Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612649

RESUMO

Herpes simplex virus type 1 (HSV-1) is a lifelong pathogen characterized by asymptomatic latent infection in the trigeminal ganglia (TG), with periodic outbreaks of cold sores caused by virus reactivation in the TG and subsequent replication in the oral mucosa. While antiviral therapies can provide relief from cold sores, they are unable to eliminate HSV-1. We provide experimental results that highlight non-thermal plasma (NTP) as a new alternative therapy for HSV-1 infection that would resolve cold sores faster and reduce the establishment of latent infection in the TG. Additionally, this study is the first to explore the use of NTP as a therapy that can both treat and prevent human viral infections. The antiviral effect of NTP was investigated using an in vitro model of HSV-1 epithelial infection that involved the application of NTP from two separate devices to cell-free HSV-1, HSV-1-infected cells, and uninfected cells. It was found that NTP reduced the infectivity of cell-free HSV-1, reduced viral replication in HSV-1-infected cells, and diminished the susceptibility of uninfected cells to HSV-1 infection. This triad of antiviral mechanisms of action suggests the potential of NTP as a therapeutic agent effective against HSV-1 infection.


Assuntos
Herpes Labial , Herpes Simples , Herpesvirus Humano 1 , Infecção Latente , Humanos , Queratinócitos , Antivirais/farmacologia
2.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762409

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. The persistence of viruses on materials depends on porosity, adsorption, evaporation, isoelectric point, and environmental conditions, such as temperature, pH, and relative humidity. Disinfection techniques are crucial for preventing viral contamination on animated and inanimate surfaces. Currently, there are few effective methodologies for preventing SARS-CoV-2 and other coronaviruses without any side effects. Before infection can occur, measures must be taken to prevent the persistence of the coronavirus on the surfaces of both porous and non-porous inanimate materials. This review focuses on coronavirus persistence in surface materials (inanimate) and control measures. Viruses are inactivated through chemical and physical methods; the chemical methods particularly include alcohol, chlorine, and peroxide, whereas temperature, pH, humidity, ultraviolet irradiation (UV), gamma radiation, X-rays, ozone, and non-thermal, plasma-generated reactive oxygen and nitrogen species (RONS) are physical methods.

3.
J Environ Sci (China) ; 127: 641-651, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522093

RESUMO

Non-thermal plasma (NTP) surface modification technology is a new method to control the surface properties of materials, which has been widely used in the field of environmental protection because of its short action time, simple process and no pollution. In this study, Cu/ACF (activated carbon fiber loaded with copper) adsorbent was modified with NTP to remove H2S and PH3 simultaneously under low temperature and micro-oxygen condition. Meanwhile, the effects of different modified atmosphere (air, N2 and NH3), specific energy input (0-13 J/mL) and modification time (0-30 min) on the removal of H2S and PH3 were investigated. Performance test results indicated that under the same reaction conditions, the adsorbent modified by NH3 plasma with 5 J/mL for 10 min had the best removal effect on H2S and PH3. CO2 temperature-programmed desorption and X-ray photoelectron spectroscopy (XPS) analyzes showed that NH3 plasma modification could introduce amino functional groups on the surface of the adsorbent, and increase the types and number of alkaline sites on the surface. Brunauer-Emmett-Teller and scanning electron microscopy showed that NH3 plasma modification did not significantly change the pore size structure of the adsorbent, but more active components were evenly exposed to the surface, thus improving the adsorption performance. In addition, X-ray diffraction and XPS analysis indicated that the consumption of active components (Cu and Cu2O) and the accumulation of sulfate and phosphate on the surface and inner pores of the adsorbent are the main reasons for the deactivation of the adsorbent.


Assuntos
Gases em Plasma , Adsorção , Carvão Vegetal , Óxidos de Enxofre , Espectroscopia Fotoeletrônica
4.
Chem Eng J ; 430: 132845, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36569380

RESUMO

Glucocorticoids (GCs) have drawn great concern due to their widespread contamination in the environment and application in treating patients with COVID-19. Due to the lack of data about GC removal using advanced treatment processes, a novel Paralleling and bubbling corona discharge reactor (PBCD) combined with iron-loaded activated-carbon fibre (Fe-ACF) was addressed in this study to degrade GCs represented by Hydrocortisone (HC) and Betamethasone (BT). The results showed that the PBCD-based system can degrade GCs effectively and can achieve effective sterilization. The removal rates of GCs were ranked as PBCD/Fe-ACF > PBCD/ACF > PBCD. The concentration of E. coli was reduced from 109 to 102 CFU/mL after 60 min of PBCD-based system treatment. The abundance of bacteria in actual Hospital wastewater (HWW) was significantly reduced. Plasma changed the physical and chemical properties of ACF and Fe-ACF by etching axial grooves and enhancing stretching vibrations of surface functional groups, thus promoting adsorption and catalytic degradation. For GC degradation, the functional reactive species were identified as •OH, 1O2, and •O2 radicals. Possible degradation pathways for HC and BT were proposed, which mainly included defluorination, keto acid decarboxylation, demethylation, intramolecular cyclization, cleavage and ester hydrolysis, indicating a reduction in GC toxicity. Since GCs are widely used in patients with COVID-19 and their wastewater needs to be sterilized simultaneously, the intensive and electrically driven PBCD-based system is promising in GC pollution control and sterilization in terminal water treatment facilities.

5.
Molecules ; 27(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296664

RESUMO

Countries are paying increasing attention to environmental issues and are moving towards the goal of energy saving and carbon reduction. This research presents a method to analyse the effects of the use of non-thermal plasma (NTP) and water injection (WI) devices on the efficiency of internal combustion engines. The devices were installed on the intake manifold to investigate the effects of additional substances produced by electrolysis on the engine performance and exhaust emissions. According to the results, the addition of the NTP and WI devices affected the power efficiency and the rate of change of the brake-specific fuel consumption (BSFC) of the internal combustion engines. In addition, the change rate of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) in the exhaust gases was affected. In conclusion, the study found that the additional substances generated by the NTP-electrolysed water mist or air influenced the fuel combustion efficiency and exhaust emissions.

6.
Arch Biochem Biophys ; 705: 108901, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33964248

RESUMO

Recent developments in electronics have enabled the medical applications of non-thermal plasma (NTP), which elicits reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydroxyl radical (●OH), hydrogen peroxide (H2O2), singlet oxygen (1O2), superoxide (O2●-), ozone, and nitric oxide at near-physiological temperatures. In preclinical studies or human clinical trials, NTP promotes blood coagulation, eradication of bacterial, viral and biofilm-related infections, wound healing, and cancer cell death. To elucidate the solution-phase biological effects of NTP in the presence of biocompatible reducing agents, we employed electron paramagnetic resonance (EPR) spectroscopy to quantify ●OH using a spin-trapping probe, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO); 1O2 using a fluorescent probe; and O2●- and H2O2 using luminescent probes in the presence of thiols or tempol. NTP-induced ●OH was significantly scavenged by dithiothreitol (DTT), reduced glutathione (GSH), and oxidized glutathione (GSSG) in 2 or 5 mM DMPO. NTP-induced O2●- was significantly scavenged by 10 µM DTT and GSH, while 1O2 was not efficiently scavenged by these compounds. GSSG degraded H2O2 more effectively than GSH and DTT, suggesting that the disulfide bonds reacted with H2O2. In the presence of 1-50 mM DMPO, NTP-induced H2O2 quantities were unchanged. The inhibitory effect of tempol concentration (50 and 100 µM) on H2O2 production was observed in 1 and 10 mM DMPO, whereas it became ineffective in 50 mM DMPO. Furthermore, DMPO-OH did not interact with tempol. These results suggest that DMPO and tempol react competitively with O2●-. Further studies are warranted to elucidate the interaction between NTP-induced ROS and biomolecules.


Assuntos
Óxidos N-Cíclicos/química , Peróxido de Hidrogênio/química , Gases em Plasma/química , Espectroscopia de Ressonância de Spin Eletrônica , Radical Hidroxila/química
7.
Arch Biochem Biophys ; 700: 108762, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33482147

RESUMO

Non-thermal plasma (NTP) devices generate reactive oxygen species (ROS) and reactive nitrogen species, such as singlet oxygen (1O2), superoxide (O2-), hydroxyl radical (●OH), hydrogen peroxide (H2O2), ozone, and nitric oxide at near-physiological temperature. In preclinical studies, NTP promotes blood coagulation, wound healing with disinfection, and selective killing of cancer cells. Although these biological effects of NTP have been widely explored, the stoichiometric quantitation of ROS in the liquid phase has not been performed in the presence of biocompatible reducing agents, which may modify the final biological effects of NTP. Here, we utilized electron paramagnetic resonance spectroscopy to quantitate ●OH, using a spin-trapping probe 5,5-dimethyl-1-pyrroline-N-oxide; 1O2, using a fluorescent probe; and O2- and H2O2, using luminescent probes, after NTP exposure in the presence of antioxidants. l-ascorbate (Asc) at 50 µM concentration (physiological concentration in serum) significantly scavenged ●OH, whereas (-)-epigallocatechin gallate (EGCG) and α-tocopherol were also effective at performing scavenging activities at 250 µM concentrations. Asc significantly scavenged O2- and H2O2 at 100 µM. l-Dehydroascorbate (DHA), an oxidized form of Asc, degraded H2O2, whereas it did not quench ●OH or O2-, which are sources of H2O2. Furthermore, EGCG efficiently scavenged NTP-induced 1O2, O2-, and H2O2 in Chelex-treated water. These results indicate that the redox cycling of Asc/DHA and metabolites of DHA are important to be considered when applying NTP to cells and tissues. Additionally, ROS-reducing compounds, such as EGCG, affect the outcome. Further studies are warranted to elucidate the interaction between ROS and biomolecules to promote the medical applications of NTP.


Assuntos
Ácido Desidroascórbico/química , Peróxido de Hidrogênio/química , Gases em Plasma/química , Oxirredução
8.
J Environ Manage ; 278(Pt 1): 111515, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113396

RESUMO

The use of non-thermal plasma (NTP) generators in air processing systems and their duct networks to improve indoor air quality (IAQ) has grown considerably in recent years. This paper reviews the advantages and disadvantages of NTP generators for IAQ improvement in biological, chemical and particulate pollutant terms. Also, it assesses and compares the ability of a multipin corona discharge (MPCD) and a dielectric barrier discharge (DBD) generator to reduce the concentration of fine particulate matter (PM2.5) in recycled, unfiltered air in a refrigeration chamber. The MPCD generator was found to have a higher PM2.5 removal efficiency; also, it was faster in removing pollutants, used less energy, and produced much less ozone. The fact that the MPCD generator performed better was seemingly the result of its increased ion production mainly. NTP generators, however, cannot match air filtration media purifiers in this respect as the latter are much more effective in removing particles. Besides, NTP-based air purifying technology continues to be subject to a major drawback, namely: the formation of ozone as a by-product. In any case, the ozone generation was uncorrelated to ion emission when using different technologies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Gases em Plasma , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Habitação , Tamanho da Partícula , Material Particulado/análise
9.
Int J Med Sci ; 17(8): 1112-1120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410841

RESUMO

The objective of this study was to evaluate the effect of non-thermal plasma (NTP) on the healing process of peripheral nerve crush injuries, which can occur during dental implant procedures. For this, a rat model of sciatic nerve crush injury (SNCI) was adopted. The rats were divided into three groups: non-nerve damage (non-ND), nerve damage (ND), and ND+NTP group. To evaluate the sciatic nerve (SN) function, the static sciatic index was calculated, and the muscle and SN tissues were subjected to a histologic analysis. The results showed that NTP effectively accelerated the healing process of SNCI in rats. In contrast to the ND group, which showed approximately 60% recovery in the SN function, the NTP-treated rats showed complete recovery. Histologically, the NTP treatments not only accelerated the muscle healing, but also reduced the edema-like phenotype of the damaged SN tissues. In the ND group, the SN tissues had an accumulation of CD68-positive macrophages, partially destroyed axonal fibers and myelinated Schwann cells. Conversely, in the ND+NTP group, the macrophage accumulation was reduced and an overall regeneration of the damaged axon fibers and the myelin sheath was accomplished. The results of this study indicate that NTP can be used for healing of injured peripheral nerves.


Assuntos
Lesões por Esmagamento/terapia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Gases em Plasma/uso terapêutico , Animais , Axônios/fisiologia , Lesões por Esmagamento/etiologia , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Masculino , Bainha de Mielina/fisiologia , Traumatismos dos Nervos Periféricos/etiologia , Traumatismos dos Nervos Periféricos/patologia , Ratos , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Fatores de Tempo
10.
Molecules ; 25(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371281

RESUMO

Industries' air pollution causes serious challenges to modern society, among them exhaust gases from internal combustion engines, which are currently one of the main sources. This study proposes a non-thermal plasma (NTP) system for placement in the exhaust system of internal combustion engines to reduce the toxic contaminants (HC, CO, and NOx) of exhaust gases. This NTP system generates a high-voltage discharge that not only responds to the ion chemical reaction to eliminate NOx and CO, but that also generates a combustion reaction at the local high temperature of plasma to reduce HC. The NTP system was designed on both the front and rear of the exhaust pipe to analyze the difference of different exhaust flow rates under the specified frequency. The results indicate that the NTP system can greatly reduce toxic contaminants. The NTP reactor placed in the front of exhaust pipe gave HC and CO removal efficiency of about 34.5% and 16.0%, respectively, while the NTP reactor placed in the rear of exhaust pipe gave NOx removal efficiency of about 41.3%. In addition, the voltage and material directly affect the exhaust gases obviously. In conclusion, the proposed NTP system installed in the exhaust system can significantly reduce air pollutants. These results suggest that applying NTP to the combustion engine should be a useful tool to simultaneously reduce both emissions of NOx and CO.


Assuntos
Poluentes Atmosféricos/química , Gases em Plasma/química , Emissões de Veículos/análise , Poluição do Ar/análise , Gases/química , Gasolina/análise , Óxidos de Nitrogênio/química , Material Particulado/química , Fenômenos Físicos
11.
Arch Biochem Biophys ; 669: 87-95, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31153952

RESUMO

Recent development in electronics has enabled the use of non-thermal plasma (NTP) to strictly direct oxidative stress in a defined location at near-physiological temperature. In preclinical studies or human clinical trials, NTP promotes blood coagulation, wound healing with disinfection, and selective killing of cancer cells. Although these biological effects of NTP have been widely explored, the stoichiometric quantitation of free radicals in liquid phase has not been performed in the presence of biocompatible reducing agents, which may modify the final biological effects of NTP. Here we quantitated hydroxyl radicals, a major reactive oxygen species generated after NTP exposure, by electron paramagnetic resonance (EPR) spectroscopy using two distinct spin-trapping probes, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), in the presence of thiols or antioxidants. l-Ascorbic acid (AsA) at 25-50 µM concentrations (physiological concentration in the serum) significantly scavenged these hydroxyl radicals, whereas dithiothreitol (DTT), reduced glutathione (GSH), and N-acetyl-cysteine (NAC) as thiols were required in millimolar concentrations to perform scavenging activities. l-Dehydroascorbic acid (DHA), an oxidized form of AsA, necessitated the presence of 25-50 µM DTT or sub-millimolar concentrations of GSH and NAC for the scavenging of hydroxyl radicals and failed to scavenge hydroxyl radicals by itself. These results suggest that the redox cycling of AsA/DHA via thiols and cellular AsA metabolism are important processes to be considered while applying NTP to cells and tissues. Further studies are warranted to elucidate the interaction between other reactive species generated by NTP and biomolecules to promote biological and medical applications of NTP.


Assuntos
Ácido Desidroascórbico/química , Sequestradores de Radicais Livres/química , Radical Hidroxila/química , Gases em Plasma/química , Acetilcisteína/química , Ácido Ascórbico/química , Óxidos N-Cíclicos/química , Ditiotreitol/química , Espectroscopia de Ressonância de Spin Eletrônica , Glutationa/química , Radical Hidroxila/análise , Marcadores de Spin
12.
Arch Biochem Biophys ; 605: 109-16, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235332

RESUMO

Non-thermal plasma (NTP) is a recently developed technology that elicits a variety of biological effects. This includes cancer cell-specific cytotoxicity, which is mainly attributed to the regional generation of reactive oxygen species (ROS). We studied the effects of NTP on malignant mesothelioma (MM) and its modulation by l-ascorbate. l-ascorbate is a major water-soluble anti-oxidant in vivo, but its pro-oxidant activity in vitro has been well recognized. Thus, the effects of ascorbate on the efficacy of NTP is important to examine. NTP exposure dose-dependently killed MM cells, whereas MM cells tolerated 1 mM l-ascorbate. However, brief pre-treatment with a pharmacological dose (250-750 µM) of l-ascorbate immediately prior to NTP exposure significantly increased its cytotoxicity in a dose-dependent manner, which was inhibited by the iron chelator, deferoxamine. However, paradoxically, this potentiating effect of l-ascorbate was completely abolished by a prolonged 4 h pre-incubation with l-ascorbate (500 µM). MM cytotoxicity induced by NTP was associated with immediate oxidative stress evaluated by 2',7'-dichlorodihydrofluorecein diacetate, which was followed by an increase in the expression of the autophagosome marker, LC3B-II. In conclusion, MM can be a target for NTP treatment and l-ascorbate can increase or decrease its efficacy depending on the length of the pre-incubation period.


Assuntos
Antineoplásicos/química , Ácido Ascórbico/química , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Gases em Plasma , Antioxidantes/química , Apoptose , Autofagia , Linhagem Celular Tumoral , Sobrevivência Celular , Desferroxamina/química , Relação Dose-Resposta a Droga , Humanos , Mesotelioma Maligno , Microscopia de Fluorescência , Estresse Oxidativo , Espécies Reativas de Oxigênio/química , Temperatura
13.
Heliyon ; 10(7): e28763, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596042

RESUMO

This study investigates the effects of non-thermal plasma (NTP) treatment on the germination characteristics of coriander seeds (Coriandrum sativum L.). Different germination factors, water imbibition rate and changes in mass, were analyzed. The results indicate that a suitable duration of NTP treatment (180 s and 300 s) enhances seed germination characteristics, whereas prolonged exposure (420 s) leads to adverse effects. Furthermore, shorter NTP exposures (180 s) improved water absorption and surface properties of seeds, while longer exposures (420 s) caused mass loss and compromised seed vigor. Overall, the findings demonstrate the significance of optimizing NTP treatment conditions for enhancing seed germination characteristics.

14.
Heliyon ; 9(11): e21460, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954337

RESUMO

Background and aims: Numerous strategies for enhancing seed germination and growth have been employed over the decades. Despite these advancements, there continues to be a demand for more effective techniques, driven by the growing global population. Recently, various forms of non-thermal atmospheric pressure plasma have garnered attention as environmentally friendly, safe, and cost-effective methods to enhance the agricultural and food sectors. This study explores the remarkable impact of non-thermal plasma (NTP) treatment on cucumber (Cucumis sativus L.) seed germination. Methods: A cost-effective, custom-designed power supply operating at line frequency was used for treating seeds, with exposure times ranging from 1 to 7 min. Various germination parameters, including water contact angle measurements, mass loss, water imbibition rate, and seedling length, were evaluated to assess the impact of plasma treatment on seed germination. Results: Cucumber seeds exposed to NTP treatment for 3 min and 5 min durations showed significant germination improvements, notably a 57.9 ± 4.25 % higher final germination percentage, 14.5 ± 3.75 % reduced mean germination time, and a remarkable 90.6 ± 4.64 % increase in germination index compared to the control. These results suggest that NTP treatment enhanced seed coat permeability, triggered essential biochemical processes, and expedited water absorption and nutrient assimilation, ultimately fostering faster and more synchronized germination. Conclusions: Our findings underscore the potential of NTP as an innovative approach to improving seed germination in agricultural practices.

15.
Chemosphere ; 340: 139866, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633603

RESUMO

In this paper, the degradation of o-DCB under different gas-phase parameter conditions was investigated using the SDBD-NTP system. The results showed that the increase in initial and oxygen concentrations had opposite effects on the degradation of o-DCB. Among them, the increase of oxygen concentration promoted the degradation of o-DCB. Relative humidity promoted and then inhibited the degradation of o-DCB. The highest degradation efficiency of o-DCB was achieved at RH = 15%, reaching 91% at 29W. In the study of by-products, it was found that O3 and NOx were the main inorganic by-products, and that different oxygen levels and relative humidity conditions had a large effect on the production of O3 and NOx. In all of them, the concentration of O3 decreased with the increase of input power. NOx increased with increasing oxygen concentration, but the increase in relative humidity inhibited the production of NO and N2O and promoted the conversion of NO2. A study of organic by-products revealed this. In the absence of oxygen, a higher number of benzene products appeared. Whereas, with the addition of oxygen, only in the by-products under conditions where no relative humidity was introduced, benzene ring products were predominantly present in the by-products. However, when RH was added, n-hexane was found to be present in the by-products. This may be because the introduction of OH• favors the destruction of the benzene ring. Finally, the possible reaction pathways and reaction mechanisms of o-DCB under different gas-phase parameters are given. It provides a reference for future related scientific research as well as scientific problems in practical applications.


Assuntos
Benzeno , Clorobenzenos , Oxigênio , Tecnologia
16.
Biomedicines ; 11(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36672628

RESUMO

In people living with HIV-1 (PLWH), antiretroviral therapy (ART) eventually becomes necessary to suppress the emergence of human immunodeficiency virus type 1 (HIV-1) replication from latent reservoirs because HIV-1-specific immune responses in PLWH are suboptimal. Immunotherapies that enhance anti-HIV-1 immune responses for better control of virus reemergence from latent reservoirs are postulated to offer ART-free control of HIV-1. Toward the goal of developing an HIV-1-specific immunotherapy based on non-thermal plasma (NTP), the early immunological responses to NTP-exposed latently infected T lymphocytes were examined. Application of NTP to the J-Lat T-lymphocyte cell line (clones 10.6 and 15.4) stimulated monocyte recruitment and macrophage maturation, which are key steps in initiation of an immune response. In contrast, CD8+ T lymphocytes in a mixed lymphocyte reaction assay were not stimulated by the presence of NTP-exposed J-Lat cells. Furthermore, co-culture of NTP-exposed J-Lat cells with mature phagocytes did not modulate their antigen presentation to primary CD8+ T lymphocytes (cross-presentation). However, reactivation from latency was stimulated in a clone-specific manner by NTP. Overall, these studies, which demonstrated that ex vivo application of NTP to latently infected lymphocytes can stimulate key immune cell responses, advance the development of an NTP-based immunotherapy that will provide ART-free control of HIV-1 reactivation in PLWH.

17.
Water Res ; 245: 120624, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717329

RESUMO

Disinfection by-products (DBPs) with significant teratogenic and carcinogenic properties have become a growing concern among the public. As an efficient and environmentally friendly technology, non-thermal plasma offers potential for removing emerging micro-pollutants. In this study, the degradation performance of bubbling corona discharge was evaluated on 24 halogenated alicyclic and aliphatic DBPs present in drinking water at concentrations ranging from ng/L to µg/L. The degradation of DBPs followed pseudo-first-order kinetics with rate constants (kobs) in the descending order of halonitromethanes (HNMs), halogenated benzoquinones (HBQs), haloacetonitriles, trihalomethanes (THMs), haloketones, halogenated aldehydes, and haloacetic acids (HAAs). THMs, HNMs, and HBQs were effectively removed within 5 min under a discharge power of 28 W. Degradation rates achieved by plasma treatment surpass those of other conventional treatment technologies. The required energy consumption was in the range of 5-30 kW·h/m3/order. Furthermore, the study investigated the effects of discharge power, initial concentration, and economic analysis on the degradation of four selected DBPs as representatives of mono-, di- and multi-carbon-containing DBPs, namely chloroform (TCM) and bromoform (TBM), tribromoacetic acid (TBAA), and 2,3,5,6-tetrachloro-1,4-benzoquinone (TetraC-BQ). Reactive radicals in the plasma system were investigated using electron paramagnetic resonance, optical emission spectroscopy, fluorimetry, and radical scavengers. Hydrated electrons and hydroxyl radicals played an important role in the removal of DBPs. The intermediates generated during the degradation of TCM, TBM, TBAA, and TetraC-BQ were identified, and the possible degradation pathways for mono- and binary C-DBPs and HBQs were deduced. The breakdown of HBQs did not produce secondary contamination with aliphatic DBPs. The carbon in DBPs was primarily converted to formic acid, acetic acid, and oxalic acid, and the halogens were mainly converted to halogen ions. Additionally, luminescent bacteria toxicity testing confirmed that plasma treatment could reduce the acute toxicity of water samples. These findings demonstrate the potential of plasma treatment as a post-treatment device at the household level.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Água Potável/química , Desinfetantes/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Halogênios/análise , Carbono/análise , Trialometanos/análise , Halogenação
18.
Sci Total Environ ; 812: 152455, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952084

RESUMO

Tetracycline is a common antibiotic and is often carelessly released into the natural environment, thus constantly posing potential threats to the environment. Currently, due to lack of effective methods to remove it from the environmental water system, researchers are still exploring new ways to deal with tetracycline. In this work, we employed atmospheric-pressure non-thermal plasma (NTP) to treat tetracycline in water and investigated the involved degradation mechanism. The enhanced degradation efficiency was acquired and investigated, and the degradation mechanism by the plasma-generated active species were explored. The tetracycline degradation pathways via especially the interactions with plasma-generated hydroxyl radical and ozone were examined by virtue of UV spectroscopy, three-dimensional fluorescence spectroscopy, high performance liquid chromatography-mass spectrometry (HPLC-MS), together with the assistance of theoretical simulations. Moreover, the toxicological evaluation of NTP treatment of tetracycline was also provided, which confirmed that the biological toxicity of tetracycline degradation products was negligible. Therefore, this work provides not only the effective way of treating antibiotics by engineered plasma technology, but also the insights into the mechanisms of degradation of antibiotics by NTP.


Assuntos
Gases em Plasma , Poluentes Químicos da Água , Antibacterianos/toxicidade , Pressão Atmosférica , Tetraciclina/toxicidade , Poluentes Químicos da Água/análise
19.
Chemosphere ; 307(Pt 1): 135620, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35839991

RESUMO

Methyl parathion (MP) as an organophosphorus pesticide has been used in the control of agricultural pests and diseases. Due to its high toxicity and persistence in the environment, MP may pose threat to human health when it is released into environmental water. For MP treatment, people have found that oxidative degradation of MP may generate some intermediates which are more toxic than MP itself, such as methyl paraoxon. Herein, we proposed a new method of applying dielectric barrier discharge (DBD) non-thermal plasma technology to treat MP in aqueous solution, and investigated the influences of different gases, pH value, discharge voltage/power, and main active species on the MP removal efficiency. In particular, the safety of DBD treatment was concerned with analysis of the biological toxicity of the byproducts from the DBD oxidation, and the DBD-induced degradation together with the involved mechanism was explored therein. The results showed that the production of toxic intermediates could be effectively suppressed or avoided under certain treatment conditions. As such, this work demonstrates that the proper application of DBD plasma technology with necessary caution can detoxify methyl parathion effectively, and also provides a practical guide for low-temperature plasma application in treatment of various organophosphorus pesticides in agricultural wastewater.


Assuntos
Metil Paration , Praguicidas , Gases em Plasma , Poluentes Químicos da Água , Gases , Humanos , Metil Paration/toxicidade , Compostos Organofosforados , Praguicidas/toxicidade , Águas Residuárias , Água , Poluentes Químicos da Água/análise
20.
Chemosphere ; 308(Pt 3): 136481, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36165927

RESUMO

Most of the volatile organic compounds (VOCs) and especially the chlorinated volatile organic compounds (Cl-VOCs), are regarded as major pollutants due to their properties of volatility, diffusivity and toxicity which pose a significant threat to human health and the eco-environment. Catalytic degradation of VOCs and Cl-VOCs to harmless products is a promising approach to mitigate the issues caused by VOCs and Cl-VOCs. Non-thermal plasma (NTP) assisted catalysis is a promising technology for the efficient degradation of VOCs and Cl-VOCs with higher selectivity under relatively mild conditions compared with conventional thermal catalysis. This review summarises state-of-the-art research of the in plasma catalysis (IPC) of VOCs degradation from three major aspects including: (i) the design of catalysts, (ii) the strategies of deep catalytic degradation and by-products inhibition, and (iii) the fundamental research into mechanisms of NTP activated catalytic VOCs degradation. Particular attention is also given to Cl-VOCs due to their characteristic properties of higher stability and toxicity. The catalysts used for the degradation Cl-VOCs, chlorinated by-products formation and the degradation mechanism of Cl-VOCs are systematically reviewed in each chapter. Finally, a perspective on future challenges and opportunities in the development of NTP assisted VOCs catalytic degradation were discussed.


Assuntos
Poluentes Ambientais , Gases em Plasma , Compostos Orgânicos Voláteis , Catálise , Poluentes Ambientais/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA