RESUMO
A controllable synthesis of trisubstituted imidazoles and pyrroles has been developed through rhodium(II)-catalyzed regioselective annulation of N-sulfonyl-1,2,3-trizaoles with ß-enaminones. The imidazole ring was formed through a 1,1-insertion of the N-H bond to α-imino rhodium carbene, followed by a subsequent intramolecular 1,4-conjugate addition. This occurred when the α-carbon atom of the amino group was bearing a methyl group. Additionally, the pyrrole ring was constructed by utilizing a phenyl substituent and undergoing intramolecular nucleophilic addition. The mild conditions, good tolerance towards functional groups, gram-scale synthesis capability, and ability to undergo valuable transformations of the products qualify this unique protocol as an efficient tool for the synthesis of N-heterocycles.
Assuntos
Pirróis , Ródio , Pirróis/química , Triazóis/química , Catálise , Ródio/químicaRESUMO
A cobalt-catalyzed 1,4-aryl migration/disulfonylation cascade applied to α-bromo N-sulfonyl amides was developed. The reaction was highly chemoselective, allowing the preparation of α-aryl amides possessing a variety of functional groups. The method was used as the key step to synthesize an alkaloid, (±)-deoxyeseroline. Mechanistic investigations suggest a radical process.
RESUMO
We report a new synthetic methodology for poly(ester amide)s by anionic ring-opening copolymerization of N-sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly-active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first-order dependence of the copolymerization rate in N-sulfonyl aziridines and phosphazenes, and zero-order in cyclic anhydrides. This one-pot methodology leads not only to homopolymers but also to poly(ester amide)-based block copolymers. Two catalytic cycles involving ring-opening alternating copolymerization of N-sulfonyl aziridines with cyclic anhydrides and ring-opening polymerization of N-sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)-based homo- and block copolymers.
RESUMO
Racemic Aldehydes were converted into aminals by using "roofed" mono-N-sulfonyl cis-diamines. Diastereomeric aminals could be separated by silica-gel TLC. The whole configuration of each aminal could be determined by NMR analyses. The chiral reagents were prepared from aminals of racemic reagents and a chiral aldehyde. The reverse may be also true. Epimerization of some aminal remains to be solved. Abbreviations: RDA-Ms: N-(12-amino-9,10-dihydro-9,10-ethanoanthracen-11-yl)-methylsulfonamide; RDA-Ts: N-(12-amino-9,10-dihydro-9,10-ethanoanthracen-11-yl)-4-methylbenzenesulfonamide; RDA-1Nps: N-(12-amino-9,10-dihydro-9,10-ethanoanthracen-11-yl)-1-ãnaphthylsulfonamide; RDA-2Nps: N-(12-amino-9,10-dihydro-9,10-ethanoanthracen-11-yl)-2-naphthylsulfonamide.
Assuntos
Aldeídos/química , Aminas/química , Ciclização , Modelos Moleculares , Conformação MolecularRESUMO
A new series of C-3'-N-sulfonyl paclitaxel analogs were designed and synthesized from 1-deoxybaccatin VI and their structures were confirmed by 1H NMR, 13C NMR and high resolution MS. The synthesized compounds were evaluated for their in vitro anti-Hepatocellular carcinoma (HCC) activity against human hepatoma (HepG2) cell line. Bioassay results showed that compounds 17c, 17d and 17f exhibited more potent inhibitory activity against HepG2 cell line in comparison with paclitaxel. It is suggested that paclitaxel analogs containing the C-3'-N-sulfonyl could be considered as a precursor structure for further synthesis of more potent analogues.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Estrutura Molecular , Relação Estrutura-Atividade , Taxoides/farmacologiaRESUMO
Diastereoselective Lewis acid-mediated additions of nucleophilic alkenes to N-sulfonyl imines are reported. The canonical polar Felkin-Anh model describing additions to carbonyls does not adequately describe analogous additions to N-sulfonyl imines. Herein, we describe the development of conditions to produce both syn and anti products with high diastereoselectivity and good yields. A stereoelectronic model consistent with experimental outcomes is also proposed.
RESUMO
An unprecedented divergent outcome transformation of alkyne tethered N-sulfonyl hydrazones is reported, which provides a direct and effective access to 4-methyl 2H-chromene derivatives and spiro-4H-pyrazoles in the presence of copper catalyst or under thermal conditions, respectively. The notable features of this process include readily available starting materials, an inexpensive copper catalyst, mild reaction conditions, broad substrate scope, diverse transformations and potential applications of these generated products. Mechanistic studies indicate that the 3H-pyrazole, which is generated via direct [3+2] cycloaddition, is the communal key intermediate of these two divergent transformations. To the best of our knowledge, this is the only example of sulfonation reaction that goes through a cascade process involving 3H-pyrazole, which was isolated and confirmed by single crystal X-ray diffraction analysis for the first time.
RESUMO
Alternative synthetic methodology for the direct installation of sulfonamide functionality is a highly desirable goal within the domain of drug discovery and development. The formation of synthetically valuable N-sulfonyl imines from a range of aldehydes, sulfonamides, and PhI(OAc)2 under practical and mild reaction conditions has been developed. According to mechanistic studies described within, the reaction proceeds through an initial step involving a radical initiator (generated either by visible-light or heat) to activate the reacting substrates. The reaction provides a synthetically useful and operationally simple, relatively mild alternative to the traditional formation of N-sulfonyl imines that utilizes stable, widely available reagents.
Assuntos
Antibacterianos/síntese química , Inibidores Enzimáticos/síntese química , Iminas/síntese química , Iodo/química , Fármacos Neuroprotetores/síntese química , Sulfonamidas/síntese química , Acetatos/química , Aldeídos/química , Técnicas de Química Sintética , Desenho de Fármacos , Humanos , Iodobenzenos/química , LuzRESUMO
The development of bioorthogonal approaches for labeling of endogenous proteins under the multimolecular crowding conditions of live cells is highly desirable for the analysis and engineering of proteins without using genetic manipulation. N-Sulfonyl pyridone (SP) is reported as a new reactive group for protein sulfonylation. The ligand-directed SP chemistry was able to modify not only purified proteins inâ vitro, but also endogenous ones on the surface of and inside live cells selectively and rapidly, which allowed to convert endogenous proteins to FRET-based biosensors inâ situ.
RESUMO
An intriguing DABCO-catalyzed and DBU-promoted one-pot synthesis of an important class of (2-hydroxyaryl)pyridine derivatives bearing a carboxylate or a nitrile group suitably placed at C3 position of the aza-ring has been achieved in acceptable chemical yields with a broad functional group tolerance. This sequential C-C/C-N bond making process proceeds through a regioselective allylic alkylation/aza-Michael reaction between MBH carbonates derived from an acrylate/acrylonitrile and N-sulfonyl ketimines as C,N-binucleophiles catalyzed by DABCO, followed by elimination of SO2 under the influence of base and subsequent aromatization in an open atmosphere.
RESUMO
We designed and synthesized novel N-sulfonyl-7-azaindoline derivatives as selective M4 muscarinic acetylcholine receptor agonists. Modification of the N-carbethoxy piperidine moiety of compound 2, an M4 muscarinic acetylcholine receptor (mAChR)-preferring agonist, led to compound 1, a selective M4 mAChR agonist. Compound 1 showed a highly selective M4 mAChR agonistic activity with weak hERG inhibition in vitro. A pharmacokinetic study of compound 1 in vivo revealed good bioavailability and brain penetration in rats. Compound 1 reversed methamphetamine-induced locomotor hyperactivity in rats (1-10 mg/kg, po).
Assuntos
Descoberta de Drogas , Piperidinas/farmacologia , Receptor Muscarínico M4/agonistas , Sulfonamidas/farmacologia , Administração Oral , Animais , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Metanfetamina/antagonistas & inibidores , Metanfetamina/farmacologia , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Piperidinas/administração & dosagem , Piperidinas/química , Ratos , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/químicaRESUMO
An inâ situ generated photoactive copper(I)-complex-catalyzed aziridination reaction of cyclic N-sulfonyl imines with α-aryl-substituted vinyl azides irradiated by blue-LEDs light is reported for the first time. This novel SET process represents a mild, sustainable, and pragmatic method for accessing synthetically resourceful sulfamidate-fused aziridines in acceptable chemical yields with excellent diastereoselectivities. Delightedly, pharmacologically attractive benzo[f][1,2,3]oxathiazepine dioxides and fused isoxazoline frameworks were achieved through our newly developed metal-free based ring-expansion techniques, highlighting the synthetic value of accessed aziridines. Finally, the possible mechanism for [2+1] aza-cyclization was presented based on the conduction of a series of control experiments.
RESUMO
A co-catalyst of (PPh3)AuCl/AgOTf for the intermolecular hydroamination of allenes with sulfonamides is shown. The reaction proceeded smoothly under mild conditions for differently substituted allenes giving N-allylic sulfonamides in good yields with high regioselectivity and E-selectivity.
RESUMO
A powerful CuCl-catalyzed sequential one-pot reaction of aryl methyl ketoxime acetates with cyclic N-sulfonyl imines followed by elimination in the presence of base is reported. This hydrazine-free method conveniently makes C-C and N-N bonds via a radical cleavage of the N-O bond, delivering a special class of C3-hydroxyarylated pyrazoles in good yields. Surprisingly, while employing CuI as a catalyst instead of CuCl, the reaction proceeds through a non-radical pathway which embodies a new tactic for the high-yielding access to value-added conjugated N-unsubstituted ketimines. Moreover, additive-free approach to sulfamidate-fused-pyrazoles was achieved by successfully catalyzing addition and oxidative N-N bond-making reactions by CuI and CuCl, respectively. Significantly, our novel technique could convert the prepared ketimines into the pharmacologically recognized 6H-benzo[c]chromene frameworks.
RESUMO
Dengue virus (DENV) from the Flaviviridae family causes an epidemic disease that seriously threatens human life. The viral serine protease NS2B-NS3 is a promising target for drug development against DENV and other flaviviruses. We here report the design, synthesis, and in-vitro characterization of potent peptidic inhibitors of DENV protease with a sulfonyl moiety as N-terminal cap, thereby creating sulfonamide-peptide hybrids. The in-vitro target affinities of some synthesized compounds were in the nanomolar range, with the most promising derivative reaching a Ki value of 78 nM against DENV-2 protease. The synthesized compounds did not have relevant off-target activity nor cytotoxicity. The metabolic stability of compounds against rat liver microsomes and pancreatic enzymes was remarkable. In general, the integration of sulfonamide moieties at the N-terminus of peptidic inhibitors proved to be a promising and attractive strategy for further drug development against DENV infections.
Assuntos
Vírus da Dengue , Dengue , Animais , Humanos , Ratos , Inibidores de Protease Viral/uso terapêutico , Inibidores de Proteases/química , Antivirais/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Serina Endopeptidases/metabolismo , Dengue/tratamento farmacológico , Proteínas não Estruturais ViraisRESUMO
Alzheimer´s disease (AD) is an intellectual disorder caused by organic brain damage and cerebral atrophy, characterized by the loss of memory, judgment, and abstract thinking followed by declining cognitive functions, language, and the ability to perform daily living activities. Many efforts have been made to decrease the effects of the disease but also to block the neurodegenerative process. Cholinesterase inhibitors (ChEIs) are a group of medicines that act at the neurotransmission of acetylcholine, preventing its excessive breakdown and helping to improve cognitive functions in patients with AD. In this work, 16 chiral steroids, namely ring-fused 3ß-acetoxyandrost-5-ene derivatives, their precursor and two 16-dehydroprogesterone-derived dioximes, were assessed as cholinesterase inhibitors and neuroprotective agents. The results demonstrated that some of the tested steroids are cholinesterase inhibitors and the majority selective for acetylcholinesterase inhibition. Albeit, one ring-fused 3ß-acetoxyandrost-5-ene containing N-methylpiperidine ring (compound 2g) demonstrated to be a selective and potent inhibitor of the butyrylcholinesterase enzyme. (S)- 4,4a,5,6,7,8-(hexahydronaphthalen-2-one)-fused 3ß-acetoxyandrost-5-ene (compound 6) showed high neuroprotective effect, high ability to restore the mitochondrial membrane potential from glutamate intoxication, and dramatic improvement in cell morphology. The described results provided relevant structure-activity relationship data.
Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Butirilcolinesterase/uso terapêutico , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Relação Estrutura-Atividade , Androstanos/química , Androstanos/farmacologiaRESUMO
A facile and effective "grafting from" method by ROP of N-sulfonyl aziridines toward cellulose-g-polysulfonamides has been developed for efficient oil/water separation. The cellulose paper was initially succinylated to transform the hydroxyl to carboxyl acid groups, which act as the initiating sites for the ring-opening copolymerization of fluorescent 2-methyl-1-dansylaziridine and 2-methyl-1-tosylaziridine (TsMAz) towards the grafted cellulose. Both steps are catalyzed by the same compound, 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD). The grafted polysulfonamide ratio was up to 136 wt%, and the surface contact angle up to 147°. A one-pot tandem strategy was applied to produce the grafted cellulose paper with a grafting ratio ranging from 96 to 150 % and a contact angle over 127°. The modified cellulose paper material showed promising properties for efficient oil/water separations.
RESUMO
This study reports the synthesis and characterization of a highly active catalyst based on chelated copper iodide on magnetic chitosan-salicylaldehyde Schiff base. This catalyst was successfully used for the three-component reaction of N-propargylphthalimide, tosylazide, and NH or OH containing nucleophiles to access new classes of N-sulfonylamidine or N-sulfonylimidate derivatives. The products, which were constructed via an in situ generated sulfonyl keteneimine intermediate, were obtained in good to excellent yields. Short reaction times, easy separation and reusability without significant loss of catalyst activity were found to be the notable features of this synthetic protocol.
RESUMO
Advances in biocompatible organic chemistry applicable for endogenous protein modification under live-cell conditions have been longed as these can produce an important tool for the elucidation of a variety of biological phenomena. However, there are still various obstacles to be overcome, such as the limited repertories of the reaction modes, the slow reaction kinetics, and the insufficient specificity for endogenous protein modification. We have recently reported a new type of affinity-based labeling technique termed ligand-directed (LD) chemistry that does not need any genetic manipulation, which shows a sharp contrast with other strategies including peptide/enzyme-tag methods or bioorthogonal chemistry-based methods. Here we describe the general principles of LD chemistry using N-sulfonyl pyridone (SP) as a new reactive group (LDSP chemistry) that allows for endogenous protein sulfonylation with the higher labeling rate and specificity, relative to our previously reported LD chemistry on the surface of and the inside of live cells. The detailed protocols of LDSP chemistry for carbonic anhydrase labeling and imaging in vitro and in living cells are explained.
Assuntos
Marcadores de Afinidade/química , Piridonas/química , Coloração e Rotulagem/métodos , Humanos , Células MCF-7 , Microscopia de FluorescênciaRESUMO
Diamagnetic chemical exchange saturation transfer (diaCEST) agents are a new class of imaging agents, which have unique magnetic resonance (MR) properties similar to agents used for optical imaging. Here we present a series of anthranilic acid analogs as examples of diaCEST agents that feature an exchangeable proton shifted downfield, namely, an intramolecular-bond shifted hydrogen (IM-SHY), which produces significant and tunable contrast at frequencies of 4.8-9.3 ppm from water. Five analogs of N-sulfonyl anthranilic acids are all highly soluble and produced similar CEST contrast at ~6-8 ppm. We also discovered that flufenamic acid, a commercial nonsteroidal anti-inflammatory drug, displayed CEST contrast at 4.8 ppm. For these N-H IM-SHY agents, the contrast produced was insensitive to pH, making them complementary to existing diaCEST probes. This initial IM-SHY library includes the largest reported shifts for N-H protons on small organic diaCEST agents, and should find use as multifrequency MR agents for in vivo applications.