RESUMO
BACKGROUND: Neuroinflammation plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Thus, the development of agents that can control neuroinflammation has been suggested as a promising therapeutic strategy for PD. In the present study, we investigated whether the phosphodiesterase (PDE) 10 inhibitor has anti-inflammatory and neuroprotective effects in neuroinflammation and PD mouse models. METHODS: Papaverine (PAP) was utilized as a selective inhibitor of PDE10. The effects of PAP on the expression of pro-inflammatory molecules were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells by ELISA, RT-PCR, and Western blot analysis. The effects of PAP on transcription factors were analyzed by the electrophoretic mobility shift assay, the reporter gene assay, and Western blot analysis. Microglial activation and the expression of proinflammatory molecules were measured in the LPS- or MPTP-injected mouse brains by immunohistochemistry and RT-PCR analysis. The effect of PAP on dopaminergic neuronal cell death and neurotrophic factors were determined by immunohistochemistry and Western blot analysis. To assess mouse locomotor activity, rotarod and pole tests were performed in MPTP-injected mice. RESULTS: PAP inhibited the production of nitric oxide and proinflammatory cytokines in LPS-stimulated microglia by modulating various inflammatory signals. In addition, PAP elevated intracellular cAMP levels and CREB phosphorylation. Treatment with H89, a PKA inhibitor, reversed the anti-inflammatory effects of PAP, suggesting the critical role of PKA signaling in the anti-inflammatory effects of PAP. We verified the anti-inflammatory effects of PAP in the brains of mice with LPS-induced systemic inflammation. PAP suppressed microglial activation and proinflammatory gene expression in the brains of these mice, and these effects were reversed by H89 treatment. We further examined the effects of PAP on MPTP-injected PD model mice. MPTP-induced dopaminergic neuronal cell death and impaired locomotor activity were recovered by PAP. In addition, PAP suppressed microglial activation and proinflammatory mediators in the brains of MPTP-injected mice. CONCLUSIONS: PAP has strong anti-inflammatory and neuroprotective effects and thus may be a potential candidate for treating neuroinflammatory disorders such as PD.
Assuntos
Anti-Inflamatórios/uso terapêutico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Papaverina/uso terapêutico , Transtornos Parkinsonianos/prevenção & controle , Inibidores de Fosfodiesterase/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular Transformada , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , Papaverina/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/enzimologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
Background: Reduced activation of dopamine D1 receptor signaling may be implicated in reward functioning as a potential driver of negative symptoms in schizophrenia. Phosphodiesterase 10A (PDE10A), an enzyme that is highly expressed in the striatum, modulates both dopamine D2- and D1-dependent signaling. Methods: We assessed whether augmentation of D1 signaling by the PDE10 inhibitor RG7203 enhances imaging and behavioral markers of reward functions in patients with schizophrenia and negative symptoms. In a 3-period, double-blind, crossover study, we investigated the effects of RG7203 (5 mg and 15 mg doses) and placebo as adjunctive treatment to stable background antipsychotic treatment in patients with chronic schizophrenia with moderate levels of negative symptoms. Effects on reward functioning and reward-based effortful behavior were evaluated using the monetary incentive delay task during functional magnetic resonance imaging and the effort-cost-benefit and working memory reinforcement learning tasks. Results: Patients (N = 33; 30 male, mean age ± SD 36.6 ± 7.0 years; Positive and Negative Syndrome Scale negative symptom factor score 23.0 ± 3.5 at screening) were assessed at three study centers in the United States; 24 patients completed the study. RG7203 at 5 mg significantly increased reward expectation-related activity in the monetary incentive delay task, but in the context of significantly decreased overall activity across all task conditions. Conclusions: In contrast to our expectations, RG7203 significantly worsened reward-based effortful behavior and indices of reward learning. The results do not support the utility of RG7203 as adjunctive treatment for negative symptoms in patients with schizophrenia.
RESUMO
RATIONALE: Phosphodiesterase 10A inhibitor TAK-063 has shown effects that suggest efficacy in schizophrenia treatment. OBJECTIVE: This randomized, double-blind, placebo-controlled, incomplete-crossover study investigated effects of single oral administration of TAK-063 on ketamine-induced changes in blood oxygen level-dependent (BOLD) signal in healthy males. METHODS: Healthy men aged 18 to 45 years with normal magnetic resonance imaging (MRI) scans and electroencephalogram measurements at screening were eligible. Each subject was randomized to one of nine treatment schedules: all subjects received placebo and two of three doses of TAK-063 followed by ketamine. The primary endpoint was ketamine-induced brain activity in select regions of the brain during resting state. Secondary endpoints included pharmacokinetic parameters of TAK-063, proportion of subjects with treatment-emergent adverse events (AEs), and percentage of subjects meeting criteria for abnormal safety laboratory tests and vital sign measurements. RESULTS: The study comprised 27 subjects. Prior to ketamine infusion, TAK-063 exerted region-specific effects on resting state functional MRI (fMRI) BOLD signal. After ketamine administration, TAK-063 reduced the Cohen's effect size for resting-state fMRI BOLD signal in key brain regions examined, and exerted similar effects on BOLD signal during the working memory task across all doses. TAK-063 was safe and well tolerated. CONCLUSIONS: Our results are consistent with non-clinical studies of ketamine and TAK-063 and clinical studies of ketamine and risperidone. It is unknown whether these data are predictive of potential antipsychotic efficacy, and further analyses are required.
Assuntos
Encéfalo/diagnóstico por imagem , Ketamina/administração & dosagem , Ketamina/sangue , Imageamento por Ressonância Magnética/métodos , Pirazóis/administração & dosagem , Pirazóis/sangue , Piridazinas/administração & dosagem , Piridazinas/sangue , Adolescente , Adulto , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Interações Medicamentosas/fisiologia , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/sangue , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores de Fosfodiesterase/administração & dosagem , Inibidores de Fosfodiesterase/sangue , Diester Fosfórico Hidrolases/metabolismo , Adulto JovemRESUMO
Phosphodiesterase 10A (PDE10A) is an enzyme highly enriched in the striatal medium spiny neurons. It is involved in the regulation of cytoplasmic levels of cAMP and cGMP and signaling within the basal ganglia. This study with PDE10A radioligand [18F]MNI-659 was designed to measure the enzyme occupancy of PF-02545920 in 8 healthy male volunteers (48 ± 4 years) after a single oral dose (10 mg or 20 mg) and to evaluate safety and tolerability. Arterial blood sampling was performed to obtain a metabolite-corrected plasma input function for the quantification of [18F]MNI-659 binding to PDE10A. The occupancy of PF-02545920 was calculated with two different methods: In Method 1, [18F]MNI-659 enzyme occupancy was calculated from the estimates of binding potential, using the cerebellum as a reference region; in Method 2, occupancy was estimated from the slope of the revised Lassen's plot. Serum concentrations of PF-02545920 were measured to determine the relationship between concentration and occupancy. Based on Method 1, striatal PDE10A occupancy increased with increasing PF-02545920 dose: 14-27% at 10 mg dose (N = 4) and 45-63% at 20 mg dose (N = 3). Comparable occupancies were observed using Lassen's plot Method 2: 10 mg: 14-37%; 20 mg: 46-55%. The relationship between exposure and occupancy was best described using an Emax model. The serum concentration associated with 50% occupancy was estimated to be 93.2 ng/mL. Single oral doses of 10 mg or 20 mg of PF-02545920 were safe and well tolerated in healthy male volunteers [NCT# 01918202].