Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Cell ; 175(6): 1665-1678.e18, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30343896

RESUMO

Low-grade gliomas almost invariably progress into secondary glioblastoma (sGBM) with limited therapeutic option and poorly understood mechanism. By studying the mutational landscape of 188 sGBMs, we find significant enrichment of TP53 mutations, somatic hypermutation, MET-exon-14-skipping (METex14), PTPRZ1-MET (ZM) fusions, and MET amplification. Strikingly, METex14 frequently co-occurs with ZM fusion and is present in ∼14% of cases with significantly worse prognosis. Subsequent studies show that METex14 promotes glioma progression by prolonging MET activity. Furthermore, we describe a MET kinase inhibitor, PLB-1001, that demonstrates remarkable potency in selectively inhibiting MET-altered tumor cells in preclinical models. Importantly, this compound also shows blood-brain barrier permeability and is subsequently applied in a phase I clinical trial that enrolls MET-altered chemo-resistant glioma patients. Encouragingly, PLB-1001 achieves partial response in at least two advanced sGBM patients with rarely significant side effects, underscoring the clinical potential for precisely treating gliomas using this therapy.


Assuntos
Neoplasias Encefálicas , Éxons , Glioblastoma , Mutação , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-met , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Cell Sci ; 137(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224139

RESUMO

Neutrophil-directed motility is necessary for host defense, but its dysregulation can also cause collateral tissue damage. Actinopathies are monogenic disorders that affect the actin cytoskeleton and lead to immune dysregulation. Deficiency in ARPC1B, a component of the Arp2/3 complex, results in vascular neutrophilic inflammation; however, the mechanism remains unclear. Here, we generated human induced pluripotent stem cell (iPSC)-derived neutrophils (denoted iNeutrophils) that are deficient in ARPC1B and show impaired migration and a switch from forming pseudopodia to forming elongated filopodia. We show, using a blood vessel on a chip model, that primary human neutrophils have impaired movement across an endothelium deficient in APRC1B. We also show that the combined deficiency of ARPC1B in iNeutrophils and endothelium results in further reduction in neutrophil migration. Taken together, these results suggest that ARPC1B in endothelium is sufficient to drive neutrophil behavior. Furthermore, the findings provide support for using the iPSC system to understand human neutrophil biology and model disease in a genetically tractable system.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Células-Tronco Pluripotentes Induzidas , Neutrófilos , Humanos , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Movimento Celular , Proteínas do Citoesqueleto , Células Endoteliais , Endotélio
3.
Mol Genet Genomics ; 299(1): 20, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424265

RESUMO

To understand the lifespan of higher organisms, including humans, it is important to understand lifespan at the cellular level as a prerequisite. So, fission yeast is a good model organism for the study of lifespan. To identify the novel factors involved in longevity, we are conducting a large-scale screening of long-lived mutant strains that extend chronological lifespan (cell survival in the stationary phase) using fission yeast. One of the newly acquired long-lived mutant strains (No.98 mutant) was selected for analysis and found that the long-lived phenotype was due to a missense mutation (92Phe → Ile) in the plb1+ gene. plb1+ gene in fission yeast is a nonessential gene encoding a homolog of phospholipase B, but its functions under normal growth conditions, as well as phospholipase B activity, remain unresolved. Our analysis of the No.98 mutant revealed that the plb1 mutation reduces the integrity of the cellular membrane and cell wall and activates Sty1 via phosphorylation.


Assuntos
Lisofosfolipase , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Regulação Fúngica da Expressão Gênica , Longevidade/genética , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Mutação , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo
4.
Parasite Immunol ; 46(2): e13025, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372623

RESUMO

Trichomonas vaginalis (Tv) is a parasite that causes trichomoniasis, a prevalent sexually-transmitted infection. Neutrophils are found at the site of infection, and can rapidly kill the parasite in vitro, using trogocytosis. However, the specific molecular players in neutrophil killing of Tv are unknown. Here, we show that complement proteins play a role in Tv killing by human neutrophil-like cells (NLCs). Using CRISPR/Cas9, we generated NLCs deficient in each of three complement receptors (CRs) known to be expressed on human neutrophils: CR1, CR3, and CR4. Using in vitro trogocytosis assays, we found that CR3, but not CR1 or CR4 is required for maximum trogocytosis of the parasite by NLCs, with NLCs lacking CR3 demonstrating ~40% reduction in trogocytosis, on average. We also observed a reduction in NLC killing of Tv in CR3 knockout, but not CR1 or CR4 knockout NLCs. On average, NLCs lacking CR3 had ~50% reduction in killing activity. We also used a parallel approach of pre-incubating NLCs with blocking antibodies against CR3, which similarly reduced NLC killing of parasites. These data support a model in which Tv is opsonized by the complement protein iC3b, and bound by neutrophil CR3 receptor, to facilitate trogocytic killing of the parasite.


Assuntos
Parasitos , Trichomonas vaginalis , Humanos , Animais , Antígeno de Macrófago 1 , Trichomonas vaginalis/genética , Neutrófilos , Antígeno CD11b
5.
BMC Urol ; 24(1): 43, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368330

RESUMO

Peritoneal loose body (PLB) is a kind of lesions located in the abdominal cavity or pelvic cavity, which is rare and difficult to diagnose. The diameter of PLB is mostly 0.5-2.5 cm. Most PLBS are asymptomatic. Here we reported a case of giant PLB in the pelvis and analyzed its structure and protein composition. Surgical exploration revealed a white oval mass (4.5*4*3 cm) in the pelvic cavity. After the mass was removed, the symptoms of hematuria disappeared and the patient was discharged on the second postoperative day. Histochemical staining showed that PLB was mainly composed of collagen and scattered calcification. The protein components of PLB were detected by proteome analysis, and a variety of proteins related to collagen deposition and calcification were identified in PLB.


Assuntos
Calcinose , Laparoscopia , Doenças Peritoneais , Humanos , Doenças Peritoneais/diagnóstico , Doenças Peritoneais/cirurgia , Doenças Peritoneais/patologia , Peritônio/patologia , Tomografia Computadorizada por Raios X , Colágeno
6.
Rheumatology (Oxford) ; 61(8): 3497-3501, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35171267

RESUMO

OBJECTIVES: JDM is a serious autoimmune and complex genetic disease. Another autoimmune genetic disease, type 1 diabetes (T1D), has been observed for significantly increased prevalence in families with JDM, while increased JDM risk has also been observed in T1D cases. This study aimed to study whether these two autoimmune diseases, JDM and T1D, share common genetic susceptibility. METHODS: From 169 JDM families, 121 unrelated cases with European ancestry (EA) were identified by genome-wide genotyping, principal component analysis and identical-by-descent (IBD) analysis. T1D genetic risk score (GRS) were calculated in these cases and were compared with 361 EA T1D cases and 1943 non-diabetes EA controls. A total of 113 cases of the 121 unrelated European cases were sequenced by whole exome sequencing. RESULTS: We observed increased T1D GRS in JDM cases (P = 9.42E-05). Using whole exome sequencing, we uncovered the T1D genes, phospholipase B1, cystic fibrosis transmembrane conductance regulator, tyrosine hydroxylase, CD6 molecule, perforin 1 and dynein axonemal heavy chain 2, potentially associated with JDM by the burden test of rare functional coding variants. CONCLUSION: Novel mechanisms of JDM related to these T1D genes are suggested by this study, which may imply novel therapeutic targets for JDM and warrant further study.


Assuntos
Doenças Autoimunes , Dermatomiosite , Diabetes Mellitus Tipo 1 , Doenças Autoimunes/genética , Dermatomiosite/genética , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Testes Genéticos , Humanos
7.
Cell Commun Signal ; 20(1): 143, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104752

RESUMO

Spatiotemporal regulation of subcellular protein kinase A (PKA) activity for precise substrate phosphorylation is essential for cellular responses to hormonal stimulation. Ryanodine receptor 2 (RyR2) and (sarco)endoplasmic reticulum calcium ATPase 2a (SERCA2a) represent two critical targets of ß adrenoceptor (ßAR) signaling on the sarcoplasmic reticulum membrane for cardiac excitation and contraction coupling. Using novel biosensors, we show that cardiac ß1AR signals to both RyR2 and SERCA2a nanodomains in cardiomyocytes from mice, rats, and rabbits, whereas the ß2AR signaling is restricted from these nanodomains. Phosphodiesterase 4 (PDE4) and PDE3 control the baseline PKA activity and prevent ß2AR signaling from reaching the RyR2 and SERCA2a nanodomains. Moreover, blocking inhibitory G protein allows ß2AR signaling to the RyR2 but not the SERCA2a nanodomains. This study provides evidence for the differential roles of inhibitory G protein and PDEs in controlling the adrenergic subtype signaling at the RyR2 and SERCA2a nanodomains in cardiomyocytes. Video abstract.


Assuntos
Sinalização do Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Proteínas Quinases Dependentes de AMP Cíclico , Proteínas de Ligação ao GTP , Camundongos , Fosforilação , Coelhos , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
8.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054950

RESUMO

Neutrophils play a very key role in the human immune defense against pathogenic infections. The predominant players in this role during the activation of neutrophils are the release of cytotoxic agents stored in the granules and secretory vesicles and the massive production of reactive oxygen species (ROS) initiated by the enzyme NADPH oxidase. In addition, in living organisms, cells are continuously exposed to endogenous (inflammations, elevated neutrophil presence in the vicinity) and exogenous ROS at low and moderate levels (travels by plane, radiotherapy, space irradiation, blood banking, etc.). To study these effects, we used ROS induced by gamma radiation from low (0.2 Gy) to high (25 Gy) dose levels on PLB-985 cells from a myeloid cell line differentiated to neutrophil-like cells that are considered a good alternative to neutrophils. We determined a much longer lifetime of PLB-985 cells than that of neutrophils, which, as expected, decreased by increasing the irradiation dose. In the absence of any secondary stimulus, a very low production of ROS is detected with no significant difference between irradiated and non-irradiated cells. However, in phagocytosing cells, irradiation doses above 2 Gy enhanced oxidative burst in PLB-985 cells. Whatever the irradiation dose, NADPH oxidase devoid of its cytosolic regulatory units is observed at the plasma membrane in irradiated PLB-985 cells. This result is different from that observed for irradiated neutrophils in which irradiation also induced a translocation of regulatory subunits suggesting that the signal transduction mechanism or pathway operate differently in both cells.


Assuntos
Biomarcadores , Membrana Celular/metabolismo , Citocromos b/metabolismo , Estresse Oxidativo , Fagócitos/metabolismo , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Ativação Enzimática , Raios gama , Humanos , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fagócitos/imunologia , Fagócitos/efeitos da radiação , Transporte Proteico , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória
9.
Lipids Health Dis ; 19(1): 201, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867761

RESUMO

BACKGROUND: Lipid dysregulation is associated with several key characteristics of Alzheimer's disease (AD), including amyloid-ß and tau neuropathology, neurodegeneration, glucose hypometabolism, as well as synaptic and mitochondrial dysfunction. The ß-site amyloid precursor protein cleavage enzyme 1 (BACE1) is associated with increased amyloidogenesis, and has been affiliated with diabetes via its role in metabolic regulation. METHODS: The research presented herein investigates the role of hBACE1 in lipid metabolism and whether specific brain regions show increased vulnerability to lipid dysregulation. By utilising advanced mass spectrometry techniques, a comprehensive, quantitative lipidomics analysis was performed to investigate the phospholipid, sterol, and fatty acid profiles of the brain from the well-known PLB4 hBACE1 knock-in mouse model of AD, which also shows a diabetic phenotype, to provide insight into regional alterations in lipid metabolism. RESULTS: Results show extensive region - specific lipid alterations in the PLB4 brain compared to the wild-type, with decreases in the phosphatidylethanolamine content of the cortex and triacylglycerol content of the hippocampus and hypothalamus, but increases in the phosphatidylcholine, phosphatidylinositol, and diacylglycerol content of the hippocampus. Several sterol and fatty acids were also specifically decreased in the PLB4 hippocampus. CONCLUSION: Collectively, the lipid alterations observed in the PLB4 hBACE1 knock-in AD mouse model highlights the regional vulnerability of the brain, in particular the hippocampus and hypothalamus, to lipid dysregulation, hence supports the premise that metabolic abnormalities have a central role in both AD and diabetes.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Diabetes Mellitus Experimental/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diglicerídeos/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Expressão Gênica , Técnicas de Introdução de Genes , Hipocampo/patologia , Humanos , Hipotálamo/patologia , Lipidômica/métodos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Esteróis/metabolismo , Transgenes
10.
Ultrastruct Pathol ; 44(1): 42-51, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31902272

RESUMO

A high-fat diet is often associated with cardiovascular diseases. Research has suggested that consumption of a high-fat diet for 10 weeks is associated with cardiac dysfunction, including arrhythmias, through alterations in cardiac remodeling and myocardial intracellular calcium (Ca2+) handling. In this study, rats were randomly divided into two groups: the standard diet (N = 5) and high-fat diet (N = 5) groups. To evaluate the effects of a high-fat diet on cardiac remodeling, we investigated the myocardium obtained from male Wistar rats fed a high-fat diet or standard diet for ten weeks via scanning electron microscopy, polarization microscopy, and RT-PCR. We found that compared with the standard diet cohort, the high-fat diet cohort exhibited increased levels of SERCA2a and SERCA2b mRNA and a decreased level of PLB mRNA (P < .05). These findings showed that a high-fat diet may lead to cardiac upregulation of Ca2+ transport-related genes in the sarcoplasmic reticulum. Additionally, we observed endocardial injury accompanied by focal dense layered collagen, increased spacing between endocardial cells that was often filled with collagen debris, and increased amounts of collagen fibers among enlarged cardiomyocytes in the high-fat diet cohort. The abnormal intracellular calcium (Ca2+) handling and cardiac remodeling may be contributing factors in arrhythmias and sudden cardiac death in high-fat diet-fed rats.


Assuntos
Remodelamento Atrial/fisiologia , Cálcio/metabolismo , Dieta Hiperlipídica/efeitos adversos , Miocárdio/patologia , Miocárdio/ultraestrutura , Animais , Masculino , Miocárdio/metabolismo , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
11.
J Biol Chem ; 289(45): 31591-604, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25258318

RESUMO

Ypk1, the yeast homolog of the human serum- and glucocorticoid-induced kinase (Sgk1), affects diverse cellular activities, including sphingolipid homeostasis. We now report that Ypk1 also impacts the turnover of the major phospholipid, phosphatidylcholine (PC). Pulse-chase radiolabeling reveals that a ypk1Δ mutant exhibits increased PC deacylation and glycerophosphocholine production compared with wild type yeast. Deletion of PLB1, a gene encoding a B-type phospholipase that hydrolyzes PC, in a ypk1Δ mutant curtails the increased PC deacylation. In contrast to previous data, we find that Plb1 resides in the ER and in the medium. Consistent with a link between Ypk1 and Plb1, the levels of both Plb1 protein and PLB1 message are elevated in a ypk1Δ strain compared with wild type yeast. Furthermore, deletion of PLB1 in a ypk1Δ mutant exacerbates phenotypes associated with loss of YPK1, including slowed growth and sensitivity to cell wall perturbation, suggesting that increased Plb1 activity buffers against the loss of Ypk1. Because Plb1 lacks a consensus phosphorylation site for Ypk1, we probed other processes under the control of Ypk1 that might be linked to PC turnover. Inhibition of sphingolipid biosynthesis by the drug myriocin or through utilization of a lcb1-100 mutant results in increased PLB1 expression. Furthermore, we discovered that the increase in PLB1 expression observed upon inhibition of sphingolipid synthesis or loss of Ypk1 is under the control of the Crz1 transcription factor. Taken together, these results suggest a functional interaction between Ypk1 and Plb1 in which altered sphingolipid metabolism up-regulates PLB1 expression via Crz1.


Assuntos
Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Lisofosfolipase/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Alelos , Colina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos Monoinsaturados/química , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glicerilfosforilcolina/metabolismo , Homeostase , Hidrólise , Lipídeos/química , Proteínas de Membrana/metabolismo , Mutação , Fenótipo , Fosforilação , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Fatores de Transcrição/metabolismo
12.
J Mol Cell Cardiol ; 67: 86-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24361238

RESUMO

cAMP-dependent protein kinase (PKA) regulates the L-type calcium channel, the ryanodine receptor, and phospholamban (PLB) thereby increasing inotropy. Cardiac contractility is also regulated by p38 MAPK, which is a negative regulator of cardiac contractile function. The aim of this study was to identify the mechanism mediating the positive inotropic effect of p38 inhibition. Isolated adult and neonatal cardiomyocytes and perfused rat hearts were utilized to investigate the molecular mechanisms regulated by p38. PLB phosphorylation was enhanced in cardiomyocytes by chemical p38 inhibition, by overexpression of dominant negative p38α and by p38α RNAi, but not with dominant negative p38ß. Treatment of cardiomyocytes with dominant negative p38α significantly decreased Ca(2+)-transient decay time indicating enhanced sarco/endoplasmic reticulum Ca(2+)-ATPase function and increased cardiomyocyte contractility. Analysis of signaling mechanisms involved showed that inhibition of p38 decreased the activity of protein phosphatase 2A, which renders protein phosphatase inhibitor-1 phosphorylated and thereby inhibits PP1. In conclusion, inhibition of p38α enhances PLB phosphorylation and diastolic Ca(2+) uptake. Our findings provide evidence for novel mechanism regulating cardiac contractility upon p38 inhibition.


Assuntos
Contração Muscular/fisiologia , Miócitos Cardíacos/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ativação Enzimática/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Interferência de RNA , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia
13.
J Mol Cell Cardiol ; 66: 106-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24274954

RESUMO

Basal phosphorylation of sarcoplasmic reticulum (SR) Ca(2+) proteins is high in sinoatrial nodal cells (SANC), which generate partially synchronized, spontaneous, rhythmic, diastolic local Ca(2+) releases (LCRs), but low in ventricular myocytes (VM), which exhibit rare diastolic, stochastic SR-generated Ca(2+) sparks. We tested the hypothesis that in a physiologic Ca(2+) milieu, and independent of increased Ca(2+) influx, an increase in basal phosphorylation of SR Ca(2+) cycling proteins will convert stochastic Ca(2+) sparks into periodic, high-power Ca(2+) signals of the type that drives SANC normal automaticity. We measured phosphorylation of SR-associated proteins, phospholamban (PLB) and ryanodine receptors (RyR), and spontaneous local Ca(2+) release characteristics (LCR) in permeabilized single, rabbit VM in physiologic [Ca(2+)], prior to and during inhibition of protein phosphatase (PP) and phosphodiesterase (PDE), or addition of exogenous cAMP, or in the presence of an antibody (2D12), that specifically inhibits binding of the PLB to SERCA-2. In the absence of the aforementioned perturbations, VM could only generate stochastic local Ca(2+) releases of low power and low amplitude, as assessed by confocal Ca(2+) imaging and spectral analysis. When the kinetics of Ca(2+) pumping into the SR were increased by an increase in PLB phosphorylation (via PDE and PP inhibition or addition of cAMP) or by 2D12, self-organized, "clock-like" local Ca(2+) releases, partially synchronized in space and time (Ca(2+) wavelets), emerged, and the ensemble of these rhythmic local Ca(2+) wavelets generated a periodic high-amplitude Ca(2+) signal. Thus, a Ca(2+) clock is not specific to pacemaker cells, but can also be unleashed in VM when SR Ca(2+) cycling increases and spontaneous local Ca(2+) release becomes partially synchronized. This unleashed Ca(2+) clock that emerges in a physiological Ca(2+) milieu in VM has two faces, however: it can provoke ventricular arrhythmias; or if harnessed, can be an important feature of novel bio-pacemaker designs.


Assuntos
Relógios Biológicos/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Anticorpos/farmacologia , Proteínas de Ligação ao Cálcio/genética , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/citologia , Marca-Passo Artificial , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Ligação Proteica , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais , Nó Sinoatrial/citologia , Nó Sinoatrial/metabolismo
14.
Cancers (Basel) ; 16(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791940

RESUMO

PURPOSE: To investigate the molecular characteristics of and potential for precision medicine in KRAS wildtype pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS: We investigated 27 patients with KRASWT PDAC at our institution. Clinical data were obtained via chart review. Tumor specimens for each subject were interrogated for somatic single nucleotide variants, insertion and deletions, and copy number variants by DNA sequencing. Gene fusions were detected from RNA-seq. A patient-derived organoid (PDO) was developed from a patient with a MET translocation and expanded ex vivo to predict therapeutic sensitivity prior to enrollment in a phase 2 clinical trial. RESULTS: Transcriptomic analysis showed our cohort may be stratified by the relative gene expression of the KRAS signaling cascade. The PDO derived from our patient harboring a TFG-MET rearrangement was found to have in vitro sensitivity to the multi-tyrosine kinase inhibitor crizotinib. The patient was enrolled in the phase 2 SPARTA clinical trial and received monotherapy with vebrelitinib, a c-MET inhibitor, and achieved a partial and durable response. CONCLUSIONS: KRASWT PDAC is molecularly distinct from KRASMUT and enriched with potentially actionable genetic variants. In our study, transcriptomic profiling revealed that the KRAS signaling cascade may play a key role in KRASWT PDAC. Our report of a KRASWT PDAC patient with TFG-MET rearrangement who responded to a cMET inhibitor further supports the pursuit of precision oncology in this sub-population. Identification of targetable mutations, perhaps through approaches like RNA-seq, can help enable precision-driven approaches to select optimal treatment based on tumor characteristics.

15.
J Mol Cell Cardiol ; 61: 83-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23672825

RESUMO

As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies with electrical excitation, heart rate and pathology, the dynamic regulation of Na efflux is essential. It is now widely recognized that phospholemman, a 72 amino acid accessory protein which forms part of the Na pump complex, is the key nexus linking cellular signaling to pump regulation. Phospholemman is the target of a variety of post-translational modifications (including phosphorylation, palmitoylation and glutathionation) and these can dynamically alter the activity of the Na pump. This review summarizes our current understanding of the multiple regulatory mechanisms that converge on phospholemman and govern NA pump activity in the heart. The corrected Fig. 4 is reproduced below. The publisher would like to apologize for any inconvenience caused. [corrected].


Assuntos
Proteínas de Membrana/fisiologia , Fosfoproteínas/fisiologia , Processamento de Proteína Pós-Traducional , Trocador de Sódio e Cálcio/metabolismo , Animais , Humanos , Lipoilação , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais
16.
J Mol Cell Cardiol ; 62: 80-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23651631

RESUMO

Beneficial clinical bradycardic effects of ivabradine (IVA) have been interpreted solely on the basis of If inhibition, because IVA specifically inhibits If in sinoatrial nodal pacemaker cells (SANC). However, it has been recently hypothesized that SANC normal automaticity is regulated by crosstalk between an "M clock," the ensemble of surface membrane ion channels, and a "Ca(2+) clock," the sarcoplasmic reticulum (SR). We tested the hypothesis that crosstalk between the two clocks regulates SANC automaticity, and that indirect suppression of the Ca(2+) clock further contributes to IVA-induced bradycardia. IVA (3 µM) not only reduced If amplitude by 45 ± 6% in isolated rabbit SANC, but the IVA-induced slowing of the action potential (AP) firing rate was accompanied by reduced SR Ca(2+) load, slowed intracellular Ca(2+) cycling kinetics, and prolonged the period of spontaneous local Ca(2+) releases (LCRs) occurring during diastolic depolarization. Direct and specific inhibition of SERCA2 by cyclopiazonic acid (CPA) had effects similar to IVA on LCR period and AP cycle length. Specifically, the LCR period and AP cycle length shift toward longer times almost equally by either direct perturbations of the M clock (IVA) or the Ca(2+) clock (CPA), indicating that the LCR period reports the crosstalk between the clocks. Our numerical model simulations predict that entrainment between the two clocks that involves a reduction in INCX during diastolic depolarization is required to explain the experimentally AP firing rate reduction by IVA. In summary, our study provides new evidence that a coupled-clock system regulates normal cardiac pacemaker cell automaticity. Thus, IVA-induced bradycardia includes a suppression of both clocks within this system.


Assuntos
Benzazepinas/farmacologia , Bradicardia/induzido quimicamente , Cálcio/metabolismo , Nó Sinoatrial/citologia , Animais , Indóis/farmacologia , Ivabradina , Modelos Biológicos , Modelos Teóricos , Coelhos , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Nó Sinoatrial/efeitos dos fármacos
17.
J Mol Cell Cardiol ; 61: 164-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23612119

RESUMO

In the heart, Na/K-ATPase regulates intracellular Na(+) and Ca(2+) (via NCX), thereby preventing Na(+) and Ca(2+) overload and arrhythmias. Here, we test the hypothesis that nitric oxide (NO) regulates cardiac intracellular Na(+) and Ca(2+) and investigate mechanisms and physiological consequences involved. Effects of both exogenous NO (via NO-donors) and endogenously synthesized NO (via field-stimulation of ventricular myocytes) were assessed in this study. Field stimulation of rat ventricular myocytes significantly increased endogenous NO (18 ± 2 µM), PKCε activation (82 ± 12%), phospholemman phosphorylation (at Ser-63 and Ser-68) and Na/K-ATPase activity (measured by DAF-FM dye, western-blotting and biochemical assay, respectively; p<0.05, n=6) and all were abolished by Ca(2+)-chelation (EGTA 10mM) or NOS inhibition l-NAME (1mM). Exogenously added NO (spermine-NONO-ate) stimulated Na/K-ATPase (EC50=3.8 µM; n=6/grp), via decrease in Km, in PLM(WT) but not PLM(KO) or PLM(3SA) myocytes (where phospholemman cannot be phosphorylated) as measured by whole-cell perforated-patch clamp. Field-stimulation with l-NAME or PKC-inhibitor (2 µM Bis) resulted in elevated intracellular Na(+) (22 ± 1.5 and 24 ± 2 respectively, vs. 14 ± 0.6mM in controls) in SBFI-AM-loaded rat myocytes. Arrhythmia incidence was significantly increased in rat hearts paced in the presence of l-NAME (and this was reversed by l-arginine), as well as in PLM(3SA) mouse hearts but not PLM(WT) and PLM(KO). We provide physiological and biochemical evidence for a novel regulatory pathway whereby NO activates Na/K-ATPase via phospholemman phosphorylation and thereby limits Na(+) and Ca(2+) overload and arrhythmias. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".


Assuntos
Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Óxido Nítrico/fisiologia , Fosfoproteínas/metabolismo , Proteína Quinase C-épsilon/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Potenciais de Ação , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Citoplasma/metabolismo , Estimulação Elétrica , Ventrículos do Coração/citologia , Técnicas In Vitro , Masculino , Camundongos , Miócitos Cardíacos/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Técnicas de Patch-Clamp , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos
18.
J Mol Cell Cardiol ; 64: 11-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23988739

RESUMO

Phosphodiesterase 3A (PDE3A) is a major regulator of cAMP in cardiomyocytes. PDE3 inhibitors are used for acute treatment of congestive heart failure, but are associated with increased incidence of arrhythmias and sudden death with long-term use. We previously reported that chronic PDE3A downregulation or inhibition induced myocyte apoptosis in vitro. However, the cardiac protective effect of PDE3A has not been demonstrated in vivo in disease models. In this study, we examined the role of PDE3A in regulating myocardial function and survival in vivo using genetically engineered transgenic mice with myocardial overexpression of the PDE3A1 isozyme (TG). TG mice have reduced cardiac function characterized by reduced heart rate and ejection fraction (52.5±7.8% vs. 83.9±4.7%) as well as compensatory expansion of left ventricular diameter (4.19±0.19mm vs. 3.10±0.18mm). However, there was no maladaptive increase of fibrosis and apoptosis in TG hearts compared to wild type (WT) hearts, and the survival rates also remained the same. The diminution of cardiac contractile function is very likely attributed to a decrease in beta-adrenergic receptor (ß-AR) response in TG mice. Importantly, the myocardial infarct size (4.0±1.8% vs. 24.6±3.8%) and apoptotic cell number (1.3±1.0% vs. 5.6±1.5%) induced by ischemia/reperfusion (I/R) injury were significantly attenuated in TG mice. This was associated with decreased expression of inducible cAMP early repressor (ICER) and increased expression of anti-apoptotic protein BCL-2. To further verify the anti-apoptotic effects of PDE3A1, we performed in vitro apoptosis study in isolated adult TG and WT cardiomyocytes. We found that the apoptotic rates stimulated by hypoxia/reoxygenation or H2O2 were indeed significantly reduced in TG myocytes, and the differences between TG and WT myocytes were completely reversed in the presence of the PDE3 inhibitor milrinone. These together indicate that PDE3A1 negatively regulates ß-AR signaling and protects against I/R injury by inhibiting cardiomyocyte apoptosis.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Animais , Apoptose/genética , Modelos Animais de Doenças , Expressão Gênica , Hemodinâmica , Camundongos , Camundongos Transgênicos , Contração Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais
19.
J Mol Cell Cardiol ; 64: 90-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24051368

RESUMO

Protein phosphorylation is a major control mechanism of a wide range of physiological processes and plays an important role in cardiac pathophysiology. Serine/threonine protein phosphatases control the dephosphorylation of a variety of cardiac proteins, thereby fine-tuning cardiac electrophysiology and function. Specificity of protein phosphatases type-1 and type-2A is achieved by multiprotein complexes that target the catalytic subunits to specific subcellular domains. Here, we describe the composition, regulation and target substrates of serine/threonine phosphatases in the heart. In addition, we provide an overview of pharmacological tools and genetic models to study the role of cardiac phosphatases. Finally, we review the role of protein phosphatases in the diseased heart, particularly in ventricular arrhythmias and atrial fibrillation and discuss their role as potential therapeutic targets.


Assuntos
Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Coração/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Ativação Enzimática , Regulação da Expressão Gênica , Cardiopatias/tratamento farmacológico , Cardiopatias/genética , Humanos , Contração Miocárdica/fisiologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosforilação
20.
Clin Ter ; 174(6): 525-530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38048116

RESUMO

Objectives: Surgical repair of severely injured posterior cruciate ligament is mandatory. Therefore, the anatomical features of the PCL and its two bundles description help to define the appropriate size of the allograft for excellent results in reconstruction surgeries. Material and methods: Fifty knees were dissected from twenty-five fresh human cadavers (15 male and 10 female) of donors used for teaching purpose. The length and footprint area of PCL and patellar tendon length were measured, and determined the range of normality according to sex and height. Results: The average lengths of the PCL's Antero-medial (AM) and posterolateral (PL) bundle were 35. 52 ± 0.66 mm and 32.76 ± 0.64mm, respectively in male and 35.37 ± 0.07 & 32.58 ± 0.61mm in female. The femoral footprint of PCL was 133.10 ± 0.7 mm2 in male and 133.05 ± 0.7 mm2 in female observed, while the tibial footprint 132.21± 1.02 mm2 in male and 132.42 ± 0.8 mm2 in female was observed. Conclusion: The AM and PL bundle lengths were higher in males than females. There was a strong correlation between height and length of ligaments but no correlation with age.


Assuntos
Procedimentos de Cirurgia Plástica , Ligamento Cruzado Posterior , Feminino , Masculino , Humanos , Articulação do Joelho , Cadáver , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA