Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Cell ; 81(21): 4440-4456.e7, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34597596

RESUMO

Protection of stalled replication forks is critical to genomic stability. Using genetic and proteomic analyses, we discovered the Protexin complex containing the ssDNA binding protein SCAI and the DNA polymerase REV3. Protexin is required specifically for protecting forks stalled by nucleotide depletion, fork barriers, fragile sites, and DNA inter-strand crosslinks (ICLs), where it promotes homologous recombination and repair. Protexin loss leads to ssDNA accumulation and profound genomic instability in response to ICLs. Protexin interacts with RNA POL2, and both oppose EXO1's resection of DNA on forks remodeled by the FANCM translocase activity. This pathway acts independently of BRCA/RAD51-mediated fork stabilization, and cells with BRCA2 mutations were dependent on SCAI for survival. These data suggest that Protexin and its associated factors establish a new fork protection pathway that counteracts fork resection in part through a REV3 polymerase-dependent resynthesis mechanism of excised DNA, particularly at ICL stalled forks.


Assuntos
Proteína BRCA2/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/química , Exodesoxirribonucleases/metabolismo , Fatores de Transcrição/química , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Reparo do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Células HeLa , Humanos , Ácido Mevalônico , Camundongos , Complexos Multiproteicos , Mutação , Ligação Proteica , Conformação Proteica , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Recombinação Genética
2.
Mol Cell ; 79(6): 1037-1050.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32882183

RESUMO

DNA double-stranded breaks (DSBs) are dangerous lesions threatening genomic stability. Fidelity of DSB repair is best achieved by recombination with a homologous template sequence. In yeast, transcript RNA was shown to template DSB repair of DNA. However, molecular pathways of RNA-driven repair processes remain obscure. Utilizing assays of RNA-DNA recombination with and without an induced DSB in yeast DNA, we characterize three forms of RNA-mediated genomic modifications: RNA- and cDNA-templated DSB repair (R-TDR and c-TDR) using an RNA transcript or a DNA copy of the RNA transcript for DSB repair, respectively, and a new mechanism of RNA-templated DNA modification (R-TDM) induced by spontaneous or mutagen-induced breaks. While c-TDR requires reverse transcriptase, translesion DNA polymerase ζ (Pol ζ) plays a major role in R-TDR, and it is essential for R-TDM. This study characterizes mechanisms of RNA-DNA recombination, uncovering a role of Pol ζ in transferring genetic information from transcript RNA to DNA.


Assuntos
DNA/genética , RNA/genética , Saccharomyces cerevisiae/genética , Adolescente , Adulto , DNA/ultraestrutura , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Replicação do DNA/genética , DNA Complementar/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/ultraestrutura , Instabilidade Genômica/genética , Humanos , Pessoa de Meia-Idade , RNA/ultraestrutura , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Adulto Jovem
3.
EMBO J ; 40(21): e104543, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34533226

RESUMO

The DNA polymerase zeta (Polζ) plays a critical role in bypassing DNA damage. REV3L, the catalytic subunit of Polζ, is also essential in mouse embryonic development and cell proliferation for reasons that remain incompletely understood. In this study, we reveal that REV3L protein interacts with heterochromatin components including repressive histone marks and localizes in pericentromeric regions through direct interaction with HP1 dimer. We demonstrate that Polζ/REV3L ensures progression of replication forks through difficult-to-replicate pericentromeric heterochromatin, thereby preventing spontaneous chromosome break formation. We also find that Rev3l-deficient cells are compromised in the repair of heterochromatin-associated double-stranded breaks, eliciting deletions in late-replicating regions. Lack of REV3L leads to further consequences that may be ascribed to heterochromatin replication and repair-associated functions of Polζ, with a disruption of the temporal replication program at specific loci. This is correlated with changes in epigenetic landscape and transcriptional control of developmentally regulated genes. These results reveal a new function of Polζ in preventing chromosome instability during replication of heterochromatic regions.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA/genética , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Heterocromatina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Transformada , Proliferação de Células , Homólogo 5 da Proteína Cromobox/genética , Homólogo 5 da Proteína Cromobox/metabolismo , Instabilidade Cromossômica , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Heterocromatina/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Transdução de Sinais
4.
Dig Dis Sci ; 67(3): 892-903, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33725240

RESUMO

BACKGROUND: It has been revealed that circular RNAs (circRNAs) play an important role in regulating the malignant phenotype of tumor cells, thus involving in the progression of malignancies. However, the role of circ_0023984 in esophageal squamous cell carcinoma (ESCC) remains largely unclear. METHODS: The quantitative real-time polymerase chain reaction and Western blot assays were used to detect the expression of circ_0023984, microRNA (miR)-443-3p, and protein reversionless 3-like (REV3L). In vitro and in vivo assays were performed using cell counting kit-8, colony formation, transwell, wound healing, flow cytometry, and xenograft assays. The interaction miR-433-3p and circ_0023984 or REV3L was confirmed by dual-luciferase reporter, pull-down or RIP assays. RESULTS: Circ_0023984 was highly expressed in ESCC tissues and cells, knockdown of circ_0023984 suppressed cancer cell proliferation, migration, invasion, and promoted cell apoptosis in vitro. Mechanistic analysis confirmed that circ_0023984 functioned as a sponge for miR-433-3p to positively regulate the expression of REV3L that was verified to be a target of miR-433-3p. Circ_0023984 knockdown repressed the tumorigenesis of ESCC cells via targeting miR-433-3p. Additionally, miR-433-3p performed anti-proliferative, anti-migratory, and anti-invasive abilities in ESCC cells, which were reversed by REV3L overexpression. Pre-clinically, silencing of circ_0023984 suppresses the tumorigenesis and growth of xenografts in nude mice. CONCLUSION: Circ_0023984 exerted an oncogenic role in ESCC tumorigenesis and aggressiveness through promoting cell growth, migration, and invasion via miR-433-3p/REV3L axis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Animais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA , DNA Polimerase Dirigida por DNA , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Cell Biol Int ; 44(12): 2416-2426, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32808744

RESUMO

Multifactor and multistep processes were elucidated to participate in the progression of non-small-cell lung cancer (NSCLC). Circular RNA 0031250 (circ-PRMT5) was a vital factor in NSCLC. However, the role of circ-PRMT5 in cisplatin (DDP)-resistance needed to be further highlighted. Expression profiles of circ-PRMT5, microRNA (miR)-4458, and EV3-like DNA-directed polymerase ζ catalytic subunit (REV3L) were detected using quantitative real-time polymerase chain reaction. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and transwell assays were performed to determine the half-maximal inhibitory concentration of DDP, cell viability, apoptosis, and invasion in vitro. Besides, the protein levels of REV3L and indicated proteins were examined by adopting western blot. Dual-luciferase reporter assay was performed to analyze the interaction between miR-4458 and circ-PRMT5 or REV3L. The functional role of circ-PRMT5 was explored using a xenograft tumor model. Levels of circ-PRMT5 and REV3L were markedly increased, while miR-4458 was downregulated in resistant tissues and cells. Knockdown of circ-PRMT5 enhanced cell apoptosis, DDP-sensitivity, and declined metastasis in NSCLC with DDP resistance. Besides, miR-4458 inhibition or REV3L upregulation could revert circ-PRMT5 absence-mediated effect on DDP-sensitivity in vitro. Mechanically, circ-PRMT5 was a sponge of miR-4458 to regulate REV3L. Importantly, circ-PRMT5 silencing could interact with DDP treatment expedite the decrease of tumor growth in vivo. Circ-PRMT5 promoted DDP resistance via REV3L by sponging miR-4458 in NSCLC, thus providing a novel therapeutic strategy for patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteína-Arginina N-Metiltransferases/genética , Células A549 , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/genética , China , Cisplatino/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Biochem Biophys Res Commun ; 496(1): 199-204, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29307819

RESUMO

Lung cancer is one of the deadliest cancers in the world because of chemo-resistance to the commonly used cisplatin-based treatments. The use of low fidelity DNA polymerases in the translesional synthesis (TLS) DNA damage response pathway that repairs lesions caused by cisplatin also presents a mutational carcinogenic burden on cells that needs to be regulated by the tumor suppressor protein p53. However, there is much debate over the roles of the reversionless 3-like (REV3L) protein responsible for TLS and p53 in regulating cancer cell metabolism. In this study, the fluorescence lifetime of the metabolic coenzyme NADH reveals that the absence of REV3L can promote the p53-mediated upregulation of oxidative phosphorylation in cisplatin-treated H1299 lung carcinoma cells and increases cancer cell sensitivity to this platinum-based chemotherapy. These results demonstrate a previously unrecognized relationship between p53 and REV3L in cancer cell metabolism and may lead to improvements in chemotherapy treatment plans that reduce cisplatin resistance in lung cancer.


Assuntos
Cisplatino/administração & dosagem , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Neoplasias Pulmonares/patologia
7.
J Cell Physiol ; 232(12): 3433-3443, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28075014

RESUMO

It has been demonstrated that REV3, the catalytic subunit of the translesion synthesis (TLS) polymerase ζ, play an important role in DNA damage response (DDR) induced by cisplatin, and Ataxia-telangietasia mutated and Rad-3-related (ATR) knase is a central player in activating cell cycle checkpoint, stabilizing replication forks, regulating DDR, and promoting repair of DNA damage caused by cisplatin. Cancer cells deficient in either one of REV3 and ATR are more sensitive to cisplatin. However, whether co-inhibition of REV3 and ATR can further increase sensitivity of non-small cell lung cancer (NSCLC) cells to cisplatin is not clear. In this study, we show that REV3 knockdown combined with ATR inhibition further enhance cytotoxicity of cisplatin in NSCLC cells, including cisplatin-sensitive and -resistant cell lines, compared to individual knockdown of REV3 or ATR, which are accompanied by markedly caspase-dependent apoptosis response, pronounced DNA damage accumulation and severe impediment of interstrand crosslink (ICL), and double strand break (DSB) repair. Our results suggest that REV3 knockdown synergize strongly with ATR inhibition to significantly increase sensitivity of cisplatin in NSCLC cells by inhibiting ICL and DSB repair. Thus simultaneously targeting REV3 and ATR may represent one approach to overcome cisplatin resistance and improve chemotherapeutic efficacy in NSCLC treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Relação Dose-Resposta a Droga , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
8.
Proc Natl Acad Sci U S A ; 111(8): 2954-9, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24449906

RESUMO

DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3-Rev7-PolD2-PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3-Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3' guanine and Pol ζ4 to extend the primers.


Assuntos
Cisplatino/metabolismo , Reparo do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Cromatografia em Gel , Cromatografia por Troca Iônica , DNA Polimerase III/metabolismo , Primers do DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/isolamento & purificação , Fluoresceína , Células HEK293 , Holoenzimas/isolamento & purificação , Holoenzimas/metabolismo , Humanos , Proteínas Mad2/metabolismo
9.
Bioorg Med Chem ; 24(18): 4339-4346, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27448776

RESUMO

DNA interstrand crosslink (ICL) repair (ICLR) has been implicated in the resistance of cancer cells to ICL-inducing chemotherapeutic agents. Despite the clinical significance of ICL-inducing chemotherapy, few studies have focused on developing small-molecule inhibitors for ICLR. The mammalian DNA polymerase ζ, which comprises the catalytic subunit REV3L and the non-catalytic subunit REV7, is essential for ICLR. To identify small-molecule compounds that are mechanistically capable of inhibiting ICLR by targeting REV7, high-throughput screening and structure-activity relationship (SAR) analysis were performed. Compound 1 was identified as an inhibitor of the interaction of REV7 with the REV7-binding sequence of REV3L. Compound 7 (an optimized analog of compound 1) bound directly to REV7 in nuclear magnetic resonance analyses, and inhibited the reactivation of a reporter plasmid containing an ICL in between the promoter and reporter regions. The normalized clonogenic survival of HeLa cells treated with cisplatin and compound 7 was lower than that for cells treated with cisplatin only. These findings indicate that a small-molecule inhibitor of the REV7/REV3L interaction can chemosensitize cells by inhibiting ICLR.


Assuntos
Antineoplásicos/farmacologia , Reparo do DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas Mad2/antagonistas & inibidores , Pirimidinonas/farmacologia , Tiofenos/farmacologia , Antineoplásicos/síntese química , Cisplatino/farmacologia , DNA Polimerase Dirigida por DNA , Resistencia a Medicamentos Antineoplásicos , Células HeLa , Humanos , Ligação Proteica , Pirimidinonas/síntese química , Relação Estrutura-Atividade , Tiofenos/síntese química
10.
Brain ; 138(Pt 12): 3654-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26450587

RESUMO

Resistance to temozolomide poses a major clinical challenge in glioblastoma multiforme treatment, and the mechanisms underlying the development of temozolomide resistance remain poorly understood. Enhanced DNA repair and mutagenesis can allow tumour cells to survive, contributing to resistance and tumour recurrence. Here, using recurrent temozolomide-refractory glioblastoma specimens, temozolomide-resistant cells, and resistant-xenograft models, we report that loss of miR-29c via c-Myc drives the acquisition of temozolomide resistance through enhancement of REV3L-mediated DNA repair and mutagenesis in glioblastoma. Importantly, disruption of c-Myc/miR-29c/REV3L signalling may have dual anticancer effects, sensitizing the resistant tumours to therapy as well as preventing the emergence of acquired temozolomide resistance. Our findings suggest a rationale for targeting the c-Myc/miR-29c/REV3L signalling pathway as a promising therapeutic approach for glioblastoma, even in recurrent, treatment-refractory settings.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Transdução de Sinais/genética , Temozolomida
11.
Neoplasma ; 62(5): 833-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26278154

RESUMO

Lung cancer is the greatest contributor to tumor-derived death. Traditionally, platinum-based chemotherapies are the primary treatment for most patients. However, intrinsic drug resistance and side effects limit the efficacy of platinum-based chemotherapies. Previous studies demonstrated that Pol ζ can modulate cellular sensitivity to chemotherapy. The primary aim of this study was to investigate the potential role of the polymorphism of Pol ζ in platinum-based chemotherapy tolerance and side effects. A total of 663 patients who were newly histologically diagnosed with advanced NSCLC were enrolled. Their treatment response was classified into four categories: complete response (CR), partial response (PR), stable disease (SD) and progressive disease (PD). The gastrointestinal and hematological toxicity incidence was assessed twice a week during the entire first line of treatment. Thirteen SNPs of REV3 and REV7 were genotyped. The associations between SNPs and the treatment response or toxicity were analyzed with a logistic regression model. We discovered that five SNPs were correlated with the treatment response. Specifically, rs240969 was significantly associated with the treatment response, after a Bonferroni correction, in smokers and a combined cohort (P=0.048 and P=0.0082, respectively) as well as with rs3218573 in smokers (P=0.036). In addition, we discovered that the incidence of grade 3 or 4 gastrointestinal toxicity was significantly higher in patients carrying a G/G genotype of rs240966 or an A allele of rs456865. We also identified that five SNPs, namely rs240966, rs4945880, rs465646, rs2233025 and rs2336030, that were correlated with an increased risk of grade 3 or grade 4 hematologic toxicity. The REV3 and REV7 polymorphisms are in a catalytic subunit and an accessory subunit of Pol ζ, respectively, and participate in platinum-chemotherapy tolerance and side effects.

12.
EFSA J ; 22(8): e8952, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39099619

RESUMO

The EFSA Panel on Food Additives and Flavourings was requested to evaluate 14 flavouring substances assigned to the Flavouring Group Evaluation 80 (FGE.80), using the Procedure as outlined in the Commission Regulation (EC) No 1565/2000. Thirteen substances have already been considered in FGE.80 and its revision and in FGE.96 [FL-no: 10.005, 10.024, 10.025, 10.050, 10.061, 10.069, 10.070, 10.072, 10.169, 13.009, 13.012, 13.161 and 16.055]. The remaining flavouring substance 3a,4,5,7a-tetrahydro-3,6-dimethylbenzofuran-2(3H)-one [FL-no: 10.057] has been cleared with respect to genotoxicity in FGE.217Rev3 and it is considered in this revision 2 of FGE.80. The substance [FL-no: 10.057] was evaluated through a stepwise approach that integrates information on the structure-activity relationships, intake from current uses, threshold of toxicological concern (TTC) and available data on metabolism and toxicity. The Panel concluded that [FL-no: 10.057] does not give rise to safety concerns at its levels of dietary intake, when estimated on the basis of the 'Maximised Survey-derived Daily Intake' (MSDI) approach. Besides the safety assessment of the flavouring substance, the specifications for the material of commerce have also been considered and the information provided was complete for [FL-no: 10.057]. However, for the flavouring substance [FL-no: 10.057] in the present revision and for eight substances evaluated in previous revisions, the 'modified Theoretical Added Maximum Daily Intakes' (mTAMDIs) values are above the TTC for their structural class (III). For four substances previously evaluated in FGE.80Rev1 and in FGE.96, use levels are still needed to calculate the mTAMDI estimates. Therefore, in total for 13 flavouring substances, data on uses and use levels should be provided to finalise their safety evaluations. For [FL-no: 10.050, 10.069 and 13.161], information on the composition of stereoisomeric mixtures is needed.

13.
Autoimmunity ; 56(1): 2234101, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37448296

RESUMO

Glioblastoma is the most common glioma with high mortality and poor prognosis. Radiation resistance is one of the large challenges in the treatment of glioma. The study aimed to identify whether DNA polymerase ζ affects glioma cell radiosensitivity. The mRNA and protein levels of REV3L and REV7 were examined using quantitative real-time PCR and western blot. After REV3L and REV7 knockdown in a GBM cell line (A172), we assessed cell viability, colonies, apoptosis, and immune escape. The underlying mechanisms were evaluated using western blot and were confirmed using rescue experiments. The results showed that REV3L and REV7 levels were increased in glioma and related to poor survival. γ-ray treatment inhibited cell viability, survival fraction, and immune escape, and induced apoptosis of glioma cells from a GBM cell line, whereas knockdown of REV3L or REV7 enhanced these effects. Mechanically, silencing of REV3L or REV7 inactivated the PI3K/AKT/mTOR pathway. IGF-1 treatment abrogated the effects on cell viability, colonies, and apoptosis induced by REV3L or REV7 knocking down. Taken together, silencing of REV3L and REV7 inhibited radiation resistance via inactivating the PI3K/AKT/mTOR pathway, suggesting that targeting DNA polymerase ζ may be a new strategy to reduce the radiotherapy resistance of glioma.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Glioma/genética , Glioma/radioterapia , Serina-Treonina Quinases TOR/metabolismo , Tolerância a Radiação/genética , Linhagem Celular Tumoral , Apoptose/genética , Proliferação de Células , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/farmacologia , Proteínas de Ligação a DNA
14.
Food Chem Toxicol ; 176: 113774, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037410

RESUMO

As anchoring Casein Kinase 2 (CK2) in several human tumors, DN701 as a novel CK2 inhibitor was applied to reverse chemo-resistance via its antitumor effect synergized with oxaliplatin. Recently, translesion DNA synthesis (TLS) has attracted our attention for its association with chemo-resistance, as demonstrated by previous clinical data. The in vitro cell-based properties supported that oxaliplatin combined with DN701 could reverse drug resistance via blockading CK2-mediated aryl hydrocarbon receptor (AhR) and translesion DNA synthesis (TLS)-induced DNA damage repair. Moreover, pharmacologic or genetic inhibition on REV3L (Protein reversion less 3-like) greatly impaired TLS-induced genomic instability. Mechanistically, combination of oxaliplatin with DN701 was found to inhibit CK2 expression and AhR-TLS-REV3L axis signaling, implying the potential decrease of genomic instability. In addition, the combination of oxaliplatin with DN701 could reduce CK2-AhR-TLS-related genomic instability, leading to potent antitumor effects in vivo. Our study presents an underlying mechanism that DN701 could attenuate tumoral chemo-resistance via decaying CK2-mediated AhR and TLS genomic instability, suggesting a potential cancer chemotherapeutic modality to prolong survival in chemo-resistant patients.


Assuntos
Caseína Quinase II , Neoplasias Colorretais , Humanos , Caseína Quinase II/genética , Caseína Quinase II/farmacologia , Oxaliplatina/farmacologia , Receptores de Hidrocarboneto Arílico/genética , Resistencia a Medicamentos Antineoplásicos , DNA , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Instabilidade Genômica , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/farmacologia , Proteínas de Ligação a DNA/genética
15.
Cell Rep ; 42(8): 112887, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37498746

RESUMO

Translesion DNA synthesis (TLS) facilitates replication over damaged or difficult-to-replicate templates by employing specialized DNA polymerases. We investigate the effect on spontaneous mutagenesis of three main TLS control mechanisms: REV1 and PCNA ubiquitylation that recruit TLS polymerases and PRIMPOL that creates post-replicative gaps. Using whole-genome sequencing of cultured human RPE-1 cell clones, we find that REV1 and Polymerase ζ are wholly responsible for one component of base substitution mutagenesis that resembles homologous recombination deficiency, whereas the remaining component that approximates oxidative mutagenesis is reduced in PRIMPOL-/- cells. Small deletions in short repeats appear in REV1-/-PCNAK164R/K164R double mutants, revealing an alternative TLS mechanism. Also, 500-5,000 bp deletions appear in REV1-/- and REV3L-/- mutants, and chromosomal instability is detectable in REV1-/-PRIMPOL-/- cells. Our results indicate that TLS protects the genome from deletions and large rearrangements at the expense of being responsible for the majority of spontaneous base substitutions.

16.
Genes (Basel) ; 13(3)2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328096

RESUMO

Xeroderma pigmentosum (XP) is a rare autosomal recessive genetic disorder characterized by severe sensitivity of skin to sunlight and an increased risk of skin cancer. XP variant (XPV), a milder subtype, is caused by variants in the POLH gene. POLH encodes an error-prone DNA-polymerase eta (pol eta) which performs translesion synthesis past ultraviolet photoproducts. The current study documents the clinical and genetic investigations of two large consanguineous Pakistani families affected with XPV. In family 1, whole exome sequencing (WES) revealed a novel frameshift variant, c.1723dupG (p.(Val575Glyfs*4)), of POLH, which is predicted to cause frameshift and premature truncation of the encoded enzyme. Indeed, our ex vivo studies in HEK293T cells confirmed the truncation of the encoded protein due to the c.1723dupG variant. In family 2, Sanger sequencing of POLH exons, revealed a recurrent nonsense variant, c.437dupA (p.Tyr146*). POLH forms a hetero-tetrameric POLZ complex with REV3L, REV7, POLD2 and POLD3. Next, we performed in silico analysis of POLH and other POLZ complex genes expression in publicly available single cell mRNAseq datasets from adult human healthy and aging skin. We found overlapping expression of POLH, REV3L and POLD2 in multiple cell types including differentiated and undifferentiated keratinocytes, pericytes and melanocytes in healthy skin. However, in aging human skin, POLH expression is reduced in compare to its POLZ complex partners. Insights from our study will facilitate counseling regarding the molecular and phenotypic landscape of POLH-related XPV.


Assuntos
Xeroderma Pigmentoso , Adulto , Consanguinidade , Reparo do DNA , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Células HEK293 , Humanos , Paquistão , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia
17.
Int J Mol Sci ; 12(12): 8513-29, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22272088

RESUMO

When a replicative DNA polymerase stalls upon encountering a photoproduct on the template strand, it is relieved by other low-processivity polymerase(s), which insert nucleotide(s) opposite the lesion. Using an alkaline sucrose density gradient sedimentation technique, we previously classified this process termed UV-induced translesion replication (UV-TLS) into two types. In human cancer cells or xeroderma pigmentosum variant (XP-V) cells, UV-TLS was inhibited by caffeine or proteasome inhibitors. However, in normal human cells, the process was insensitive to these reagents. Reportedly, in yeast or mammalian cells, REV3 protein (a catalytic subunit of DNA polymerase ζ) is predominantly involved in the former type of TLS. Here, we studied UV-TLS in fibroblasts derived from the Rev3-knockout mouse embryo (Rev3KO-MEF). In the wild-type MEF, UV-TLS was slow (similar to that of human cancer cells or XP-V cells), and was abolished by caffeine or MG-262. In 2 cell lines of Rev3KO-MEF (Rev3(-/-)p53(-/-)), UV-TLS was not observed. In p53KO-MEF, which is a strict control for Rev3KO-MEF, the UV-TLS response was similar to that of the wild-type. Introduction of the Rev3 expression plasmid into Rev3KO-MEF restored the UV-TLS response in selected stable transformants. In some transformants, viability to UV was the same as that in the wild-type, and the death rate was increased by caffeine. Our findings indicate that REV3 is predominantly involved in UV-TLS in mouse cells, and that the REV3 translesion pathway is suppressed by caffeine or proteasome inhibitors.


Assuntos
Cafeína/farmacologia , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Fibroblastos/metabolismo , Animais , Linhagem Celular , DNA Polimerase Dirigida por DNA/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta
18.
DNA Repair (Amst) ; 98: 103031, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387704

RESUMO

DNA polymerase ζ (pol ζ) is involved in translesion replication (translesion synthesis, TLS) and plays an essential role in embryogenesis. In adults, pol ζ triggers mutation as a result of error-prone TLS and causes carcinogenesis. The catalytic subunit of pol ζ, REV3, is evolutionarily conserved from yeast and plants to higher eukaryotes. However, the structures are notably different: unlike that in yeast REV3, a large intermediate domain is inserted in REV3 of humans and mice. The domain is mostly occupied with noncommittal structures (random coil…etc.); therefore, its role and function are yet to be resolved. Previously, we reported deficient levels of ultraviolet (UV)-induced TLS in fibroblasts derived from the Rev3-knockout mouse embryo (Rev3KO-MEF). Here, we constructed a mouse Rev3-expressing plasmid with a deleted intermediate domain (532-1793 a.a,) and transfected it into Rev3KO-MEF. The isolated stable transformants showed comparable levels of UV-sensitivity and UV-TLS activity to those in wild-type MEF, detected using an alkaline sucrose density gradient sedimentation. These results indicate that the intermediate domain is nonessential for UV-induced translesion replication in cultured mouse cells.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Fibroblastos/metabolismo , Raios Ultravioleta , Animais , DNA/metabolismo , DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Conformação Proteica , Domínios Proteicos
19.
Oncotarget ; 12(21): 2114-2130, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34676045

RESUMO

The therapeutic efficacy of temozolomide (TMZ) is hindered by inherent and acquired resistance. Biomarkers such as MGMT expression and MMR proficiency are used as predictors of response. However, not all MGMTlow/-ve/MMRproficient patients benefit from TMZ treatment, indicating a need for additional patient selection criteria. We explored the role of ATR in mediating TMZ resistance and whether ATR inhibitors (ATRi) could reverse this resistance in multiple cancer lines. We observed that only 31% of MGMTlow/-ve/MMRproficient patient-derived and established cancer lines are sensitive to TMZ at clinically relevant concentrations. TMZ treatment resulted in DNA damage signaling in both sensitive and resistant lines, but prolonged G2/M arrest and cell death were exclusive to sensitive models. Inhibition of ATR but not ATM, sensitized the majority of resistant models to TMZ and resulted in measurable DNA damage and persistent growth inhibition. Also, compromised homologous recombination (HR) via RAD51 or BRCA1 loss only conferred sensitivity to TMZ when combined with an ATRi. Furthermore, low REV3L mRNA expression correlated with sensitivity to the TMZ and ATRi combination in vitro and in vivo. This suggests that HR defects and low REV3L levels could be useful selection criteria for enhanced clinical efficacy of an ATRi plus TMZ combination.

20.
Hematol Transfus Cell Ther ; 43(3): 377-381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32682781

RESUMO

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by dysplasias, ineffective hematopoiesis and risk of acute myeloid leukemia transformation. Approximately 90% of MDS patients present mutations in genes involved in various cell signaling pathways. Specialized DNA polymerases, such as POLN, POLI, POLK, POLQ, POLH, POLL and REV3L, insert a nucleotide opposite replication-blocking DNA lesions in an error-prone manner and, in this way, sometimes can actively promote the generation of mutation. For the best of our knowledge, has not been described the mutations of these genes in MDS. DNA target sequencing CDS regions of the REV3L gene was performed in a 58-year-old man diagnosed as High Risk Myelodysplastic Syndrome. The patient presented very low hemoglobin, increased number of blasts, karyotype:47,XY,+8[6]/47,XY,del(7)(q32),+8[7], no response to hypomethylating therapy (decitabine), all markers of poor prognosis. Target sequencing identified a mutation c.9253-6T>C REV3L (Substitution - intronic) with VAF (variant allele frequency)=16% considered pathogenic according to Functional Analysis through. Hidden Markov Models (FATHMM). This is the first evidence of REV3L mutation in MDS and, of utmost importance, associated with poor prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA