Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Plant Physiol ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324634

RESUMO

Salt stress adversely affects the growth and yield of crops. Glutathione S-transferases (GSTs) are involved in plant growth and responses to biotic and abiotic stresses. In this study, 400 mM NaCl stress significantly induced the expression of Glutathione S-transferase U43 (SlGSTU43) in the roots of the wild-type tomato (Solanum lycopersicum L.) plants. Overexpressing SlGSTU43 enhanced the ability of scavenging reactive oxygen species (ROS) in tomato leaves and roots under NaCl stress, while SlGSTU43 knock-out mutants showed the opposite performance. RNA sequencing analysis revealed that overexpressing SlGSTU43 affected the expression of genes related to lignin biosynthesis. We demonstrated that SlGSTU43 can regulate the lignin content in tomato through its interaction with SlCOMT2, a key enzyme involved in lignin biosynthesis, and promote the growth of tomato plants under NaCl stress. In addition, SlMYB71 and SlWRKY8 interact each other, and can directly bind to the promoter of SlGSTU43 to transcriptionally activate its expression separately or in combination. When SlMYB71 and SlWRKY8 were silenced in tomato plants individually or collectively, the plants were sensitive to NaCl stress, and their GST activities and lignin contents decreased. Our research indicates that SlGSTU43 can enhance salt stress tolerance in tomato by regulating lignin biosynthesis, which is regulated by interacting with SlCOMT2, as well as SlMYB71 and SlWRKY8. This finding broadens our understanding of GST functions.

2.
BMC Genomics ; 25(1): 144, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317113

RESUMO

BACKGROUND: The cation/proton antiporter (CPA) superfamily plays a crucial role in regulating ion homeostasis and pH in plant cells, contributing to stress resistance. However, in potato (Solanum tuberosum L.), systematic identification and analysis of CPA genes are lacking. RESULTS: A total of 33 StCPA members were identified and classified into StNHX (n = 7), StKEA (n = 6), and StCHX (n = 20) subfamilies. StCHX owned the highest number of conserved motifs, followed by StKEA and StNHX. The StNHX and StKEA subfamilies owned more exons than StCHX. NaCl stress induced the differentially expression of 19 genes in roots or leaves, among which StCHX14 and StCHX16 were specifically induced in leaves, while StCHX2 and StCHX19 were specifically expressed in the roots. A total of 11 strongly responded genes were further verified by qPCR. Six CPA family members, StNHX1, StNHX2, StNHX3, StNHX5, StNHX6 and StCHX19, were proved to transport Na+ through yeast complementation experiments. CONCLUSIONS: This study provides comprehensive insights into StCPAs and their response to NaCl stress, facilitating further functional characterization.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Prótons , Cloreto de Sódio/farmacologia , Antiporters/genética , Antiporters/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Cátions/metabolismo , Estresse Fisiológico/genética
3.
BMC Plant Biol ; 24(1): 808, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198726

RESUMO

BACKROUND: The utilization of high-quality water in agriculture is increasingly constrained by climate change, affecting availability, quality, and distribution due to altered precipitation patterns, increased evaporation, extreme weather events, and rising salinity levels. Salinity significantly challenges salt-sensitive vegetables like lettuce, particularly in a greenhouse. Hydroponics water quality ensures nutrient solution stability, enhances nutrient uptake, prevents contamination, regulates pH and electrical conductivity, and maintains system components. This study aimed to mitigate salt-induced damage in lettuce grown via the floating culture method under 50 mM NaCl salinity by applying biostimulants. RESULTS: We examined lettuce's physiological, biochemical, and agronomical responses to salt stress after applying biostimulants such as amino acids, arbuscular mycorrhizal fungi, plant growth-promoting rhizobacteria (PGPR), fulvic acid, and chitosan. The experiment was conducted in a greenhouse with a randomized complete block design, and each treatment was replicated four times. Biostimulant applications alleviated salt's detrimental effects on plant weight, height, leaf number, and leaf area. Yield increases under 50 mM NaCl were 75%, 51%, 31%, 34%, and 33% using vermicompost, PGPR, fulvic acid, amino acid, and chitosan, respectively. Biostimulants improved stomatal conductance (58-189%), chlorophyll content (4-10%), nutrient uptake (15-109%), and water status (9-107%). They also reduced MDA content by 26-42%. PGPR (1.0 ml L‒1), vermicompost (2 ml L‒1), and fulvic acid (40 mg L‒1) were particularly effective, enhancing growth, yield, phenol, and mineral content while reducing nitrate levels under saline conditions. CONCLUSIONS: Biostimulants activated antioxidative defense systems, offering a sustainable, cost-effective solution for mitigating salt stress in hydroponic lettuce cultivation.


Assuntos
Hidroponia , Lactuca , Lactuca/crescimento & desenvolvimento , Lactuca/efeitos dos fármacos , Lactuca/fisiologia , Estresse Salino , Salinidade , Quitosana/farmacologia , Micorrizas/fisiologia , Aminoácidos/metabolismo , Benzopiranos
4.
Photochem Photobiol Sci ; 23(5): 973-985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622375

RESUMO

The concept of utilizing light-emitting plants (LEPs) as an alternative to traditional electricity-based lighting has garnered interest. However, challenges persist due to the need for genetic modification or chemical infusion in current LEPs. To address this, researchers have investigated the interaction between plants and luminous bacteria, specifically Vibrio campbellii, which can efficiently be translocated into Aglaonema cochinchinense tissues through the roots to produce LEPs. This study concentrated on examining light intensity and enhancing luminescence by growing plants and spraying them with various media substances. The results indicated that V. campbellii successfully translocated into the plant tissue via the root system and accumulated a high number of bacteria in the stems, approximately 8.46 × 104 CFU/g, resulting in a light-emitting intensity increase of 12.13-fold at 48 h, and then decreased after 30 h. Interestingly, luminescence stimulation by spraying the growth medium managed to induce the highest light emission, reaching 14.84-fold at 48 h, though it had some negative effects on the plant. Conversely, spraying plants with CaCl2 on the leaves prolonged light emission for a longer duration (42 h after spraying) and had a positive effect on plant health, it maintained ion homeostasis and reduced-MDA content. This study highlights the potential of using V. campbellii and CaCl2 spraying for the future development of practical light-emitting plants.


Assuntos
Vibrio , Vibrio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Luz , Rizosfera , Luminescência
5.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612475

RESUMO

MAPKKs, as one of the main members of the mitogen-activated protein kinase (MAPK) cascade pathway, are located in the middle of the cascade and are involved in many physiological processes of plant growth and development, as well as stress tolerance. Previous studies have found that StMAPKK5 is responsive to drought and salt stress. To further investigate the function and regulatory mechanism of StMAPKK5 in potato stress response, potato variety 'Atlantic' was subjected to drought and NaCl treatments, and the expression of the StMAPKK5 gene was detected by qRT-PCR. StMAPKK5 overexpression and RNA interference-mediated StMAPKK5 knockdown potato plants were constructed. The relative water content, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, as well as proline (Pro) and malondialdehyde (MDA) contents of plant leaves, were also assayed under drought and NaCl stress. The StMAPKK5 interacting proteins were identified and validated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). The results showed that the expression of StMAPKK5 was significantly up-regulated under drought and NaCl stress conditions. The StMAPKK5 protein was localized in the nucleus, cytoplasm, and cell membrane. The expression of StMAPKK5 affected the relative water content, the enzymatic activities of SOD, CAT, and POD, and the proline and MDA contents of potatoes under drought and salt stress conditions. These results suggest that StMAPKK5 plays a significant role in regulating drought and salt tolerance in potato crop. Yeast two-hybrid (Y2H) screening identified four interacting proteins: StMYB19, StZFP8, StPUB-like, and StSKIP19. BiFC confirmed the authenticity of the interactions. These findings suggest that StMAPKK5 is crucial for potato growth, development, and response to adversity.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Secas , Saccharomyces cerevisiae , Cloreto de Sódio/farmacologia , Estresse Salino , Prolina , Superóxido Dismutase , Água
6.
Prep Biochem Biotechnol ; : 1-10, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315946

RESUMO

Given the escalating demand for renewable biofuels amidst the continual consumption of fossil energy, the exploration and identification of microalgal strains for biodiesel production have become crucial. In this study, a microalgal strain named HDMA-12 was isolated from Lake Chenjiadayuan in China to evaluate its biodiesel potential. Phylogenetic analysis of its internal transcribed spacer sequences revealed HDMA-12 as a new molecular record in the genus Coelastrum. When cultivated in BG11 basal medium, HDMA-12 achieved a biomass of 635.7 mg L-1 and a lipid content of 26.4%. Furthermore, the fatty acid methyl ester profile of HDMA-12 exhibited favorable combustion characteristics. Subjected to 200 mM NaCl stress, HDMA-12 reached its maximum biomass of 751.5 mg L-1 and a lipid content of 28.9%. These findings indicate the promising prospects of HDMA-12 as a promising microalgal strain for further advancements in biodiesel production.

7.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139080

RESUMO

Brassinosteroids (BRs) play pivotal roles in improving plant stress tolerance. To investigate the mechanism of BR regulation of salt tolerance in kiwifruit, we used 'Hongyang' kiwifruit as the test material. We exposed the plants to 150 mmol/L NaCl stress and irrigated them with exogenous BR (2,4-epibrassinolide). The phenotypic analysis showed that salt stress significantly inhibited photosynthesis in kiwifruit, leading to a significant increase in the H2O2 content of leaves and roots and a significant increase in Na+/K+, resulting in oxidative damage and an ion imbalance. BR treatment resulted in enhanced photosynthesis, reduced H2O2 content, and reduced Na+/K+ in leaves, alleviating the salt stress injury. Furthermore, transcriptome enrichment analysis showed that the differentially expressed genes (DEGs) related to BR treatment are involved in pathways such as starch and sucrose metabolism, pentose and glucuronate interconversions, and plant hormone signal transduction, among others. Among the DEGs involved in plant hormone signal transduction, those with the highest expression were involved in abscisic acid signal transduction. Moreover, there was a significant increase in the expression of the AcHKT1 gene, which regulates ion transduction, and the antioxidant enzyme AcFSD2 gene, which is a key gene for improving salt tolerance. The data suggest that BRs can improve salt tolerance by regulating ion homeostasis and reducing oxidative stress.


Assuntos
Brassinosteroides , Reguladores de Crescimento de Plantas , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Peróxido de Hidrogênio/metabolismo , Perfilação da Expressão Gênica , Estresse Salino , Transcriptoma , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
8.
Physiol Mol Biol Plants ; 29(2): 289-304, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36875725

RESUMO

Salt stress is one of the most critical abiotic stresses having significant contribution in global agriculture production. Chickpea is sensitive to salt stress at various growth stages and a better knowledge of salt tolerance in chickpea would enable breeding of salt tolerant varieties. During present investigation, in vitro screening of desi chickpea by continuous exposure of seeds to NaCl-containing medium was performed. NaCl was applied in the MS medium at the rate of 6.25, 12.50, 25, 50, 75, 100, and 125 mM. Different germination indices and growth indices of roots and shoots were recorded. Mean germination (%) of roots and shoots ranged from 52.08 to 100%, and 41.67-100%, respectively. The mean germination time (MGT) of roots and shoots ranged from 2.40 to 4.78 d and 3.23-7.05 d. The coefficient of variation of the germination time (CVt) was recorded as 20.91-53.43% for roots, and 14.53-44.17% for shoots. The mean germination rate (MR) of roots was better than shoots. The uncertainty (U) values were tabulated as 0.43-1.59 (roots) and 0.92-2.33 (shoots). The synchronization index (Z) reflected the negative impact of elevated salinity levels on both root and shoot emergence. Application of NaCl exerted a negative impact on all growth indices compared to control and decreased gradually with elevated NaCl concentration. Results on salt tolerance index (STI) also revealed the reduced STI with elevated NaCl concentration and STI of roots was less than shoot. Elemental analysis revealed more Na and Cl accumulation with respective elevated NaCl concentrations. The In vitro growth parameters and STI values validated and predicted by multilayer perceptron (MLP) model revealed the relatively high R 2 values of all growth indices and STI. Findings of this study will be helpful to broaden the understanding about the salinity tolerance level of desi chickpea seeds under in vitro conditions using various germination indices and seedling growth indices. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01282-z.

9.
Biotechnol Bioeng ; 119(12): 3509-3525, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36062959

RESUMO

The halophilic bacterium Halomonas elongata DSM 2581T generally adapts well to high level of salinity by biosynthesizing ectoine, which functions as an important compatible solute protecting the cell against external salinity environment. Halophilic bacteria have specific metabolic activities under high-salt conditions and are gradually applied in various industries. The present study focuses on investigating the physiological and metabolic mechanism of H. elongata DSM 2581T driven by the external salinity environment. The physiological metabolic dynamics under salt stress were investigated to evaluate the effect of NaCl stress on the metabolism of H. elongata. The obtained results demonstrated that ectoine biosynthesis transited from a nongrowth-related process to a growth-related process when the NaCl concentration varied from 1% to 13% (w/v). The maximum biomass (Xm = 41.37 g/L), and highest ectoine production (Pm = 12.91 g/L) were achieved under 8% NaCl. Moreover, the maximum biomass (Xm ) and the maximum specific growth rates (µm ) showed a first rising and then declining trend with the increased NaCl stress. Furthermore, the transcriptome analysis of H. elongata under different NaCl concentrations demonstrated that both 8% and 13% NaCl conditions resulted in increased expressions of genes involved in the pentose phosphate pathway, Entner-Doudoroff pathway, flagellar assembly pathway, and ectoine metabolism, but negatively affected the tricarboxylic acid cycle and fatty acid metabolism. At last, the proposed possible adaptation mechanism under the optimum NaCl concentration in H. elongata was described.


Assuntos
Halomonas , Cloreto de Sódio/metabolismo
10.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806346

RESUMO

As essential calcium ion (Ca2+) sensors in plants, calcium-dependent protein kinases (CDPKs) function in regulating the environmental adaptation of plants. However, the response mechanism of CDPKs to salt stress is not well understood. In the current study, the wheat salt-responsive gene TaCDPK27 was identified. The open reading frame (ORF) of TaCDPK27 was 1875 bp, coding 624 amino acids. The predicted molecular weight and isoelectric point were 68.905 kDa and 5.6, respectively. TaCDPK27 has the closest relationship with subgroup III members of the CDPK family of rice. Increased expression of TaCDPK27 in wheat seedling roots and leaves was triggered by 150 mM NaCl treatment. TaCDPK27 was mainly located in the cytoplasm. After NaCl treatment, some of this protein was transferred to the membrane. The inhibitory effect of TaCDPK27 silencing on the growth of wheat seedlings was slight. After exposure to 150 mM NaCl for 6 days, the NaCl stress tolerance of TaCDPK27-silenced wheat seedlings was reduced, with shorter lengths of both roots and leaves compared with those of the control seedlings. Moreover, silencing of TaCDPK27 further promoted the generation of reactive oxygen species (ROS); reduced the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); aggravated the injury to photosystem II (PS II); and increased programmed cell death (PCD) in wheat leaves under NaCl treatment, confirming that the TaCDPK27-silenced seedlings exhibited more NaCl injury than control seedlings. Taken together, the decrease in NaCl tolerance in TaCDPK27-silenced seedlings was due to excessive ROS accumulation and subsequent aggravation of the NaCl-induced PCD. TaCDPK27 may be essential for positively regulating salt tolerance in wheat seedlings.


Assuntos
Tolerância ao Sal , Triticum , Cálcio/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Plântula/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Triticum/metabolismo
11.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012595

RESUMO

Soil salinization is one of the main environmental factors affecting plant growth worldwide. Tamarix ramosissima Ledeb. (T. ramosissima) is a halophyte representative that is widely grown in salinized soils. As an important nutrient element for plant growth, K+ plays an important role in improving the tolerance to salt stress, but the mechanism of reducing the damage caused by NaCl stress to T. ramosissima is less reported. Our results show that the proline content and the Log2 fold-change of proline's relative quantification in the roots of T. ramosissima increased over time with the application of exogenous potassium (K+) for 48 h and 168 h under NaCl stress. Moreover, 13 amino-acid-related metabolic pathways were involved in the resistance of T. ramosissima to salt stress. Mainly, the aldehyde dehydrogenase family genes and tryptophan-synthase-related genes were found at 48 h and 168 h with exogenous potassium applied to the roots of T. ramosissima under NaCl stress, and they regulated their related metabolic accumulation in the arginine and proline metabolism pathways, increasing the effectiveness of inducing NaCl tolerance of T. ramosissima. It is noteworthy that alpha-ketobutyric was produced in the roots of T. ramosissima under NaCl stress for 48 h with the application of exogenous potassium, which is one of the most effective mechanisms for inducing salt tolerance in plants. Meanwhile, we found three DEGs regulating alpha-ketobutyric acid. This study provides a scientific theoretical basis for further understanding the molecular mechanism of K+ alleviating the salinity damage to T. ramosissima caused by NaCl.


Assuntos
Tamaricaceae , Aminoácidos/metabolismo , Raízes de Plantas/metabolismo , Potássio/metabolismo , Prolina/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Solo/química , Estresse Fisiológico
12.
Mol Breed ; 41(3): 26, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37309423

RESUMO

The expression of a gene encoding peroxisomal Cu-Zn superoxide dismutase from Saussurea involucrata Kar. et Kir. was induced by low temperature, PEG6000 treatment, and NaCl stress. To investigate the role of SikCuZnSOD3 in the mitigation of abiotic stress, we used Agrobacterium-mediated transformation to create transgenic cotton that overexpressed SikCuZnSOD3. Phenotypic analysis of T4 generation transgenic lines showed that they generally grew better than wild-type cotton under low temperature, PEG6000 treatment, and NaCl stress. Although there were no significant differences under control conditions, transgenic plants exhibited greater survival, fresh weight, and dry weight than wild-type plants under all three stress treatments. Additional physiological analyses demonstrated that the transgenic cotton had higher relative water content, proline and soluble sugar contents, and activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), as well as lower relative conductivity, malondialdehyde content, and H2O2 and O2- accumulation. More importantly, overexpression of SikCuZnSOD3 increased the yield of cotton fiber. Our results confirm that the overexpression of SikCuZnSOD3 can improve the abiotic stress resistance of cotton by increasing the activity of antioxidant enzymes, maintaining ROS homeostasis, and reducing cell membrane damage. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01217-0.

13.
Ecotoxicol Environ Saf ; 225: 112761, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509161

RESUMO

Salt stress, as an abiotic stress, limits crops production worldwide. Autophagy and programmed cell death (PCD) have been functionally linked to plant adaptation to abiotic stress. However, the relation of autophagy and PCD is still under debate and the mechanism behind remains not fully understood. In this study, salt-tolerant wheat cultivar Jimai22 was used as the experimental material, and 150 mM NaCl was added to the hydroponic culture to test the effect of salt treatment. The results showed that NaCl stress enhances autophagic activity and induced occurrence of PCD in roots and leaves of wheat seedlings. Then, the barley stripe mosaic virus-induced silencing (BSMV-VIGS) method was used to inhibit autophagy by silencing the expression of ATG2 or ATG7. The results showed that silencing of ATG2 or ATG7 significantly inhibited autophagy and impaired the tolerance of wheat to NaCl stress. Moreover, silencing of ATG2 or ATG7 disrupted the absorption of Na, Cl, K and Ca elements and led to subsequent disequilibrium of Na+, Cl-, K+ and Ca2+, induced generation of excess reactive oxygen species (ROS), decreased the antioxidant activity, damaged photosynthesis apparatus, increased the level of PCD and led to differential expression of the genes, two metacaspase genes, cysteine-rich receptor-like kinase (CRK) 10, and CRK26 in leaves of wheat seedlings under NaCl stress. The effect of the inhibitor 3-methyladenine (3-MA) on roots and leaves of wheat seedlings was in accordance with that of ATG2 and ATG7 silencing. Our results suggest that autophagy negatively regulates salt-induced PCD, or limits the scale of salt-induced PCD to avoid severe tissue death in wheat seedlings.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Plântula , Triticum , Apoptose , Autofagia , Estresse Salino , Plântula/genética , Triticum/genética
14.
BMC Plant Biol ; 20(1): 560, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308157

RESUMO

BACKGROUNDS: Pomegranate (Punica granatum L.) is an important commercial fruit tree, with moderate tolerance to salinity. The balance of Cl- and other anions in pomegranate tissues are affected by salinity, however, the accumulation patterns of anions are poorly understood. The chloride channel (CLC) gene family is involved in conducting Cl-, NO3-, HCO3- and I-, but its characteristics have not been reported on pomegranate. RESULTS: In this study, we identified seven PgCLC genes, consisting of four antiporters and three channels, based on the presence of the gating glutamate (E) and the proton glutamate (E). Phylogenetic analysis revealed that seven PgCLCs were divided into two clades, with clade I containing the typical conserved regions GxGIPE (I), GKxGPxxH (II) and PxxGxLF (III), whereas clade II not. Multiple sequence alignment revealed that PgCLC-B had a P [proline, Pro] residue in region I, which was suspected to be a NO3-/H+ exchanger, while PgCLC-C1, PgCLC-C2, PgCLC-D and PgCLC-G contained a S [serine, Ser] residue, with a high affinity to Cl-. We determined the content of Cl-, NO3-, H2PO4-, and SO42- in pomegranate tissues after 18 days of salt treatments (0, 100, 200 and 300 mM NaCl). Compared with control, the Cl- content increased sharply in pomegranate tissues. Salinity inhibited the uptake of NO3- and SO42-, but accelerated H2PO4- uptake. The results of real-time reverse transcription PCR (qRT-PCR) revealed that PgCLC genes had tissue-specific expression patterns. The high expression levels of three antiporters PgCLC-C1, PgCLC-C2 and PgCLC-D in leaves might be contributed to sequestrating Cl- into the vacuoles. However, the low expression levels of PgCLCs in roots might be associated with the exclusion of Cl- from root cells. Also, the up-regulated PgCLC-B in leaves indicated that more NO3- was transported into leaves to mitigate the nitrogen deficiency. CONCLUSIONS: Our findings suggested that the PgCLC genes played important roles in balancing of Cl- and NO3- in pomegranate tissues under salt stress. This study established a theoretical foundation for the further functional characterization of the CLC genes in pomegranate.


Assuntos
Canais de Cloreto/genética , Família Multigênica , Proteínas de Plantas/genética , Punica granatum/fisiologia , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/fisiologia , Sequência de Aminoácidos , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Punica granatum/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Alinhamento de Sequência
15.
BMC Plant Biol ; 20(1): 465, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036565

RESUMO

BACKGROUND: Salt stress is a serious abiotic stress that caused crop growth inhibition and yield decline. Previous studies have reported on the the synthesis of gamma-aminobutyric acid (GABA) and its relationship with plant resistance under various abiotic stress. However, the relationship between exogenous GABA alleviating plant salt stress damage and ion flux, amino acid synthesis, and key enzyme expression remains largely unclear. We investigated plant growth, Na+ transportation and accumulation, reactive oxygen species (ROS) metabolism and evaluated the effect of GABA on amino acids, especially SlGADs gene expression and the endogenous GABA content of tomato (Solanum lycopersicum L.) seedlings treated with or without 5 mmol·L- 1 GABA under 175 mmol·L- 1 NaCl stress. RESULTS: Exogenous application of GABA significantly reduced the salt damage index and increased plant height, chlorophyll content and the dry and fresh weights of tomato plants exposed to NaCl stress. GABA significantly reduced Na+ accumulation in leaves and roots by preventing Na+ influx in roots and transportation to leaves. The transcriptional expression of SlGAD1-3 genes were induced by NaCl stress especially with GABA application. Among them, SlGAD1 expression was the most sensitive and contributed the most to the increase in glutamate decarboxylase (GAD) activity induced by NaCl and GABA application; Exogenous GABA increased GAD activity and amino acid contents in tomato leaves compared with the levels under NaCl stress alone, especially the levels of endogenous GABA, proline, glutamate and eight other amino acids. These results indicated that SlGADs transcriptional expression played an important role in tomato plant resistance to NaCl stress with GABA application by enhancing GAD activity and amino acid contents. GABA significantly alleviated the active oxygen-related injury of leaves under NaCl stress by increasing the activities of antioxidant enzymes and decreasing the contents of active oxygen species and malondialdehyde. CONCLUSION: Exogenous GABA had a positive effect on the resistance of tomato seedlings to salt stress, which was closely associated with reducing Na+ flux from root to leaves, increasing amino acid content and strengthening antioxidant metabolism. Endogenous GABA content was induced by salt and exogenous GABA at both the transcriptional and metabolic levels.


Assuntos
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Estresse Fisiológico/genética , Ácido gama-Aminobutírico/metabolismo , China , Íons/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/fisiologia , Plântula/metabolismo , Estresse Fisiológico/fisiologia
16.
Biotechnol Bioeng ; 117(12): 3727-3738, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32749671

RESUMO

Microalgae can accumulate a large fraction of reduced carbon as lipids under NaCl stress. This study investigated the mechanism of carbon allocation and reduction and triacylglycerol (TAG) accumulation in microalgae under NaCl-induced stress. Micractinium sp. XJ-2 was exposed to NaCl stress and cells were subjected to physiological, biochemical, and metabolic analyses to elucidate the stress-responsive mechanism. Lipid increased with NaCl concentration after 0-12 hr, then stabilized after 12-48 hr, and finally decreased after 48-72 hr, whereas TAG increased (0-48 hr) and then decreased (48-72 hr). Under NaCl-induced stress at lower concentrations, TAG accumulation, at first, mainly shown to rely on the carbon fixation through photosynthetic fixation, carbohydrate degradation, and membrane lipids remodeling. Moreover, carbon compounds generated by the degradation of some amino acids were reallocated and enhanced fatty acid synthesis. The remodeling of the membrane lipids of NaCl-induced microalgae relied on the following processes: (a) Increase in the amount of phospholipids and reduction in the amount of glycolipids and (b) extension of long-chain fatty acids. This study enhances our understanding of TAG production under NaCl stress and thus will provide a theoretical basis for the industrial application of NaCl-induced in the microalgal biodiesel industry.


Assuntos
Biocombustíveis , Biomassa , Clorófitas/crescimento & desenvolvimento , Lipídeos de Membrana/biossíntese , Microalgas/crescimento & desenvolvimento , Pressão Osmótica/efeitos dos fármacos , Cloreto de Sódio/farmacologia
17.
Ecotoxicol Environ Saf ; 193: 110322, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109582

RESUMO

The γ-aminobutyric acid (GABA) shunt is closely associated with plant tolerance; however, little is known about its mechanism. This study aimed to decipher the responses of the GABA shunt and related carbon-nitrogen metabolism in poplar seedlings (Populus alba × Populus glandulosa) treated with different NaCl and CdCl2 concentrations for 30 h. The results showed that the activities of glutamate decarboxylase (GAD) and GABA-transaminase (GABA-T) were activated, as well as α-ketoglutarate dehydrogenase (α-KGDH) and succinate dehydrogenase (SDH) activities were enhanced by NaCl and CdCl2 stresses, except for SDH under CdCl2 stress. Meanwhile, the expression levels of GADs, GABA-Ts SDHs, succinyl-CoA ligases (SCSs), and succinic acid aldehyde dehydrogenases (SSADHs) were also increased. Notably, significant increases in the key components of GABA shunt, Glu and GABA, were observed under both stresses. Soluble sugars and free amino acids were enhanced, whereas citrate, malate and succinate were almost inhibited by both NaCl and CdCl2 stresses except that citrate was not changed or just increased by 50-mM NaCl stress. Thus, these results suggested that the carbon-nitrogen balance could be altered by activating the GABA shunt when main TCA-cycle intermediates were inhibited under NaCl and CdCl2 stresses. This study can enhance the understanding about the functions of the GABA shunt in woody plants under abiotic stresses and may be applied to the genetic improvement of trees for phytoremediation.


Assuntos
Cloreto de Cádmio/toxicidade , Carbono/metabolismo , Nitrogênio/metabolismo , Populus/efeitos dos fármacos , Cloreto de Sódio/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Aminoácidos/metabolismo , Cloreto de Cádmio/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Cloreto de Sódio/metabolismo
18.
Ecotoxicol Environ Saf ; 200: 110732, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460049

RESUMO

This paper reports the role of exogenous glycine betaine (25 and 50 mM GB at a rate of 50 mL per plant) in enhancing NaCl-stress tolerance in common bean (Phaseolus vulgaris L.). Irrigating plants by simulated saline water, containing 0, 50 and 100 mM sodium chloride (NaCl), significantly reduced the growth dynamics, photosynthetic pigments (i.e., Chl a, Chl b, and carotenoids), membrane stability index (MSI), relative water content (RWC), and pod yield. While, malondialdehyde (MDA), endogenous proline, and glutathione contents, electrolyte leakage (EL), antioxidant defense system, and Na+ accumulation markedly increased upon exposure to NaCl-stress. However, the application of exogenous GB significantly improved salt tolerance of common bean as it increased the antioxidant defense including both enzymatic (i.e., peroxidase, superoxide dismutase, and catalase) and nonenzymatic (i.e., proline and glutathione) agents. Consequently, MSI, RWC, EL, and photosynthetic pigments have been improved recording significantly higher values than the control. Moreover, the pod yield increased by 29.8 and 59.4% when plants grown under 50 and 100 mM NaCl, respectively, were sprayed with 25 mM GB. Our results show that GB-induced slat tolerance in common bean plants mainly depends on the osmoregulation effect of GB and to a lesser extent on its antioxidant capacity. Foliar application of GB significantly reduced the accumulation of Na+ and at the same time induced K+ uptake maintaining a higher K+/Na+ ratio. Despite some changes in the activities of antioxidant enzymes induced by the application of GB, no consistent contribution in the salt tolerance could be cited in this study. Therefore, we suggest that salt tolerance is largely unrelated to the antioxidant defense ability of GB in common bean. While the potential role of GB in ameliorating salt tolerance is mainly due to the adjustment of ions uptake through limiting Na+ uptake and alternatively increasing K+ accumulation in plant tissues.


Assuntos
Betaína/farmacologia , Phaseolus/efeitos dos fármacos , Potássio/metabolismo , Tolerância ao Sal , Sódio/metabolismo , Antioxidantes/metabolismo , Transporte Biológico/efeitos dos fármacos , Catalase/metabolismo , Cátions , Glutationa/metabolismo , Malondialdeído/análise , Osmorregulação/efeitos dos fármacos , Peroxidase/metabolismo , Phaseolus/química , Phaseolus/enzimologia , Phaseolus/metabolismo , Fotossíntese/efeitos dos fármacos , Potássio/análise , Prolina/metabolismo , Sódio/análise , Superóxido Dismutase/metabolismo
19.
Physiol Mol Biol Plants ; 26(3): 551-565, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32205930

RESUMO

NaCl and PEG stresses have negative impacts on seed germination and early seedling establishment in Oryza sativa. The present study was designed to ascertain the influence of different priming techniques (Hydro priming-HyP, Halo priming-HP, UV-B priming-UP) in enhancing oxidative and anti-oxidative mechanisms during seed germination phase in response to NaCl and PEG stresses tolerance of three rice varieties (Neeraja, Vaisakh and Vyttila 6). NaCl and PEG stresses caused delayed germination rate, enhanced reactive oxygen species content and thereby increased lipid peroxidation rate. Different priming techniques significantly hastened the metabolites/non enzymatic antioxidant contents (total sugars, total phenolics, free amino acids, proline, ascorbate and glutathione) as well as activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase), and thus reduced oxidative stress damages caused by NaCl and PEG stresses in rice seedlings. Seed priming techniques imparted abiotic stress tolerance not only to sensitive varieties but also additional tolerance potential to tolerant varieties. All three priming techniques protects the plants from toxicity caused by NaCl and PEG stresses but halo priming had proved to be more successful.

20.
Zhongguo Zhong Yao Za Zhi ; 45(2): 321-330, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-32237314

RESUMO

Atropa belladonna seedlings were used as experimental materials and cultivated by soil culture method. Different concentrations(0,0.05,0.1,0.2,0.5 mmol·L~(-1))of NO donor sodium nitroprusside(SNP) were sprayed on the leaves. The effects of different concentrations of SNP and different treatment time(4,8,12,16 d) on nitrogen metabolism, secondary metabolite content, precursor content of tropane alkaloid synthesis pathway and expression of key enzyme genes under 100 mmol·L~(-1) NaCl stress were studied. The results showed that with the prolongation of salt stress, the nitrogen metabolism and the accumulation of secondary metabolites of A. belladonna were inhibited to some extent. After treatment with different concentrations of exogenous SNP, the ammonium nitrogen content decreased dramatically, and the contents of nitrate nitrogen, free amino acid, soluble protein and the activities of key enzymes of nitrogen metabolism(NR, GS, GDH) were all greatly improved; the contents of precursor amino acids(ornithine, arginine) and polyamines(Put, Spd, Spm) in the secondary metabolic pathway have increased to varying degrees. The qRT-PCR analysis showed that exogenous SNP treatment can effectively promote the high expression of key enzyme genes PMT, TRⅠ and H6H in the secondary metabolic pathway of A. belladonna, and the production of hyoscyamine and scopolamine were increased notably. In summary, the application of appropriate concentration of SNP can effectively alleviate the inhibition of salt stress on the nitrogen metabolism and secondary metabolism of Atropa belladonna, and enhance its salt tolerance. Overall, 0.1 mmol·L~(-1) and 0.2 mmol·L~(-1) SNP treatment achieved the most remarkable effect.


Assuntos
Atropa belladonna/metabolismo , Hiosciamina/análise , Nitrogênio/metabolismo , Escopolamina/análise , Nitroprussiato , Metabolismo Secundário , Cloreto de Sódio , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA