Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Small ; 20(24): e2309457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150624

RESUMO

Highly efficient and durable Pt electrocatalysts are the key to boost the performance of fuel cells. The high-index facets (HIF) Pt nanocrystals are regarded as excellent catalytic activity and stability catalysts. However, nucleation, growth and evolution of high-index facets Pt nanocrystals induced by defective sites is still a challenge. In this work, tetrahexahedron (THH) and hexactahedron (HOH) Pt nanocrystals are synthesized, which are loaded on the nitrogen-doped reduced graphene oxide (N-rGO) support of the integrated electrodes by the square wave pulse method. Experimental investigations and density functional theory (DFT) calculations are conducted to analyze the growth and evolution mechanism of HIF Pt nanocrystals on the graphene-derived carbon supports. It shows that the H adsorption on the N-rGO/CFP support can induce evolution of Pt nanocrystals. Moreover, the N-defective sites on the surface of N-rGO can lead to a slower growth of Pt nanocrystals than that on the surface of reduced graphene oxide (rGO). Pt/N-rGO/CFP (20 min) shows the highest specific activity in methanol oxidation, which is 1.5 times higher than that of commercial Pt/C. This research paves the way on the design and synthesis of HIF Pt nanocrystal using graphene-derived carbon materials as substrates in the future.

2.
Anal Biochem ; 695: 115640, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142532

RESUMO

The development of integrated analytical devices is crucial for advancing next-generation point-of-care platforms. Herein, we describe a facile synthesis of a strongly catalytic and durable Nitrogen-doped graphene oxide decorated platinum cobalt (NGO-PtCo) nanocomposite that is conjugated with target-specific DNA aptamer (i-e. MUC1) and grown on carbon fiber. Benefitting from the combined features of the high electrochemical surface area of N-doped GO, high capacitance and stabilization by Co, and high kinetic performance by Pt, a robust, multifunctional, and flexible nanotransducer surface was created. The designed platform was applied for the specific detection of a blood-based oncomarker, CA15-3. The electrochemical characterization proved that nanosurface provides a highly conductive and proficient immobilization support with a strong bio-affinity towards MUC1 aptamer. The specific interaction between CA15-3 and the aptamer alters the surface properties of the aptasensor and the electroactive signal probe generated a remarkable increase in signal intensity. The sensor exhibited a wide dynamic range of 5.0 × 10-2 -200 U mL-1, a low limit of detection (LOD) of 4.1 × 10-2 U mL-1, and good reproducibility. The analysis of spiked serum samples revealed outstanding recoveries of up to 100.03 %, by the proposed aptasensor. The aptasensor design opens new revelations in the reliable detection of tumor biomarkers for timely cancer diagnosis.

3.
J Fluoresc ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874823

RESUMO

Tyrosinase inhibitors have the ability to resist melanin formation and can be used for clinical and cosmetic, so it is becoming extremely crucial to search a rapid and effective method for detecting t the activity of tyrosinase. In this study, a sensing probe based on Nitrogen-doped graphene quantum dots (N-GQDs) were prepared with carbamide and citric acid. Tyrosinase can oxidize dopamine to dopamine quinone, which can quench the fluorescence of N-GQDs based on the principle of fluorescence resonance energy transfer (FRET) process, and then the detection of tyrosinase activity can be achieved. The result demonstrated that the fluorescence intensity of N-GQDs was a linear correlation with the activity of tyrosinase. Wide detection linear ranges between 0.05 and 5 U/mL and high selectivity. The detection range of tyrosinase was 0.05 to 5 U/mL and LOD of 0.005 U/mL. According to the above, the fluorescence method established in this work could be successfully used for the trace analysis of tyrosinase and it was verified that KA is an inhibitor of tyrosinase.

4.
Mikrochim Acta ; 191(4): 179, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443677

RESUMO

A novel electrochemical immunosensor for detecting potential depression biomarker Apolipoprotein A4 (Apo-A4) was developed using a multi-signal amplification approach. Firstly, the sensor utilized a modified electrode material, NG-PEI-COF, combining bipyridine-functionalized covalent organic framework (COF) and polyethyleneimine-functionalized nitrogen-doped graphene (NG-PEI), providing high surface area and excellent electron transfer capability for the first-stage amplification in electrical signal conduction. Subsequently, gold nanoparticles (AuNPs) were further electrodeposited onto the electrode, providing good biocompatibility and abundant binding sites for immobilizing the target antigen, thus achieving the second-stage amplification in target recognition and binding. To address the lack of redox properties of the antigen, a tracer probe was formed by loading AuNPs, anti-Apo-A4, and toluidine blue (TB) successively onto COF, leading to the third-stage amplification in signal conversion. The constructed electrochemical immunosensor TB/Ab/AuNPs/COF-Apo-A4/AuNPs/NG-PEI-COF/GCE exhibited excellent detection performance against Apo-A4 with a linear range of 0.01 to 300 ng mL-1 and had a low detection limit of 2.16 pg mL-1 (S/N = 3). In addition, the biosensor had good reproducibility (RSD = 2.31%), stability, and significant anti-interference performance toward other depression biomarkers. The sensor has been successfully used for the quantitative detection of Apo-A4 in serum, providing potential applications for detecting Apo-A4 in the clinic and serving as a reference for constructing sensing methods based on COF.


Assuntos
Apolipoproteínas A , Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Ouro , Depressão , Reprodutibilidade dos Testes , Imunoensaio , Cloreto de Tolônio
5.
Mikrochim Acta ; 191(4): 190, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460000

RESUMO

Golgi protein 73 (GP73) is a new serum marker associated with early diagnosis and postoperative assessment of hepatocellular carcinoma (HCC). Herein, an electrochemical/fluorescence dual-signal biosensor was designed for determination of GP73 based on molybdenum disulfide/ferrocene/palladium nanoparticles (MoS2-Fc-PdNPs) and nitrogen-doped graphene quantum dots (NGQDs). GP73 aptamer (Apt) was labeled with NGQDs to form the NGQDs-Apt fluorescence probe. MoS2-Fc-PdNPs served not only as the fluorescence quencher but also as electrochemical enhancer. The sensing platform (NGQDs-Apt/MoS2-Fc-PdNPs) was formed based on the fluorescence resonance energy transfer (FRET) mechanism. In the presence of GP73, the specific binding of NGQDs-Apt to GP73 interrupted FRET, restoring the fluorescence of NGQDs-Apt at λex/em = 348/438 nm and enhancing the oxidation current of Fc in MoS2-Fc-PdNPs at 0.04 V through differential pulse voltammetry (DPV). Under the optimal conditions, the DPV current change and fluorescence recovery have a good linear relationship with GP73 concentration from 1.00 to 10.0 ng/mL. The calibration equation for the fluorescence mode was Y1 = (0.0213 ± 0.00127)X + (0.0641 ± 0.00448) and LOD was 0.812 ng/mL (S/N = 3). The calibration equation of the electrochemical mode was Y2 = (3.41 ± 0.111)X + (1.62 ± 0.731), and LOD of 0.0425 ng/mL (S/N = 3). The RSDs of fluorescence mode and electrochemical mode after serum detection were 1.62 to 5.21% and 0.180 to 6.62%, respectively. By combining the electrochemical and fluorescence assay, more comprehensive and valuable information for GP73 was provided. Such dual-mode detection platform shows excellent reproducibility, stability, and selectivity and has great application potential.


Assuntos
Carcinoma Hepatocelular , Dissulfetos , Grafite , Neoplasias Hepáticas , Nanopartículas Metálicas , Pontos Quânticos , Humanos , Molibdênio , Paládio , Nitrogênio , Reprodutibilidade dos Testes , Metalocenos
6.
Chemistry ; 29(12): e202203144, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36408758

RESUMO

The cleavage of ß-O-4 linkage in lignin is one of the key steps for oxidative conversion of lignin to low-molecular-weight aromatics. Herein, Co nanoparticles embedded in three-dimensional network of nitrogen-doped graphene (Co/NG@3DNG-X) were prepared through an immersion-pyrolysis procedure, in which X denotes the pyrolysis temperature. The detailed characterization of Co/NG@3DNG-X shows that the Co nanoparticles are coated with a few layers of nitrogen-doped graphene (NG) sheets that are further embedded in 3DNG matrix. The catalytic activities of the Co/NG@3DNG-X for the oxidative cleavage of ß-O-4 linkage in lignin model compounds with O2 as oxidant are explored. It is demonstrated that catalytic activities of as-prepared Co/NG@3DNG-X can be tuned by varying the pyrolysis condition, and the Co/NG@3DNG-900 shows the highest catalytic activity, which is attributed to the enriched Co-Nx species, the strong surface basicity, the high specific surface and the mesoporous motif of 3DNG network. More pronouncedly, the Co/NG@3DNG-900 can also effectively catalyze the oxidative cleavage of organosolv lignin, generating certain monomeric aromatics. Additionally, the intrinsic magnetic property of Co nanoparticles makes the Co/NG@3DNG-X be easily recovered from the reaction mixture, and the as-coated thin NG layer can protect Co nanoparticle from oxidation condition, which putting together afford the Co/NG@3DNG-X with good reusability and stability.

7.
Nanotechnology ; 34(41)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490587

RESUMO

The effect of defects, nitrogen doping, and hydrogen saturation on the work function of graphene is investigated via first principle calculations. Whilst Stone-Wales defects have little effect, single and double vacancy defects increase the work function by decreasing charge density in theπ-electron system. Substitutional nitrogen doping in defect-free graphene significantly decreases the work function, because the nitrogen atoms donate electrons to theπ-electron system. In the presence of defects, these competing effects mean that higher nitrogen content is required to achieve similar reduction in work function as for crystalline graphene. Doping with pyridinic nitrogen atoms at vacancies slightly increases the work function, since pyridinic nitrogen does not contribute electrons to theπ-electron system. Meanwhile, hydrogen saturation of the pyridinic nitrogen atoms significantly reduces the work function, due to a shift from pyridinic to graphitic-type behavior. These findings clearly explain some of the experimental work functions obtained for carbon and nitrogen-doped carbon materials in the literature, and has implications in applications such as photocatalysis, photovoltaics, electrochemistry, and electron field emission.

8.
Environ Res ; 235: 116642, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442259

RESUMO

Nitrogen-doped graphene (NG) was synthesized via direct thermal annealing treatment. The obtained NG showed outstanding removal ability for tetracycline (TC) ascribed to enhanced adsorption and persulfate activation. The maximum TC adsorption capacity calculated from the Langmuir model of NG was 227.3 mg/g, which was 1.66 times larger than nitrogen-free graphene. The coexistence of NG and persulfate (PS) exhibited complete degradation of TC within 120 min attributed to the successful modification of nitrogen. Further analysis demonstrated that non-radical electron transfer was the dominant degradation pathway, which was different from the widely acknowledgeable radical mechanism. An electron donor-mediator-acceptor system was introduced, in which TC, NG, and PS performed as electron donor, mediator, and acceptor, respectively. The potential intermediates in the TC degradation process were detected and toxicity assessment was also performed. In addition, more than 75.8% of total organic carbon was removed, and excellent reusability was manifested in multiple adsorption and degradation experiments.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Nitrogênio , Antibacterianos , Tetraciclina/análise , Oxidantes , Poluentes Químicos da Água/análise
9.
Environ Res ; 220: 115198, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592814

RESUMO

Nitrogen-doped graphene as a perfectly-efficient and environmentally compatible electrocatalyst won widespread attention in electrochemical advanced oxidation processes (EAOP). However, the relationship between surface structure regulation and activity of catalysts is still lacking in systematic scientific guidance. Herein, nitrogen-doped graphene aerogel (NGA) was conveniently prepared through hydrothermal treatment, and then utilized to fabricate the gas diffusion electrode (GDE) as the cathode for tetracycline (TC) removal. High free radical yield (81.2 µM) and fast reaction rate (0.1469 min-1) were found in NGA system. The molecular dynamics simulation (MD) results showed that the interaction energy of NGA was greater than the raw graphene aerogel (GA). The adsorption activation of H2O2 and the degradation of TC occurred in the first adsorption layer of catalysts, and both processes turned more orderly after nitrogen doping. Moreover, the van der Waals interaction was stronger than the electrostatic interaction. Density function theory (DFT) revealed that the adsorption energy of H2O2 at graphitic N, pyridinic N, and pyrrolic N sites was -0.03 eV, -0.39 eV, and -0.30 eV, respectively. Pyridinic N sites were inferred as the main functional regions of in-situ activation •OH, there were more likely to occur ectopic reaction in pyrrolic N, and graphitic N were responsible for improving H2O2 production. By revealing the microstructure and activation characteristics of NGA, an experiment-simulation complementary strategy is provided in the EAOP to discover or to optimize new catalysts.


Assuntos
Grafite , Grafite/química , Peróxido de Hidrogênio , Simulação de Dinâmica Molecular , Oxirredução , Antibacterianos , Tetraciclina , Nitrogênio
10.
Mikrochim Acta ; 190(8): 330, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500906

RESUMO

A novel electrochemical immunosensor was developed for highly sensitive detection of brain-derived neurotrophic factor (BDNF), a well-known depression marker. The immunosensor was fabricated by modifying indium tin oxide-coated polyethylene terephthalate (ITO-PET) with N-doped graphene-polyaniline (NG-PANI) and gold nanoparticles (AuNPs) to enhance the conductivity and protein loading capacity. Subsequently, BDNF was immobilized onto the electrode surface via gold-sulfur bonds, followed by the attachment of biotinylated antibody (Biotin-Ab) and horseradish peroxidase-avidin (HRP-Avidin) to create the final immunosensor (HRP-Avidin-Biotin-Ab-BDNF-AuNPs/NG-PANI/ITO-PET). The proposed immunosensor exhibited a linear range of determination (0.781-400 pg/mL) with a low limit of detection (LOD) of 0.261 pg/mL (S/N = 3) and excellent reproducibility (RSD = 1.4%) and stability (92.7%, RSD = 3.1%). Additionally, the immunosensor demonstrated good anti-interference performance and good recovery (98.1-107%). To evaluate the practical utility of the immunosensor, BDNF levels were quantified in the serum of mice with depression induced by chronic unpredictable mild stress (CUMS). The results indicated that the serum BDNF levels were significantly decreased in the depression model group compared with the control group, highlighting the potential of this immunosensor for clinical detection of BDNF in depression diagnosis and treatment.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Camundongos , Animais , Ouro/química , Nanopartículas Metálicas/química , Fator Neurotrófico Derivado do Encéfalo , Polietilenotereftalatos , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Avidina , Biotina , Imunoensaio/métodos , Anticorpos , Peroxidase do Rábano Silvestre
11.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110692

RESUMO

Silicon-based composites are promising candidates as the next-generation anode materials for high-performance lithium-ion batteries (LIBs) due to their high theoretical specific capacity, abundant reserves, and reliable security. However, expensive raw materials and complicated preparation processes give silicon carbon anode a high price and poor batch stability, which become a stumbling block to its large-scale practical application. In this work, a novel ball milling-catalytic pyrolysis method is developed to fabricate a silicon nanosheet@amorphous carbon/N-doped graphene (Si-NSs@C/NG) composite with cheap high-purity micron-size silica powder and melamine as raw materials. Through systematic characterizations such as XRD, Raman, SEM, TEM and XPS, the formation process of NG and a Si-NSs@C/NG composite is graphically demonstrated. Si-NSs@C is uniformly intercalated between NG nanosheets, and these two kinds of two-dimensional (2D) materials are combined in a surface-to-surface manner, which immensely buffers the stress changes caused by volume expansion and contraction of Si-NSs. Attributed to the excellent electrical conductivity of graphene layer and the coating layer, the initial reversible specific capacity of Si-NSs@C/NG is 807.9 mAh g-1 at 200 mA g-1, with a capacity retention rate of 81% in 120 cycles, exhibiting great potential for application as an anode material for LIBs. More importantly, the simple and effective process and cheap precursors could greatly reduce the production cost and promote the commercialization of silicon/carbon composites.

12.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067604

RESUMO

In this study, density functional theory (DFT) was used to investigate the influence of temperature on the performance of a novel Cu-nitrogen-doped graphene Cu2-N8/Gr nanocomposite as a catalyst for the oxygen reduction reaction (ORR) in fuel cell applications. Our DFT calculations, conducted using Gaussian 09w with the 3-21G/B3LYP basis set, focus on the Cu-nitrogen-doped graphene nanocomposite cathode catalyst, exploring its behavior at three distinct temperatures: 298.15 K, 353.15 K, and 393.15 K, under acidic conditions. Our analysis of formation energies indicates that the structural stability of the catalyst remains unaffected as the temperature varies within the potential range of 0-7.21 V. Notably, the stability of the ORR steps experiences a marginal decrease with increasing temperature, with the exception of the intermediate OH + H2O (*OH + H + *OH). Interestingly, the optimization reveals the absence of single OH and H2O intermediates during the reactions. Furthermore, the OH + H2O step is optimized to form the OH + H + OH intermediate, featuring the sharing of a hydrogen atom between dual OH intermediates. Free energy calculations elucidate that the catalyst supports spontaneous ORR at all temperatures. The highest recorded maximum cell potential, 0.69 V, is observed at 393.15 K, while the lowest, 0.61 V, is recorded at 353.15 K. In particular, the Cu2-N8/Gr catalyst structure demonstrates a reduced favorability for the H2O2 generation at all temperatures, resulting in the formation of dual OH intermediates rather than H2O2. In conclusion, at 393.15 K, Cu2-N8/Gr exhibits enhanced catalyst performance compared to 353.15 K and 298.15 K, making it a promising candidate for ORR catalysis in fuel cell applications.

13.
Small ; 18(33): e2201003, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35775954

RESUMO

Access to clean water for drinking, sanitation, and irrigation is a major sustainable development goal of the United Nations. Thus, technologies for cleaning water and quality-monitoring must become widely accessible and of low-cost, while being effective, selective, sustainable, and eco-friendly. To meet this challenge, hetero-bifunctional nanographene fluorescent beacons with high-affinity pockets for heavy metals are developed, offering top-rated and selective adsorption for cadmium and lead, reaching 870 and 450 mg g-1 , respectively. The heterobifunctional and multidentate pockets also operate as selective gates for fluorescence signal regulation with sub-nanomolar sensitivity (0.1 and 0.2 nm for Pb2+ and Cd2+ , respectively), due to binding affinities as low as those of antigen-antibody interactions. Importantly, the acid-proof nanographenes can be fully regenerated and reused. Their broad visible-light absorption offers an additional mode for water-quality monitoring based on ultra-low cost and user-friendly reagentless paper detection with the naked-eye at a limit of detection of 1 and 10 ppb for Pb2+ and Cd2+ ions, respectively. This work shows that photoactive nanomaterials, densely-functionalized with strong, yet selective ligands for targeted contaminants, can successfully combine features such as excellent adsorption, reusability, and sensing capabilities, in a way to extend the material's applicability, its life-cycle, and value-for-money.


Assuntos
Grafite , Metais Pesados , Adsorção , Cádmio , Descontaminação , Chumbo , Água
14.
Small ; 18(15): e2106327, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35278039

RESUMO

The electrochemical dinitrogen (N2 ) reduction reaction (NRR) under ambient conditions has gained significant interest as an environmentally friendly alternative to the traditional Haber-Bosch process for the synthesis of ammonia (NH3 ). However, up to now, most of the reported NRR electrocatalysts with satisfactory catalytic activities have been hindered by the large overpotential in N2 activation. The preparation of highly efficient Mo-based NRR electrocatalyst in acidic electrolytes under ambient conditions is demonstrated here, consisting of stabilized single Mo atoms anchored on holey nitrogen-doped graphene synthesized through a convenient potassium-salt-assisted activation method. At -0.05 V versus a reversible hydrogen electrode (RHE), an electrode consisting of the resultant electrocatalyst immobilized on carbon fiber paper can attain an exceptional Faradaic efficiency of 50.2% and a NH3 yield rate of 3.6 µg h-1 mgcat-1 with low overpotentials. Density functional theory calculations further unveil that compared to the original graphene without holes, the edge coordinated Mo atoms and the existence of vacancies on holey graphene lower the overpotential of N2 reduction, thereby promoting the NRR catalytic activity. This work could provide new guidelines for future designs in single-atom catalysis that would be beneficial to ambient N2 fixation, and replacement of classical synthesis processes that are very energy-intensive.


Assuntos
Amônia , Grafite , Catálise , Molibdênio , Nitrogênio
15.
Chemphyschem ; 23(5): e202100787, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146865

RESUMO

Density functional theory (DFT) methods are the working horse in screening new catalytic materials. They are widely used to predict trends in binding energies, which are then used to compare the activity of different materials. The binding strength of CO is an important descriptor to the CO2 reduction catalytic activity of the single transition metal atoms embedded on nitrogen-doped graphene (TM/NG). In this work, however, we show that CO binding strengths in different TM/NG has very different sensitivity to DFT methods. Specifically, Fe/NG CO binding energy changes dramatically with the percentage of exact exchange in the functional; Co/NG does less so, while Ni/NG nearly has no change. Such varying behaviors is a direct result of different local spin configurations, similar to the performance of DFT methods for metal porphyrin complexes. Therefore, caution should be exercised when using DFT binding energies for quantitative predictions in TM/NG single atom catalysis.


Assuntos
Grafite , Adsorção , Catálise , Grafite/química , Nitrogênio
16.
Nanotechnology ; 34(1)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35970142

RESUMO

Erlotinib is a potent and highly specific tyrosine kinase inhibitor with the hindering effects on the growth of cancer cells. An electrochemical sensor with the great sensitivity and selectivity was fabricated for determining erlotinib by using a graphite rod electrode modified by the nitrogen-doped graphene quantum dots (N-GQDs) and a ternary nanohybrid comprising copper nanoparticles, polyaniline, along with graphene oxide (N-GQDs/CuNPs-PANI@GO) for the first time. The establishment of PANI and CuNPs was done simultaneously on the GO surface by thein situoxidative polymerization method. The morphological characteristics and elemental structure of the synthesized nanoparticles were examined by some microscopy techniques and x-ray energy/diffraction methods. The fabricated sensor represented the electrocatalytic activity towards erlotinib with a linear detection range from 1.0 nM to 35.0µM, a detection limit of 0.712 nM, and a sensitivity of 1.3604µAµM-1. Moreover, the N-GQDs/CuNPs-PANI@GO sensor showed acceptable stability up to 30 d (94.82%), reproducibility (RSD values of 3.19% intraday and 3.52% interday), and repeatability (RSD value of 3.65%) as a novel and powerful electrochemical sensor. It was successfully applied to monitor erlotinib in the drug-injected aqueous solution, serum, and urine samples that proved the capability of the sensor for the erlotinib monitoring in the biological samples.


Assuntos
Técnicas Biossensoriais , Grafite , Pontos Quânticos , Grafite/química , Pontos Quânticos/química , Cloridrato de Erlotinib , Nitrogênio/química , Cobre/química , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Inibidores de Proteínas Quinases , Limite de Detecção
17.
Nanotechnology ; 33(35)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33887710

RESUMO

Transforming levulinic acid (LA) toγ-valerolactone (GVL) is a significant route for converting biomass into valuable chemicals. The development of an efficient and robust heterogeneous catalyst for this reaction has aroused great interest. In this work, nitrogen-doped graphene (NG) supported nickel (Ni) based heterogeneous catalyst with excellent activities was successfully synthesized. The Ni/NG catalyst shows outstanding performance for hydrogenation of LA to GVL at a relatively low temperature of 140 °C, which is superior to most of reported heterogeneous catalysts. Further investigations indicate Ni nanoparticles are the active sites and the NG also plays an indispensable role. The catalytic performance is highly depended on the crystallinity, particles sizes and electronic structure of Ni in Ni/NG catalyst, which can be optimized by nitrogen doping. This work affords a new route for designing robust and excellent heterogeneous catalysts by doping method to optimize the support.

18.
Environ Res ; 215(Pt 1): 114114, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36030915

RESUMO

In this study, a novel tin oxide/nitrogen-doped graphene quantum dot nanocomposite (SnO2-NDGQD) and 1-methyl-3-octylimidazolinium chloride (1M3OICl) ionic liquid amplified carbon paste electrode (CPE) was fabricated as an efficient and fast-response sensor to determine daunorubicin, an anticancer drug. The electrochemical characteristics of daunorubicin at the surface of the 1M3OICl/SnO2-NDGQD/CPE was explored via various voltammetric methods. The high-resolution transmission electron microscope (HR-TEM) images were recorded to examine the morphological structure of the as-synthesized nanocomposites. The 1M3OICl/SnO2-NDGQD/CPE offered a wide linear concentration of 0.001-280.0 µM with a low detection limit of 0.40 nM at the optimized experimental conditions using square wave voltammetric (SWV) method. In a nutshell, the developed electrode illustrated outstanding selectivity in the presence of interfering agents and long-term stability. The1M3OICl/SnO2-NDGQD/CPE was used as new and powerful analytical tool for determination of daunorubicin in real samples with recovery range 98.75%-104.8%.


Assuntos
Antineoplásicos , Grafite , Líquidos Iônicos , Cloreto de Metila , Nanocompostos , Pontos Quânticos , Carbono/química , Cloretos , Daunorrubicina , Técnicas Eletroquímicas/métodos , Grafite/química , Líquidos Iônicos/química , Limite de Detecção , Nanocompostos/química , Nitrogênio , Pontos Quânticos/química , Compostos de Estanho
19.
Mikrochim Acta ; 189(10): 395, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36169733

RESUMO

Dual-mode electrochemical aptasensor based on nitrogen-doped graphene (NG) doped with the conducting polymer polypyrrole (PPy) nanocomposite is proposed for the determination of acetamiprid. NG/PPy was electrodeposited onto the glassy carbon electrode (GCE) using cyclic voltammetry technique. NG/PPy/GCE showed outstanding electrocatalytic activity for the oxidation of nitrite due to "active region" induced by the charge redistribution of carbon atoms. The ultrasensitive dual-mode biosensor for acetamiprid could be easily developed by coupling acetamiprid aptamers with the NG/PPy hybrid. The specific binding between acetamiprid and the aptamers resulted in the increase of differential pulse voltammetry (DPV) signal change and the decrease of chronoamperometry (CA) signal, and the concentration of acetamiprid could be measured. The working potentials of DPV and CA were - 0.2 ~ 0.4 V and - 0.4 ~ 0.4 V (vs. SCE), respectively. The dual-mode acetamiprid biosensor showed a wide linear range from 10-12 to 10-7 g mL-1, with low detection limits of 1.15 × 10-13 g mL-1 and 7.32 × 10-13 g mL-1 through DPV and CA modes, respectively. Moreover, owing to high active area and superior conductivity, as well as good electrocatalytic ability, the dual-sensing platform based on NG/PPy nanocomposite supported the quantification of acetamiprid in complex samples. A dual-mode electrochemical aptasensor based on NG/PPy nanocomposite for acetamiprid detection was proposed through both the increase of differential pulse voltammetry (DPV) signal change and the decrease of chronoamperometry (CA) signal of the nitrite oxidation electrocatalyzed by NG/PPyn in sensors and biosensors.


Assuntos
Grafite , Nanocompostos , Carbono , Técnicas Eletroquímicas/métodos , Limite de Detecção , Neonicotinoides , Nitritos , Nitrogênio , Polímeros , Pirróis , Verduras
20.
Mikrochim Acta ; 189(5): 187, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397015

RESUMO

Connective tissue growth factor (CTGF) is a disease marker of rheumatoid arthritis (RA), and its rapid and sensitive detection is essential for the diagnosis of RA. In this work, a three-dimensional pore structure of alkali-activated nitrogen-doped graphene (aN-G) was used as an electrode modification material, and a label-free electrochemical immunosensor for the sensitive detection of CTGF was successfully constructed by the formation of an amide bond between amino groups in protein and carboxyl groups on the carbon surface. Under optimized conditions, the sensor achieved accurate detection of CTGF in the wide range of 0.0625 ~ 2000 pg mL-1. It had good accuracy (95.0 ~ 100.1%), repeatability (1.2 ~ 2.2%), stability, selectivity, and a low limit of detection (0.0424 pg mL-1, S/N = 3). The sensor was used in serum samples of patients with RA, and CTGF was also successfully detected. Based on this, the electrochemical sensor is expected to become an effective method for RA diagnosis and treatment effect evaluation.


Assuntos
Artrite Reumatoide , Técnicas Biossensoriais , Fator de Crescimento do Tecido Conjuntivo , Grafite , Artrite Reumatoide/diagnóstico , Fator de Crescimento do Tecido Conjuntivo/análise , Grafite/química , Humanos , Imunoensaio , Nitrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA