatologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tauopatias/genética , Tauopatias/fisiopatologia , Proteínas tau/genética
10.
Metab Brain Dis ; 37(4): 911-926, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35059965

RESUMO

Allergic asthma is characterized by chronic airway inflammation and is constantly associated with anxiety disorder. Recent studies showed bidirectional interaction between the brain and the lung tissue. However, where and how the brain is affected in allergic asthma remains unclear. We aimed to investigate the neuroinflammatory, neurochemical, and neurometabolic alterations that lead to anxiety-like behavior in an experimental model of allergic asthma. Mice were submitted to an allergic asthma model induced by ovalbumin (OVA) and the control group received only Dulbecco's phosphate-buffered saline (DPBS). Our findings indicate that airway inflammation increases interleukin (IL) -9, IL-13, eotaxin, and IL-1ß release and changes acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain of mice. Furthermore, we demonstrate that a higher reactive oxygen species (ROS) formation and antioxidant defense alteration that leads to protein damage and mitochondrial dysfunction. Therefore, airway inflammation promotes a pro-inflammatory environment with an increase of BDNF expression in the brain of allergic asthma mice. These pro-inflammatory environments lead to an increase in glucose uptake in the limbic regions and to anxiety-like behavior that was observed through the elevated plus maze (EPM) test and downregulation of glucocorticoid receptor (GR). In conclusion, the present study revealed for the first time that airway inflammation induces neuroinflammatory, neurochemical, and neurometabolic changes within the brain that leads to anxiety-like behavior. Knowledge about mechanisms that lead to anxiety phenotype in asthma is a beneficial tool that can be used for the complete management and treatment of the disease.


Assuntos
Acetilcolinesterase , Asma , Animais , Ansiedade , Asma/induzido quimicamente , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Camundongos
11.
Phytother Res ; 36(4): 1770-1784, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35192202

RESUMO

Targeting the PPARγ might be a potential therapeutic strategy for diabetes-associated cognitive decline (DACD). In this study, Gypenoside LXXV (GP-75), a dammarane-type triterpene compound isolated from Gynostemma pentaphyllum, was found to be a novel PPARγ agonist using a dual-luciferase reporter assay system. However, whether GP-75 has protective effects against DACD remains unknown. Interestingly, intragastric administration of GP-75 (40 mg/kg/day) for 12 weeks significantly attenuated the cognitive deficit in db/db mice. GP-75 treatment significantly improved the glucose tolerance and lipid metabolism, and suppressed neuroinflammation. Notably, GP-75 treatment dramatically increased the uptake of glucose by the brain, as detected by 18 F-FDG PET. Incubation of primary cortical neurons with GP-75 significantly increased 2-deoxyglucose uptake. In addition, GP-75 treatment markedly increased the p-Akt (Ser 473)/total Akt levels and the expression levels of PPARγ and GLUT4, while decreasing the levels of p-IRS-1 (Ser 616)/total IRS-1. Importantly, all of these protective effects mediated by GP-75 were abolished by cotreatment with the PPARγ antagonist, GW9662. However, GP-75-mediated PPARγ upregulation was not affected by coincubation with the phosphatidylinositol 3-kinase inhibitor, LY294002. Collectively, GP-75 might be a novel PPARγ agonist that ameliorates cognitive deficit by enhancing brain glucose uptake via the activation of Akt/GLUT4 signaling in db/db mice.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Encéfalo/metabolismo , Cognição , Disfunção Cognitiva/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Gynostemma/metabolismo , Insulina/metabolismo , Camundongos , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas , Triterpenos
12.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628296

RESUMO

Alzheimer's disease (AD) is characterized by the deposition of extracellular amyloid plaques and intracellular accumulation of neurofibrillary tangles (NFT). Amyloid beta (Aß) and tau imaging are widely used for diagnosing and monitoring AD in clinical settings. We evaluated the pathology of a recently developed 6 × Tg - AD (6 × Tg) mouse model by crossbreeding 5 × FAD mice with mice expressing mutant (P301L) tau protein using micro-positron emission tomography (PET) image analysis. PET studies were performed in these 6 × Tg mice using [18F]Flutemetamol, which is an amyloid PET radiotracer; [18F]THK5351 and [18F]MK6240, which are tau PET radiotracers; moreover, [18F]DPA714, which is a translocator protein (TSPO) radiotracer, and comparisons were made with age-matched mice of their respective parental strains. We compared group differences in standardized uptake value ratio (SUVR), kinetic parameters, biodistribution, and histopathology. [18F]Flutemetamol images showed prominent cortical uptake and matched well with 6E10 staining images from 2-month-old 6 × Tg mice. [18F]Flutemetamol images showed a significant correlation with [18F]DPA714 in the cortex and hippocampus. [18F]THK5351 images revealed prominent hippocampal uptake and matched well with AT8 immunostaining images in 4-month-old 6 × Tg mice. Moreover, [18F]THK5351 images were confirmed using [18F]MK6240, which revealed significant correlations in the cortex and hippocampus. Uptake of [18F]THK5351 or [18F]MK6240 was highly correlated with [18F]Flutemetamol in 4-month-old 6 × Tg mice. In conclusion, PET imaging revealed significant age-related uptake of Aß, tau, and TSPO in 6 × Tg mice, which was highly correlated with age-dependent pathology.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/farmacocinética , Animais , Benzotiazóis/farmacocinética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
13.
J Neurochem ; 157(6): 1911-1929, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33098090

RESUMO

Prenatal and early postnatal periods are important for brain development and neural function. Neonatal insults such as hypoxia-ischemia (HI) causes prolonged neural and metabolic dysregulation, affecting central nervous system maturation. There is evidence that brain hypometabolism could increase the risk of adult-onset neurodegenerative diseases. However, the impact of non-pharmacologic strategies to attenuate HI-induced brain glucose dysfunction is still underexplored. This study investigated the long-term effects of early environmental enrichment in metabolic, cell, and functional responses after neonatal HI. Thereby, male Wistar rats were divided according to surgical procedure, sham, and HI (performed at postnatal day 3), and the allocation to standard (SC) or enriched condition (EC) during gestation and lactation periods. In-vivo cerebral metabolism was assessed by means of [18 F]-FDG micro-positron emission tomography, and cognitive, biochemical, and histological analyses were performed in adulthood. Our findings reveal that HI causes a reduction in glucose metabolism and glucose transporter levels as well as hyposynchronicity in metabolic brain networks. However, EC during prenatal or early postnatal period attenuated these metabolic disturbances. A positive correlation was observed between [18 F]-FDG values and volume ratios in adulthood, indicating that preserved tissue by EC is metabolically active. EC promotes better cognitive scores, as well as down-regulation of amyloid precursor protein in the parietal cortex and hippocampus of HI animals. Furthermore, growth-associated protein 43 was up-regulated in the cortex of EC animals. Altogether, results presented support that EC during gestation and lactation period can reduce HI-induced impairments that may contribute to functional decline and progressive late neurodegeneration.


Assuntos
Encéfalo/metabolismo , Meio Ambiente , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/prevenção & controle , Plasticidade Neuronal/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Hipóxia-Isquemia Encefálica/psicologia , Lactação/metabolismo , Lactação/psicologia , Masculino , Aprendizagem em Labirinto/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Doenças Neurodegenerativas/psicologia , Tomografia por Emissão de Pósitrons/métodos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Ratos Wistar
14.
Amino Acids ; 53(6): 929-938, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34014365

RESUMO

Facile automatic production is important for the application of prostate-specific membrane antigen (PSMA) tracers in clinical practice. We developed a new 18F-AlF-labelled PSMA probe-18F-AlF-PSMA-NF-and explore its automated production method and potential value in clinical settings. 18F-AlF-PSMA-NF was prepared using an automated method with dimethylformamide (DMF) as the solvent in a positron emission tomography (PET)-MF-2 V-IT-I synthesizer. Tracer characteristics were examined both in vitro and in vivo. Micro-PET/computed tomography (CT) was performed to investigate the utility of 18F-AlF-PSMA-NF for imaging PSMA-positive tumours in vivo. 18F-AlF-PSMA-NF was prepared automatically within 35 min with a non-attenuation correction yield of 37.9 ± 11.2%. The tracer was hydrophilic, had a high affinity for PSMA (Kd = 2.58 ± 0.81 nM), and showed stability in both in vitro and in vivo conditions. In the cellular experiments, 18F-AlF-PSMA-NF uptake in PSMA-positive LNCaP cells was significantly higher than that in PSMA-negative PC-3 cells (P < 0.001), and could be blocked by excess ZJ-43-a PSMA inhibitor (P < 0.001). LNCaP tumours were clearly visualized by 18F-AlF-PSMA-NF on micro-PET/CT, with a high level of uptake (13.72 ± 2.01 percent injected dose per gram of tissue [%ID/g]) and high tumour/muscle ratio (close to 50:1). The PSMA-positive LNCaP tumours had a significantly higher uptake than PSMA-negative PC-3 tumours (13.72 ± 2.01%ID/g vs. 1.07 ± 0.48%ID/g, t = 10.382, P < 0.001), and could be blocked by ZJ-43 (13.72 ± 2.01%ID/g vs. 2.77 ± 1.44%ID/g, t = 8.14, P < 0.001). A new 18F-AlF-labelled PSMA probe-18F-AlF-PSMA-NF-was successfully developed and can be prepared automatically. It has the biological characteristics resembling that of a PSMA-based probe and can potentially be used in clinical settings.


Assuntos
Antígenos de Superfície , Radioisótopos de Flúor , Glutamato Carboxipeptidase II , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Animais , Antígenos de Superfície/química , Antígenos de Superfície/farmacologia , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacologia , Glutamato Carboxipeptidase II/síntese química , Glutamato Carboxipeptidase II/química , Glutamato Carboxipeptidase II/farmacocinética , Glutamato Carboxipeptidase II/farmacologia , Humanos , Marcação por Isótopo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/farmacologia , Distribuição Tecidual
15.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946599
16.
Neurobiol Learn Mem ; 171: 107207, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32147586

RESUMO

BACKGROUND AND PURPOSE: Hypoxia and cerebral ischemia (HI) events are capable of triggering important changes in brain metabolism, including glucose metabolism abnormalities, which may be related to the severity of the insult. Using positron emission microtomography (microPET) with [18F]fluorodeoxyglucose (18F-FDG), this study proposes to assess abnormalities of brain glucose metabolism in adult rats previously submitted to the neonatal HI model. We hypothesize that cerebral metabolic outcomes will be associated with cognitive deficits and magnitude of brain injury. METHODS: Seven-day-old rats were subjected to an HI model, induced by permanent occlusion of the right common carotid artery and systemic hypoxia. 18F-FDG-microPET was used to assess regional and whole brain glucose metabolism in rats at 60 postnatal days (PND 60). An interregional cross-correlation matrix was utilized to construct metabolic brain networks (MBN). Rats were also subjected to the Morris Water Maze (MWM) to evaluate spatial memory and their brains were processed for volumetric evaluation. RESULTS: Brain glucose metabolism changes were observed in adult rats after neonatal HI insult, limited to the right brain hemisphere. However, not all HI animals exhibited significant cerebral hypometabolism. Hippocampal glucose metabolism was used to stratify HI animals into HI hypometabolic (HI-h) and HI non-hypometabolic (HI non-h) groups. The HI-h group had drastic MBN disturbance, cognitive deficit, and brain tissue loss, concomitantly. Conversely, HI non-h rats had normal brain glucose metabolism and brain tissue preserved, but also presented MBN changes and spatial memory impairment. Furthermore, data showed that brain glucose metabolism correlated with cognitive deficits and brain volume outcomes. CONCLUSIONS: Our findings demonstrated that long-term changes in MBN drive memory impairments in adult rats subjected to neonatal hypoxic ischemia, using in vivo imaging microPET-FDG. The MBN analyses identified glucose metabolism abnormalities in HI non-h animals, which were not detected by conventional 18F-FDG standardized uptake value (SUVr) measurements. These animals exhibited a metabolic brain signature that may explain the cognitive deficit even with no identifiable brain damage.


Assuntos
Encéfalo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Transtornos da Memória/metabolismo , Rede Nervosa/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Glucose/metabolismo , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Masculino , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Rede Nervosa/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Ratos , Ratos Wistar
17.
J Labelled Comp Radiopharm ; 63(12): 494-501, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562502

RESUMO

Annexin 1 (Anxa1) is a highly specific surface marker of tumor vasculature in the lung and prostate solid tumors. The IF7 peptide was modified with a hydrophilic linker, GGGRDN, and coupled with a new bifunctional chelating agent NODA-Bn-p-SCN. The resulting peptides (NODA-Bn-p-SCN-GGGRDN-IF7) were successfully labeled with Al18 F. The targeting characteristics of the radiolabeled peptides were evaluated in the Anxa1 positive A431 tumor model. Micro-positron emission tomography (micro-PET) imaging revealed that the A431 tumors were clearly visualized (5.74 ± 1.13%ID/g, 3.92 ± 0.78%ID/g and 1.30 ± 0.43%ID/g at 0.5, 1, and 2 h post-injection, respectively). Anxa1 binding specificity was also demonstrated by reduced tumor uptake after co-injection with excessive unlabeled GGGRDN-IF7 peptide at 30, 60, and 120 min post-injection. 18 F-Al-NODA-Bn-p-SCN-GGGRDN-IF7 might be a potential PET imaging agent for detecting Anxa1 levels in cancers due to the favorable characteristics such as convenient synthesis, specific Anxa1 targeting, and good tumor uptakes.


Assuntos
Radioisótopos de Flúor , Peptídeos/química , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/patologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Neoplasias da Próstata/diagnóstico por imagem
18.
Mol Med ; 25(1): 24, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31146675

RESUMO

BACKGROUND: Alcohol abuse affects the brain regions responsible for memory, coordination and emotional processing. Binge alcohol drinking has shown reductions in brain activity, but the molecular targets have not been completely elucidated. We hypothesized that brain cells respond to excessive alcohol by releasing a novel inflammatory mediator, called cold inducible RNA-binding protein (CIRP), which is critical for the decreased brain metabolic activity and impaired cognition. METHODS: Male wild type (WT) mice and mice deficient in CIRP (CIRP-/-) were studied before and after exposure to binge alcohol level by assessment of relative brain glucose metabolism with fluorodeoxyglucose (18FDG) and positron emission tomography (PET). Mice were also examined for object-place memory (OPM) and open field (OF) tasks. RESULTS: Statistical Parametric Analysis (SPM) of 18FDG-PET uptake revealed marked decreases in relative glucose metabolism in distinct brain regions of WT mice after binge alcohol. Regional analysis (post hoc) revealed that while activity in the temporal (secondary visual) and limbic (entorhinal/perirhinal) cortices was decreased in WT mice, relative glucose metabolic activity was less suppressed in the CIRP-/- mice. Group and condition interaction analysis revealed differing responses in relative glucose metabolism (decrease in WT mice but increase in CIRP-/- mice) after alcohol in brain regions including the hippocampus and the cortical amygdala where the percent changes in metabolic activity correlated with changes in object discrimination performance. Behaviorally, alcohol-treated WT mice were impaired in exploring a repositioned object in the OPM task, and were more anxious in the OF task, whereas CIRP-/- mice were not impaired in these tasks. CONCLUSION: CIRP released from brain cells could be responsible for regional brain metabolic hypoactivity leading to cognitive impairment under binge alcohol conditions.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/complicações , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Proteínas de Ligação a RNA/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Fluordesoxiglucose F18/análise , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Tomografia por Emissão de Pósitrons , Proteínas de Ligação a RNA/genética , Memória Espacial/efeitos dos fármacos
19.
Toxicol Appl Pharmacol ; 378: 114604, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31153898

RESUMO

This study investigated the protective effects of dextromethorphan (DXM) on noise-induced hearing loss (NIHL) in rats. This study aimed to improve the auditory threshold and to understand the protective effects of DXM against N-methyl-d-aspartate (NMDA)-induced neurite degeneration of serotonergic neurons. The animals were exposed to 8-kHz narrowband noise at a 118-dB sound pressure level for 3.5 h. The hearing thresholds were determined by measuring the auditory brainstem response to click stimuli. Serotonin transporter (SERT) expression was determined through micro-positron emission tomography (PET) using N,N-dimethyl-2-(2-amino-4-18F-fluorophenylthio)benzylamine (4-[18F]-ADAM). We also investigated the effects of DXM on NMDA-induced morphological changes in the primary cultures of rat serotonergic neurons. NIHL significantly improved after prophylactic treatment with DXM (p < .05). SERT density in DXM-treated rats was significantly higher than that in non-DXM-treated rats. Because prophylactic medication restored the NMDA-inhibited neurite length of serotonergic neurons and presented SERT density, DXM could be a potential agent in alleviating NIHL.


Assuntos
Benzilaminas/farmacologia , Encéfalo/efeitos dos fármacos , Dextrometorfano/farmacologia , Perda Auditiva/tratamento farmacológico , Perda Auditiva/metabolismo , Proteínas de Ligação a RNA/metabolismo , Compostos Radiofarmacêuticos/farmacologia , Animais , Encéfalo/metabolismo , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Masculino , N-Metilaspartato/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Ratos , Ratos Sprague-Dawley , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
20.
Bioorg Chem ; 83: 242-249, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390553

RESUMO

Poly(ADP-ribose)polymerase-1 inhibitor (PARPi) AZD2461 was designed to be a weak P-glycoprotein (P-gp) analogue of FDA approved olaparib. With this chemical property in mind, we utilized the AZD2461 ligand architecture to develop a CNS penetrant and PARP-1 selective imaging probe, in order to investigate PARP-1 mediated neuroinflammation and neurodegenerative diseases, such as Alzheimer's and Parkinson's. Our work led to the identification of several high-affinity PARPi, including AZD2461 congener 9e (PARP-1 IC50 = 3.9 ±â€¯1.2 nM), which was further evaluated as a potential 18F-PET brain imaging probe. However, despite the similar molecular scaffolds of 9e and AZD2461, our studies revealed non-appreciable brain-uptake of [18F]9e in non-human primates, suggesting AZD2461 to be non-CNS penetrant.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Ftalazinas/farmacologia , Piperidinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/agonistas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Radioisótopos de Flúor/química , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos BALB C , Ftalazinas/síntese química , Piperidinas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA